COVERABILITY SYNTHESIS IN PARAMETRIC PETRI NETS

WORK PARTIALLY SUBMITTED TO ICALP2017 CONCUR2017

Nicolas DAVID, Claude JARD, Didier LIME, Olivier H. ROUX April 27, 2017

LS2N, Nantes

- modeling arbitrary large amount of processes
- modeling unspecified aspect of the environment
- provide a higher level of abstraction

OUTLINE

- 1. Petri Nets
- 2. Parametric Petri Nets
- 3. Undecidability of the Generic Case
- 4. From Monotonicity in PPNs to Synthesis
- 5. Decidability in DistinctT-PPNs
- 6. What about Complexities ?
- 7. EXPSPACE completeness of U-Cov in PreT-PPNs
- 8. Establishing Frontiers Work In Progress
- 9. Conclusion

PETRI NETS

DEFINITION

• P

DEFINITION

- P
- T
- Pre : $P \times T \to \mathbb{N}$

- P
- T
- Pre : $P \times T \to \mathbb{N}$
- Post : $P \times T \to \mathbb{N}$

- P
- T
- Pre : $P \times T \to \mathbb{N}$
- Post : $P \times T \to \mathbb{N}$
- $m: P \to \mathbb{N}^k$

• $m \geq Pre(t_1)$

- $m \geq Pre(t_1)$
- $m' = m Pre(t_1) + Post(t_1)$

- $m \geq Pre(t_1)$
- $m' = m Pre(t_1) + Post(t_1)$
- $\Leftrightarrow m \stackrel{t_1}{\rightarrow} m'$

Reachability

Let $S = (N, m_0)$, where N = (P, T, Pre, Post), a marking *m* of \mathbb{N}^P is reachable in S if $m_0 \stackrel{*}{\to} m$.

The reachability set $\mathcal{RS}(S)$ of S is the set of all reachable markings of S.

Coverability

Let $S = (N, m_0)$, where N = (P, T, Pre, Post), and *m* a marking of \mathbb{N}^P , *m* is coverable in S if $\exists m' \in \mathcal{RS}(S), m' \geq m$.

we write cov(SP, m)

The coverability set $CS(S) = \{m \mid cov((S), m)\}$ Coverability is decidable in PNs [Karp and Miller, 1969]. We can compute the basis s.t. $CS(S) = \{m \mid \exists x \in \mathcal{BCS}(\mathcal{N}, m_0), m \leq x\}$ with $\mathcal{BCS}(\mathcal{N}, m_0) \subset \mathbb{N}_{\omega}^{|P|}$

PARAMETRIC PETRI NETS

- P
- T
- Pre : $P \times T \to \mathbb{N} \cup \mathbb{P}$
- Post : $P \times T \to \mathbb{N} \cup \mathbb{P}$

• P

• v(P, T, Pre, Post)

EXAMPLE : FINANCIAL LOAN

- n = number of maturities
- a = amount loaned
- b = repayment
- e = income
- c = interest earned

HIERARCHY OF PARAMETRIC PETRI NETS [DAVID ET AL., 2015]

coverability-Existence problem

Is there a valuation $\nu \in \mathbb{N}^{Par}$ s.t. cov(v(SP), m) ?

coverability-Universality problem

Is cov(v(SP), m) true for each $\nu \in \mathbb{N}^{Par}$?

coverability-Synthesis problem

Compute all the valuations *v*, such that cov(v(SP), m) is true.

 $\mathcal{CV}(\mathcal{S}, m) = \{ v \in \mathbb{N}^{\mathbb{P}} \mid cov(v(\mathcal{SP}), m) = true \}$

	\mathscr{U} -problem		\mathscr{E} -problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	?	?	?
postT-PPN	?	?	?	?
PPN	?	?	?	?
distinctT-PPN	?	?	?	?
P-PPN	?	?	?	?

UNDECIDABILITY OF THE GENERIC CASE

Undecidability in PPN

- The *&*-coverability problem for PPN is undecidable.
- The \mathscr{U} -coverability problem for PPN is undecidable.

