Parametric Statistical model checking of UAV flight plan

Ran BAO¹, Christian Attiogbé², Benoît Delahaye², Paulin Fournier² and Didier Lime³

¹ PIXIEL Group / LS2N UMR CNRS 6004, Nantes, France

²Université de Nantes / LS2N UMR CNRS 6004, Nantes, France

³Central Nantes / LS2N UMR CNRS 6004, Nantes, France

FORTE 2019

Summary

1 Introduction

- Motivation and Contribution
- UAV flight model

2 Foundations of model and tool

- Parametric Markov Chains
- Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

Outline

1 Introduction

- Motivation and Contribution
- UAV flight model

Foundations of model and tool
 Parametric Markov Chains

- Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

Foundations of model and tool

Experiments and Summary 0000

Motivation

UAVs flying above a crowd (Entertainment)

 \Rightarrow How to ensure that the flight is secure ?

Contributions

We propose a model of the UAV system

- In the context of a flight plan
- Parametric : takes into account
 - Sensor/Filter precision and failure
 - Wind force
- Allows to predict the trajectory

We propose and use parametric statistical model checking techniques

- Computes an approximation of the probability of satisfying a property
 - as a parametric function
 - polynomial
 - with parametric confidence intervals
- Experimentations with industrial case study

Introduction 0000000 UAV flight model Foundations of model and tool

Experiments and Summary 0000

Position of drone security concerns

0% probability hurt human in good position

 \Rightarrow What is the good position?

Safety zone

5 zones inline with avionic certification(DO-178C)

- Take account flight plan and components
- Fixed size : depended application
- critical zones : 4 , 5

Experiments and Summary 0000

Main components of an UAV

- Position estimation = Sensors + filter
- Stabilize computation = PID
- Parameter = Precision of (sensors + filter)

The proposed approach

A method to build and verify UAV model

- Filter capacity in parameters
- Computation filter effect
- Add rotate effect (angles in the trajectory)
- Add wind effect (additional parameter of the model)

9/22

Resulting model

Importance of time on the deviation

The estimated position (A') impacts on the target. The time impact (T_{answer})

$$Sn = \sin \alpha * S_{answer}$$
 (1)

$$\sin \alpha = \frac{AA'}{A'B} = \frac{AA'}{\sqrt{AA'^2 + AB^2}}$$
(2)

$$S_{answer} = V * T_{answer}$$
 (3)

(V: UAV's velocity)

Outline

- 1 Introduction
 - Motivation and Contribution
 - UAV flight model
- Foundations of model and tool
 Parametric Markov Chains
 - Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

Building the model : Markov Chains (MC)

A Markov Chain is a purely probabilistic model $\mathcal{M} = (S, s_0, P)$, where S is a set of states, $s_0 \in S$ is the initial state, and $P : S \times S \mapsto [0, 1]$ is a probabilistic transition function that, given a pair of states (s_1, s_2) , yields the probability of moving from s_1 to s_2 .

Definitions :

- Finite run : $\rho = s_0 s_1 \dots s_n$ s.t. $P(s_i, s_{i+1}) > 0$
- **\Gamma(I)** : set of all runs of length *I* in \mathcal{M}
- Probability of finite run : $\rho = s_0 s_1 \dots s_n$, $\mathbb{P}_{\mathcal{M}}(\rho) = \prod_{i=1}^n P(s_{i-1}, s_i)$

Parametric Markov Chains

Building the model : Parametric Markov Chain (pMC)

A pMC is a tuple $\mathcal{M} = (\mathcal{S}, s_0, P, \mathbb{X})$ such that

 $\ensuremath{\mathcal{S}}$ is a finite set of states,

 $\textit{s}_{0} \in \mathcal{S}$ is the initial state,

 $\ensuremath{\mathbb{X}}$ is a finite set of parameters, and

 $P: S \times S \mapsto Poly(\mathbb{X})$ is a parametric transition probability function, expressed as a polynomial on \mathbb{X} .

If $v \in \mathbb{R}^{\mathbb{X}}$ is a valuation of the parameters,

- P_v: transition probabilities under $v : P_v(s, s') = P(s, s')(v)$
- v is valid if (S, s_0, P_v) is a MC
- $\blacksquare \mathcal{M}^{v} = (\mathcal{S}, s_{0}, P_{v})$
- Runs and probabilities are similar to MC, but parametric

Our formal model of the UAV is built using a parametric Markov chain. Now, we need to check our model.

Foundations of model and tool

Experiments and Summary 0000

Monte Carlo

Basis for model checking : Monte Carlo for MCs

1
$$\rho_1 = 0 \rightarrow 2 \rightarrow 4$$
 $R(\rho_1) = 0$
2 $\rho_2 = 0 \rightarrow 1 \rightarrow 3$ $R(\rho_2) = 1$
3 $\rho_3 = 0 \rightarrow 2 \rightarrow 4$ $R(\rho_3) = 0$
4 $\rho_4 = 0 \rightarrow 1 \rightarrow 4$ $R(\rho_4) = 0$
5 $\rho_5 = 0 \rightarrow 1 \rightarrow 4$ $R(\rho_5) = 0$
6 $\rho_6 = 0 \rightarrow 1 \rightarrow 3$ $R(\rho_6) = 1$
7 $\rho_7 = 0 \rightarrow 2 \rightarrow 3$ $R(\rho_7) = 1$
8 $\rho_8 = 0 \rightarrow 2 \rightarrow 4$ $R(\rho_8) = 0$

Run *n* simulations ρ_i of length *l*. (here n = 8 and l = 2)

r(ρ_i) = 1 if ρ_i reaches 3 in two steps

• $\mathbb{E}'_{\mathcal{M}}(r) \sim \frac{\sum r(\rho_i)}{n} \Rightarrow$ Here, $\mathbb{E}^5_{\mathcal{M}}(r) \sim \frac{3}{8} = 0.375$ (exact : 0.35)

Expected reward $\mathbb{E}_{\mathcal{M}}^{\prime}(r)$ is the expected value of r on the runs of length *I*.

