

Multi-Facets Contract for Modeling and Verifying Heterogeneous Systems

<u>Abdelkader Khouass^{1;2}</u>

Christian Attiogbé¹

Mohamed Messabihi²

¹ University of Nantes, LS2N CNRS UMR 6004, France christian.attiogbe@univ-nantes.fr

² University of Tlemcen, LRIT, Algeria abderrahmaneabdelkader.khouass@univ-tlemcen.dz mohamedelhabib.messabihi@univ-tlemcen.dz

The context

• **CBSE** and **the reuse of components**

Heterogeneous systems

(Facets: data, functionality, time, security, quality, etc.)

• Correctness of the heterogeneous systems: **modeling**

Some issues

Components are from different languages and cover different facets.

The composition and verification are not simple, need to be "normalized".

• Global properties are heterogeneous; need to be clearly expressed, integrated and analyzed.

Need for expressive language.

• The composition of the components should preserve their local contracts.

Respect for local requirements.

- Global properties require heterogeneous formal analysis tools, which generates complexity. The need of tools.
- Focus: top-down and practical method

The main concepts of our solution

Language to express global properties

• We consider **PSL (Property Specification Language)** as an *expressive language* to express the generalized contracts.

Generalized contract

• An extension of an A/G contract.

• Structured with its Assume and Guarantee parts.

 $\begin{array}{c} \text{Generalized}\\ \text{Contract}\left(\text{GC}_{i}\right) \end{array}$ $\begin{array}{c} \textbf{Assumptions}\left(\textbf{A}_{i}\right) \\ \text{Facet} F_{k} : \text{Prop} \ P_{n} \\ \textbf{Guaranties}\left(\textbf{Gi}\right) \\ \text{Facet} F_{k} : \text{Prop} \ P_{m} \end{array}$

- Structured according to different clearly identified facets (data, functionality, time, safety, quality, etc.) in its Assume or Guarantee.
- The **behaviour** is not included in the contract

Towards modeling and verification of heterogeneous systems

A method - heterogeneous system

- Composition of normalized components only Ci(AG,...), Cj(AG,...), ...
- Decomposition of the properties with respect to the identified and agreed upon facets and distribution along the analysis of the assembled components.
- Reuse existing components or build needed ones.
- Manipulation of components through their generalized contracts (A/G).
- Weakening or strengthening of the local contracts according to the global level properties.
- Addition of a priority for each facet, in order to simplify the analysis of the global property.
- We target different analysis tools according to the facets and we have to ensure the global consistency.

Minarets method ...

Structure of a heterogeneous system

Fig. 1. Meta-model of a heterogeneous system with normalized components

Minarets Method

Fig. 2. The successive steps of our Minarets method

9

Case Study

Fig. 3. Painting workshop

10

Modeling of components

Fig. 4. Components modeled with UPPAAL and ProMeLa

 Decomposition of the global properties with respect to the facets that we considered (Data, functionality, time, security);

DATA: The RGB dosage(true/ false), star_painting_status(true/ false). FUNCTIONALITY: RGB_painted_quantity = RGB_given_quantity. TIME: painting_time=given_time, Freeing_time= given_freeing_time. SECURITY: car_type= given_car_type, RGB_tanks>= RGB_given_quantity.

Step 5

• Structuration of the formalized properties with the PSL language

```
for RP in painting status
   for RP in painting status
                                                                  property p1 :always
     property p0 :always
                                                                       (PS in Busy status and
                  (get type = true and
                                                                        CS in end configuration and
                  get color = true and
                  qet time = true)
                                                                        R tank color >= CS R GivenColor and
                                                                        B tank color >= CS B GivenColor and
     Data : assert p0;
  end
                                                                        G tank color >= CS G GivenColor)
                                                                  Security : assert p1;
                                                               end
property p5: always (CS time painting = given time -> RP in OFF status)
Time: assert p5;
property p6 : always (deadlock -> (PS in FREE and RP in OFF and CS in End ))
Functionality assert p6;
```

Fig. 5. Structured property with PSL

- Normalization
- Integration of assumptions and guarantees

Step 8

• Attribution of a priority to each facet

RP contract

Assumption:

car_type=true, get_color=true,get_painting_time= true, RGB_tank_quant>=RGB_GivenColor_q <mark>Guarantee:</mark>

DATA: The RGB dosage(true/ false). SECURITY: car_type= given_car_type, RGB_tanks>= RGB_given_quantity. TIME: painting_time=given_time. FUNCTIONALITY: RGB_painted_quantity = RGB_given_quantity, .

Behaviour

• Composition of the component behaviour (with UPPAAL).

Fig. 6. The composed system after the component translation (in UPPAAL)

Assessment

- The proposed **Minarets** method solves a part of the faced issues
- More **tool** assistance is needed
- The experimentations give the opportunity to tune the method steps
- The impact of treated **facets** on interactions between various tools

Conclusion

- **Minarets** method for complex and heterogeneous systems **modeling** and **analysis**
- **Generalized contract** (the standard interfaces between components)
- Reducing the **difficulty of modeling and analysis** of heterogeneous systems composition.

Perspectives

• The study of various policies for the composition of the normalized components.

The construction of the global property from the local properties.

- The study of the global consistency of the composed system.
- The distribution of the global property on the local components.
- Verification of the different facets written with PSL according to the verification tools.

Thank you for your attention . .