2-Counters Machine

- two counters *c*₁, *c*₂,
- states $P = \{p_0, ..., p_m\}$, a terminal state labelled *halt*
- finite list of instructions *l*₁, ..., *l*_s among the following list:
 - increment a counter
 - decrement a counter
 - check if a counter equals zero

Counters are assumed non negative.

$$p_1. C_0 := C_0 + 1; goto p_2;$$

 $p_2. C_1 := C_1 + 1; goto p_1;$

instructions sequence:

$$(p_1, C_0 = 0, C_1 = 0)$$

 $\rightarrow (p_2, C_0 = 1, C_1 = 0)$
 $\rightarrow (p_1, C_0 = 1, C_1 = 1)$
 $\rightarrow (p_2, C_0 = 2, C_1 = 1)$
 $\rightarrow ...$

- halting problem (whether state *halt* is reachable) can be reduced to *&*-cov
- counters boundedness problem (whether the counters values stay in a finite set) can be reduced to 𝔐-cov
- halting problem and counters boundedness problem are undecidable

- *M* halts iff there exists a valuation ν such that ν(S_M) covers the corresponding p_{halt} place.
- the counters are unbounded along the instructions sequence of \mathcal{M} iff for each valuation ν , $\nu(\mathcal{S}_{\mathcal{M}})$ covers the *error state*.

	\mathscr{U} -problem		\mathscr{E} -problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	?	?	?
postT-PPN	?	?	?	?
PPN	?	U	?	U
distinctT-PPN	?	?	?	?
P-PPN	?	?	?	?

	\mathscr{U} -problem		\mathscr{E} -problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	?	?	?
postT-PPN	?	?	?	?
PPN	U	U	U	U
distinctT-PPN	?	?	?	?
P-PPN	?	?	?	?

FROM MONOTONICITY IN PPNs TO SYNTHESIS

$$\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\} \text{ where } \begin{cases} \forall n \in \mathbb{N}, \ n + \omega = \omega \\ \omega - n = \omega \text{ and } \omega \leq \omega \\ \forall n \in \mathbb{N}, \ n < \omega \end{cases}$$

 \leq is the qo on \mathbb{N}^k component-wise
PRELIMINARIES ON CLOSED SETS

U is an Upward Closed Set

 $\forall x \in U, \forall y \in \mathbb{N}^k \text{ s.t. } x \leq y \text{ then } y \in U$

Upward Closure

 $\uparrow u = \{ m \in \mathbb{N}^k \mid u \le m \}$ $\uparrow U = \bigcup_{u \in U} \uparrow u$

Representation

Given *U* upward closed $\exists F$ finite set of \mathbb{N}^k , s.t. $U = \uparrow F$

D is an Downward Closed Set

 $\forall x \in D, \forall y \in \mathbb{N}^k \text{ s.t. } y \leq x \text{ then } y \in D$

Downward Closure

 $\downarrow d = \{m \in \mathbb{N}^k \mid m \le d\}$ $\downarrow D = \bigcup_{d \in D} \downarrow d$

Representation

Given *D* downward closed $\exists F$ finite set of \mathbb{N}_{ω}^{k} s.t. $D = \mathbb{N}^{k} \cap \downarrow F$

example : $CS(S) = \downarrow \mathcal{RS}(S)$ Stable by Union, Intersection $\mathbb{N}^k \setminus D$ is upward closed $\mathbb{N}^k \setminus U$ is downward closed Let $S = (N, m_0)$ be a marked preT-PPN.

Intuitively, decreasing the valuation leads to a more permissive firing condition.

Monotonicity

w a transitions sequence s.t. $m_0 \stackrel{w}{\rightarrow} m$ in v(S).

Then for any valuation $v' \leq v$, $m_0 \stackrel{w}{\rightarrow} m'$ in v'(S) with $m' \geq m$.

Structure of the Synthesis Set

Given a marked preT-PPN S and a marking m, CV(S, m) is downward closed.