Foundations of model and tool

Experiments and Summary 0000

Monte Carlo

Basis for model checking : Monte Carlo for pMCs

$$1 \ \rho_{1} = 0 \rightarrow 2 \rightarrow 4 \ R(\rho_{1}) = 0$$

$$2 \ \rho_{2} = 0 \rightarrow 1 \rightarrow 3 \ R(\rho_{2}) = 0.6a$$

$$3 \ \rho_{3} = 0 \rightarrow 2 \rightarrow 4 \ R(\rho_{3}) = 0$$

$$4 \ \rho_{4} = 0 \rightarrow 1 \rightarrow 4 \ R(\rho_{4}) = 0$$

$$5 \ \rho_{5} = 0 \rightarrow 1 \rightarrow 4 \ R(\rho_{5}) = 0$$

$$6 \ \rho_{6} = 0 \rightarrow 1 \rightarrow 3 \ R(\rho_{6}) = 0.6a$$

$$7 \ \rho_{7} = 0 \rightarrow 2 \rightarrow 3 \ R(\rho_{7}) = 0.1(1 - a)$$

$$8 \ \rho_{8} = 0 \rightarrow 2 \rightarrow 4 \ R(\rho_{8}) = 0$$

- Use a normalization function $f \rightarrow \mathcal{M}^f$
- $R(\rho_i) = \mathbb{P}_{\mathcal{M}}(\rho)$ if ρ_i reaches 3 in two steps, 0 otherwise

$$\blacksquare \mathbb{E}_{\mathcal{M}}^{l}(r) = \mathbb{E}(\sum_{i=1}^{n} (\frac{R(\rho_{i})}{\mathbb{P}_{\mathcal{M}^{l}}(\rho_{i})})/n)(v)$$

■ Here,
$$\mathbb{E}^3_{\mathcal{M}}(r') \sim 0.25a + 0.25$$
 (exact : 0.5a+0.1)

Foundations of model and tool ○○○○● Experiments and Summary 0000

Monte Carlo

Parametric Statistical Model Checking (IMCpMC)¹

For 500 runs, we get : $\mathbb{E}^{3}_{\mathcal{M}}(r') \sim$ 0.592 * *a* + 0.092 ~ 0.4552

For 5000 runs, we get : $\mathbb{E}^{3}_{\mathcal{M}}(r') \sim$ 0.516 * *a* + 0.092 \sim 0.4016

(exact : $0.5a+0.1 \sim 0.4$) (ps : v(a) = 0.6)

- PRISM : with filter
- PARAM : with filter on parameter
- Parametric Statistical Model Checking (Python) : IMCpMC

1. Available at https://github.com/Astlo/IMCpMC

Outline

1 Introduction

- Motivation and Contribution
- UAV flight model

2 Foundations of model and tool

- Parametric Markov Chains
- Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

Experimental results

Prototype implementation

10 000 runs

senario: 1 Time= 1 , f= 1 , NbSim= 10000 , > 80 , for(0, 1)
Computation duration (s): 7.331286668777466
0.0433333333333333*ProbaFilter3*ProbaWind1 + 0.11*ProbaFilter3*ProbaWind2 +
0.188*ProbaFilter3*ProbaWind3 + 0.28*ProbaFilter3*ProbaWind4 +
0.981666666
666668*ProbaFilter4*ProbaWind1 + 0.8433333333332*ProbaFilter4*ProbaWind2
+ 0.842*ProbaFilter4*ProbaWind3 + 0.79500000000003*ProbaFilter4*ProbaWind4

100 000 runs

senario: 1 Time= 1 , f= 1 , NbSim= 100000 , > 80 , for(0, 1)
Computation duration (s): 115.70776295661926
0.04766666666666666667*ProbaFilter3*ProbaWind1 + 0.1256666666666666667*ProbaFilter3*Prob
aWind2 + 0.1984*ProbaFilter3*ProbaWind3 + 0.277*ProbaFilter3*ProbaWind4 + 0.9444
9999999999*ProbaFilter4*ProbaWind1 + 0.8676666666666666666*ProbaFilter4*ProbaWind2
+ 0.812*ProbaFilter4*ProbaWind3 + 0.73200000000001*ProbaFilter4*ProbaWind4

- What probability is more present
- Wind effect

Experimentation

Results interpretation

	Model	10k		20k		50k	
		V1	V2	V1	V2	V1	V2
Running time	A	28s		51-54s		142-143s	
Scenario 1	Α	4.99%	5.09%	4.74%	5.10%	4.91%	4.98%
Running time	В	28s		53-54s		149-155s	
Scenario 1	В	5.54%	5.19%	5.63%	5.72%	5.45%	5.51%
Running time	С	185-190s		311-314s		612-621s	
Scenario 1	С	5.18%	4.01%	3.54%	7.32%	6.96%	6.17%

model A : Filters on parameters

- model B : Wind on parameter (number) but not present in polynomial
- model C : Parameter filter and wind all in polynomial

Summary and future work

Summary and future work

Summary :

- Formal model of UAV flight plan
- Parametric safety analysis
- Parametric Monte Carlo procedure for pMC
- Polynomial parametric confidence interval
- Prototype implementation

Future work :

- Experimentation and implementation improvements
- UAV model improvements

Summary and future work

Thank you for your attention

Any questions?