Corollary

E-cov is decidable in preT-PPNs.

proof: evaluate parameters to 0.

Let $S = (N, m_0)$ be a marked postT-PPN.

Intuitively, firing the same parametric transition while increasing the valuation leads to greater (and thus more permissive) markings.

Monotonicity

w a transitions sequence s.t. $m_0 \stackrel{w}{\rightarrow} m$ in v(S).

Then for any valuation $v' \ge v$, $m_0 \stackrel{w}{\rightarrow} m'$ in v'(S) with $m' \ge m$.

Structure of the Synthesis Set

Given a marked postT-PPN S and a marking m, CV(S, m) is upward closed.

Corollary

U-cov is decidable in postT-PPNs. By weak bisimulation, U-cov is decidable in P-PPNs.

proof: evaluate parameters to 0.

	$\mathscr{U} ext{-problem}$		\mathscr{E} -problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	?	?	D
postT-PPN	?	D	?	?
PPN	U	U	U	U
distinctT-PPN	?	?	?	?
P-PPN	?	D	?	?

The decidability of reachability is more complex.

increasing the valuation for preT-PPN (resp. postT-PPN)

 \Rightarrow disable (resp. enable) transitions

⇔ disable (resp. enable) the coverability of a marking but

 \neq access exact number of tokens involved, *i.e.* reachability.

PRET-PPNs

(a) 0-instance

(b) 1-instance

(c) 2, 1-instance

(a)
$$CS_0 = \downarrow (2, 1, \omega)$$

(b) $CS_1 = \downarrow \{(2, 1, 0), (1, 0, 1)\} \subseteq CS_0$
(c) $CS_{2,1} = \downarrow \{(2, 1, 0), (0, 0, 1)\} \subseteq CS_1$
but
(a) $RS_0 = \{(2, 1, n) | n \in \mathbb{N}\}$
(b) $RS_1 = \{(2, 1, 0), (1, 0, 1)\} \not\subseteq RS_0$
(c) $RS_{2,1} = \{(2, 1, 0), (0, 0, 1)\} \not\subseteq RS_1$

(d) 0-instance

(e) 1-instance

```
(a) CS_0 = \downarrow (2,0) \subseteq CS_1
(b) CS_1 = \downarrow \{(2,0), (1,1), (0,2)\}
but
```

(a) $RS_0 = \{(2,0), (1,0), (0,0)\} \not\subseteq RS_1$ (b) $RS_1 = \{(2,0)(1,1)(0,2)\} \not\subseteq RS_0$

[Goubault-Larrecq, 2009]

Given $U = \uparrow F$, we can compute F' such that $\mathbb{N}^k \setminus U = \downarrow F'$ and vice versa

Valk and Jantzen [Valk and Jantzen, 1985]

Given $U \subseteq \mathbb{N}^k$ upward closed, we can compute F $\Leftrightarrow \forall v \in \mathbb{N}^k_{\omega}, \downarrow v \cap U = \emptyset$ is decidable $\Leftrightarrow \forall v \in \mathbb{N}^k_{\omega}, \downarrow v \cap \mathbb{N}^k \subseteq \neg U$ is decidable

PreT-PPNs

we can compute a finite representation of the coverability synthesis set in preT-PPNs iff universal coverability is decidable in preT-PPNs

PostT-PPNs

we can compute a finite representation of the coverability synthesis set in postT-PPNs iff existential coverability is decidable in postT-PPNs

	\mathscr{U} -problem		&-problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	?	?	D
postT-PPN	?	D	?	?
PPN	U	U	U	U
distinctT-PPN	?	?	?	?
P-PPN	?	D	?	?

DECIDABILITY OF E-COV IN POSTT-PPNS

Decidability Results

E-reach is decidable in P-PPNs.

E-cov is decidable in P-PPNs.

By weak cosimulation, E-cov is decidable in postT-PPNs.

	\mathscr{U} -problem		&-problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	?	?	D
postT-PPN	?	D	?	D
PPN	U	U	U	U
distinctT-PPN	?	?	?	?
P-PPN	?	D	D	D

If a marking is universally coverable, two main possibilities:

- we can either reach this marking without using any parametric transition, and then the corresponding run works for any valuation,
- or we need at least one parametric transition.
 Since there is an infinite number of valuations and a finite number of parametric transitions

 \Rightarrow at least one such transition must be used, as the first parametric transition in the run, for an infinite number of valuations

 \Rightarrow the input places of its parametrics arcs are not bounded.

 \mathcal{N}_{ρ} denote the Petri net obtained from \mathcal{N} by removing all parametric transitions.

Universal Coverability

A marking m is universally coverable in S iff

- 1. *m* is coverable in (\mathcal{N}_p, m_0) or
- 2. there exists $z \in \mathcal{BCS}(\mathcal{N}_{\rho}, m_0)$ such that $\omega(z) \neq \emptyset$ and $m_{|\mathbb{N}(z)}$ is universally coverable in $(\mathcal{N}_{|\mathbb{N}(z)}, z_{|\mathbb{N}(z)})$

univCov(m_0 , a preT-PPN \mathcal{N} , *m* to cover)

- if $cov((\mathcal{N}_p, m_0), m)$ return true
- else if $\forall z \in BCS(\mathcal{N}_{p}, m_{0}), \omega(z) = \emptyset$ then return false
- else let *achieved* = false. While achieved == false, pick an element $z \in BCS(\mathcal{N}_p, m_0)$ such that $\omega(z) \neq \emptyset$ *achieved* = *achieved* or univCov($z_{|\mathbb{N}(z)}, \mathcal{N}_{|\mathbb{N}(z)}, m_{|\mathbb{N}(z)}$) End While

return achieved

Decidability of U-cov in preT-PPNs

U-cov is decidable in preT-PPNs.

	\mathscr{U} -problem		&-problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	D	?	D
postT-PPN	?	D	?	D
PPN	U	U	U	U
distinctT-PPN	?	?	?	?
P-PPN	?	D	D	D

Synthesis

- Given a marked preT-PPN S and a marking m, we can compute a finite representation of CV(S, m).
- Given a marked postT-PPN *S* and a marking *m*, we can compute a finite representation of CV(S, m).

DECIDABILITY IN DISTINCTT-PPNs

Using monotonicity:

U-cov in distinct \Leftrightarrow U-cov in the post where every paramaters on input arc evaluated to 0

E-cov in distinct \Leftrightarrow *E*-cov in the pre where every parameters on output arc evaluated to 0

	\mathscr{U} -problem		\mathscr{E} -problem	
	Reach.	Cov.	Reach.	Cov.
preT-PPN	?	D	?	D
postT-PPN	?	D	?	D
PPN	U	U	U	U
distinctT-PPN	?	D	?	D
P-PPN	?	D	D	D

idea originally used for L/U-automata [Jovanović et al., 2015]

If it can be computed, the solution of the synthesis of coverability in distinctT-PPN cannot, in general, be represented using any formalism for which emptiness of the intersection with equality constraints is decidable.

WHAT ABOUT COMPLEXITIES ?

Given a PN $\mathcal{S} \to \text{build}$ a PPN \mathcal{S}' by adding an unused parameter

Existential or Universal coverability on $\mathcal{S}' \Leftrightarrow \text{coverability}$ on \mathcal{S}

Parametric Problems are at least EXPSPACE-hard

FIRST EASY RESULTS

Coverability [Rackoff, 1978]

Coverability in PN is EXPSPACE.

U-cov in postT-PPN

Given S a postT-PPN:

 $m \text{ U-cov in } S \Leftrightarrow m \text{ coverable in } \mathbf{0}(S)$

E-cov in preT-PPN

Given S a pre-PPN: *m* E-cov in $S \Leftrightarrow m$ coverable in $\mathbf{0}(S)$

Complexities

E-cov for preT-PPN and U-cov for postT-PPN are ExpSpace-complete.

ωPN Semantics [Geeraerts et al., 2015]

Given a marking *m*, and a transition *t* such that $m \ge Pre(t)$, firing *t* from *m* gives a new marking *m'* s.t. $\forall p \in P, m'(p) = m(p) - Pre(p, t) + o$ where o = Post(t, p) if $Post(p, t) \in \mathbb{N}$ and $o \ge 0$ if $Post(p, t) = \omega$. We denote this by $m \xrightarrow{t} m'$. Thus $Post(p, t) = \omega$ means that an arbitrary number of tokens are generated in *p*.

Coverability [Geeraerts et al., 2015]

Coverability in ω PNs is EXPSPACE-complete.

From postT-PPNs to ω OPNs

 ${\cal N}$ a postT-PPN and ${\cal N}'$ the $\omega {\rm OPN}$ where the parameters have been replaced by ω 's.

Given $m \in \mathcal{RS}(\mathcal{N}', m_0)$, there exists a valuation v such that there exists a marking $m' \ge m$ with $m' \in \mathcal{RS}(v(\mathcal{N}), m_0)$. Moreover, $\bigcup_{v \in \mathbb{NP}} \mathcal{RS}(v(\mathcal{N}), m_0) \subseteq \mathcal{RS}(\mathcal{N}', m_0)$.

Complexity of Existential Coverability

E-cov on postT-PPNs is EXPSPACE-complete.

We address the problem of universal coverability through that of the more general universal simultaneous unboundedness. We will prove that both are EXPSPACE-complete.

EXPSPACE COMPLETENESS OF U-Cov in PreT-PPNs

Simultaneous Unboundedness [Demri, 2013]

 $X \subseteq P$, S is simultaneously X-unbounded if for any $B \ge 0$, there is a run w such that $m_0 \stackrel{w}{\rightarrow} m$ and for $i \in X$, we have $m(i) \ge B$.

[Demri, 2013]

The simultaneous unboundedness problem for Petri Nets is EXPSPACE-complete.

REDUCTION OF COVERABILITY TO PLACE BOUNDEDNESS

• U-simultaneous X unboundedness

- U-simultaneous X unboundedness
- → there exists a sequence of parametric transitions which
 could be adapted to match for all valuation.

- U-simultaneous X unboundedness
- → there exists a sequence of parametric transitions which
 could be adapted to match for all valuation.
- We thus suppose we can guess this sequence of distinct parametric transitions $\sigma = \theta_1 \theta_2 \dots \theta_l$

- U-simultaneous X unboundedness
- → there exists a sequence of parametric transitions which
 could be adapted to match for all valuation.
- We thus suppose we can guess this sequence of distinct parametric transitions $\sigma = \theta_1 \theta_2 \dots \theta_l$
- The net should be universally simultaneous X unbounded Plus each input place of a parametric arc of one of the θ_i's should be universally unbounded.
- U-simultaneous X unboundedness
- → there exists a sequence of parametric transitions which
 could be adapted to match for all valuation.
- We thus suppose we can guess this sequence of distinct parametric transitions $\sigma = \theta_1 \theta_2 \dots \theta_l$
- The net should be universally simultaneous X unbounded Plus each input place of a parametric arc of one of the θ_i's should be universally unbounded.
- What matter is the order of the first occurence of each parametric transition involved.

 $\rm N_{\rm p}$ all parametric transitions removed

loops allowing to store enough tokens in the input places of the parametric arcs of $\theta_{_1}$

in terms of acceleration its creates some $\omega\sp{s}$ s

INCREMENTAL NET

U-SIMULTANEOUS UNBOUNDEDNESS IN PRET-PPNS : MAIN RE-SULT

Reduction of U-simultaneous Unboundedness to Simultaneous unboundedness

$$\mathcal{N} = (\textit{P}, \textit{T}', \textit{Pre}, \textit{Post}, \mathbb{P})$$
 a preT-PPN

 $T' = T \cup \Theta$ where:

 Θ represents the parametric transitions of ${\cal N}$

T its plain transitions

Given X a set of places of P, the following propositions are equivalent:

1. (\mathcal{N}, m_0) is universally simultaneously X unbounded

2. $\exists \sigma = t_1, ..., t_l$ a sequence of distinct parametric transitions, considering the incremental model \mathcal{I} of \mathcal{N} along σ , $(\mathbf{k}(\mathcal{I}), \mu_0)$ is simultaneously $f_{\mathcal{N} \to \mathcal{I}}^l(X) \cup (\bigcup_{t_i \in \sigma} f_{\mathcal{N} \to \mathcal{I}}^{i-1}(\Pi(t_i)))$ unbounded.

Complexity of U simult unboundedness in PreT-PPNs

The Universal Simultaneous Unboundedness problem for preT-PPNs is ExpSpace-complete.

	\mathcal{U} -	problem	\mathscr{E} -problem		
	Reach.	Cov.	Reach.	Cov.	
preT-PPN	?	EXPSPACE-C	?	EXPSPACE-C	
postT-PPN	?	EXPSPACE-C	?	EXPSPACE-C	
PPN	U	U	U	U	
distinctT-PPN	?	EXPSPACE-C	?	EXPSPACE-C	
P-PPN	?	EXPSPACE-C	D	EXPSPACE-C	

ESTABLISHING FRONTIERS - WORK IN PROGRESS

	𝔐-problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	?	D	?	?	D
postT-PPN	?	?	D	?	?	D
PPN	U	?	U	U	?	U
distinctT-PPN	?	?	D	?	?	D
P-PPN	?	?	D	D	?	D

	\mathscr{U} -problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	D	D	?	?	D
postT-PPN	?	?	D	?	?	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	?	D	?	?	D
P-PPN	?	?	D	D	?	D

	\mathscr{U} -problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	D	D	?	D	D
postT-PPN	?	D	D	?	?	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	?	D	?	?	D
P-PPN	?	D	D	D	?	D

	\mathscr{U} -problem			\mathscr{E} -problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	D	D	?	D	D
postT-PPN	?	D	D	?	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	?	D	?	?	D
P-PPN	?	D	D	D	D	D

Can be obtained by adapting KM procedure using a special acceleration involving acceleration:

- ω iff unbounded number of tokens
- * *iff* arbitrary large (*i.e.*parameterised) but finite number of tokens

	𝔐-problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	D	D	?	D	D
postT-PPN	?	D	D	?	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	D	D	?	D	D
P-PPN	?	D	D	D	D	D

	𝔐-problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	D	D	?	D	D
postT-PPN	?	D	D	?	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	D	D	?	D	D
P-PPN	?	D	D	D	D	D

LET US DO A 0 TEST WITH POSTT-PPNS...

Cheat the zero test: fire 0_{begin} to 0_{end} when k < a tokens in $\neg C_1$ Control Cheating: at least a - k tokens will then be trapped in q_0

- not mandatory to refill ¬C₁ with all the tokens consumed
 ⇒ q₁ will be positive, but if the zero test occurring in the execution is fair, then it is possible to empty q₀.
- if this zero test is used several time in the machine:
 - if the zero test was faire previously, ⇒ there was a run which leads to 0 tokens in both q₀ and q₁ so the construction was reseted.
 - if the zero test was used but not fair, ⇒ some tokens are stored in q₀, say h > 0. Then, those tokens remain trapped in q₀, indeed, ¬C₁ has at most a tokens, and each time the zero test is involved, exactly a new tokens are generated in q₀, so there is no possibility to consume more than a tokens from q₀.

	\mathscr{U} -problem			\mathscr{E} -problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	?	D	D	?	D	D
postT-PPN	U	D	D	U	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	D	D	?	D	D
P-PPN	?	D	D	D	D	D

LET US GENERATE *a* TOKENS WITH A PRET-PPNS....

 $r_{total} = r_{quotient} \times a + r_{remainder}$

LET US DO A 0 TEST WITH PRET-PPNS...

- to initialize the place ¬*C*1, indeed, with this construction, it is possible to generate an arbitrary number of tokens in ¬*C*1, nevertheless, ¬*C*₁ = *a* iff the two places corresponding to the remainder and the quotient contain respectively 0 and 1 token.
- if the zero test can be fairly performed
 ⇒ there is a run that leaves exactly 0 token in the *remainder* and in q₀ and q₁ but 1 token in *quotient*.

- if the zero test is used not fairly:
 - *a* tokens or more are created in *q*₀, then it is possible to consume only *a* tokens, thus some tokens will remain trapped in *q*₀
 - cheat by generating directly less than a tokens, same as postT-PPNs proof
 - Let us now imagine we perform this zero test two times, the first time is fair but more than *a* tokens are created, say a + k. Then *k* tokens remains in q_0 and the place r_r emainder after the firing of this test. Now, let us suppose we perform an unfair zero test, that is to say less than *a* tokens are in $\neg C_1$. We could generate only a k tokens in r_r emainder such that now q_0 as *a* tokens. Nevertheless, we obtain *a* tokens in q_0 . Thus tokens are trapped in q_0 .

	\mathscr{U} -problem			\mathscr{E} -problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	U	D	D	U	D	D
postT-PPN	U	D	D	U	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	?	D	D	?	D	D
P-PPN	?	D	D	D	D	D

	\mathscr{U} -problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	U	D	D	U	D	D
postT-PPN	U	D	D	U	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	U	D	D	U	D	D
P-PPN	?	D	D	D	D	D

Synthesis preT

Given a marked preT-PPN S and a marking m, we can compute a finite representation of CV(S, m).

Synthesis postT

Given a marked postT-PPN S and a marking m, we can compute a finite representation of CV(S, m).

	𝔐-problem			&-problem		
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.
preT-PPN	U	D	D	U	D	D
postT-PPN	U	D	D	U	D	D
PPN	U	U	U	U	U	U
distinctT-PPN	U	D	D	U	D	D
P-PPN	?	D	D	D	D	D

		${\mathscr U}$ -problem	1	&-problem			
	Reach.	S.Unbound	Cov.	Reach.	S.Unbound	Cov.	
preT-PPN	U	EXPSPACE-C	EXPSPACE-C	U	EXPSPACE-C	EXPSPACE-C	
postT-PPN	U	EXPSPACE-C	EXPSPACE-C	U	D	EXPSPACE-C	
PPN	U	U	U	U	U	U	
distinctT-PPN	U	EXPSPACE-C	EXPSPACE-C	U	D	EXPSPACE-C	
P-PPN	?	EXPSPACE-C	EXPSPACE-C	D	D	EXPSPACE-C	

REFERENCES I

David, N., Jard, C., Lime, D., and Roux, O. H. (2015).Discrete parameters in Petri nets.

In *The 36th International Conference on Application and Theory of Petri Nets and Concurrency (Petri Nets 2015)*, volume 9115 of *LNCS*, pages 137–156. Springer, Brussels, Belgium.

Demri, S. (2013).

On selective unboundedness of VASS.

Journal of Computer and System Sciences, 79(5):689–713.
REFERENCES II

Geeraerts, G., Heußner, A., Praveen, M., and Raskin, J. (2015).

ω-petri nets: Algorithms and complexity. *Fundam. Inform.*, 137(1):29–60.

- Goubault-Larrecq, J. (2009).
 On a Generalization of a Result by Valk and Jantzen. Technical report, LSV.

Jovanović, A., Lime, D., and Roux, O. H. (2015). **Integer Parameter Synthesis for Real-Time Systems.** *IEEE Transactions on Software Engineering*, 41(5):445–461.

REFERENCES III

Karp, R. M. and Miller, R. E. (1969).

Parallel program schemata.

Journal of Computer and System Sciences, 3(2):147–195.

Rackoff, C. (1978).

The covering and boundedness problems for vector addition systems.

Theoretical Computer Science, 6(2):223–231.

Valk, R. and Jantzen, M. (1985).
 The residue of vector sets with applications to decidability problems in Petri nets.

Acta Informatica, 21(6):643-674.

QUESTIONS? REMARKS? Advices?