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Binary trees

Random walk on full binary tree {0, 1}ω
A node = flip fair coin
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Nonzero automata [Bojanczyk,16]

Nonzero automata A = (Q,≥,Σ,∆,Q∀,Q1,Q>0)

I (Q,≥) ordered finite set of states

I Σ finite input alphabet,

I ∆ ⊆ Q × Σ× Q × Q

I Q ⊇ Q∀ ⊇ Q1 and Q ⊇ Q>0

I Run ρ : {0, 1}∗ → Q on an input tree t : {0, 1}∗ → Σ

I Branch parity : Q∞ = lim supn qn

Acceptance condition

I Q∞ ∈ Q∀ for every branch

I Q∞ ∈ Q1 for almost every branch

I Every times the run enters Q>0 it stays in Q>0 with positive
probability



Example

To b or not to b

I Below every a there is a b

I Below every a there is positive probability to never see b

I Almost surely a branch has finitely many b

Q: ? ≤ A ≤ B
(?:looks for b, B: found b, A nothing)

∆: (q, a, (?,A)), (q, a, (A, ?)), (q, b, (B,B))

Q∀: A,B
(does not look for b forever)

Q1 A
(does not see B infinitely often)

Q>0 ?,A
positive probability to never see b again
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Jumping game 1/3

Emptiness problem [Bojanczyk,Gimbert,Kelmendi,17]

Emptiness of nonzero automata is decidable in NP

Sketch of proof

Splitting the probabilistic and sure conditions with jumping game.

Jumping game

I 2 players : Pathfinder and Automaton

I Moves of Automaton:
A winning strategy σ for Q1 and Q>0 conditions q → σ

I Moves of pathfinder:
”Jump” to a state of σ σ

qmax−−→ q

Automaton wins if the maximal state seen infinitely often is in Q∀
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Jumping game 2/3

Lemma
Non emptiness ⇒ Automaton wins the game

Sketch of proof: Automaton plays the (shifted) accepting strategy

Lemma
Automaton wins the game ⇒ Non emptiness

Sketch of proof:
I Inner regularity
I Recombine the winning strategy
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Jumping game 3/3

Lemma
For any strategy σ winning for Q1, Q>0 there exists σpos such
that:

I σpos is positional (finite representation)

I σpos is winning for Q1, Q>0

I Every ”jump” in σpos is also a jump in σ

Corollary

We can turn the jumping game in a finite game (using sets of
jumps instead of strategy)

NP Algorithm

I Guess a positional wining strategy in the finite game
I Verify its winning in NP:

I For every set of ”jumps” guess the corresponding winning
strategy

I Check its indeed winning in polynomial time
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Alternating nonzero automata

Alternating nonzero automata
A = (Q,QE ,QA ≤,Σ,∆,Q∀,Q1,Q>0)

I Two player Eve and Adam

I QE ,QA: partition of Q in Eve states, and Adam states
I ∆ :

I local transitions (q, a, q) (stays in place)
I split transitions (q, a, (q0, q1)) (moves in the tree)

Given two strategies σ, τ we obtain a run ρσ,τ : {0, 1}∗ → Q

Acceptance conditions

There exists σ such that ∀τ ,

I Q∞ ∈ Q∀ for all branches of ρσ,τ
I Q∞ ∈ Q1 for almost all branches of ρσ,τ
I every times ρσ,τ enters Q>0 it stays in it with positive

probability



Alternating nonzero automata

Closure properties

I Intersection (Adam choice)

I Union (Eve choice)

I Complement ? open

A nice sub-class

Bounded choice similar to hesitant automaton [KVW,00]

I Weak automaton

I One canonical choice for Adam

I Goes deeper on non-canonical choices



Bounded choice

Properties

I Finite number of non-canonical choices on every play

I Ultimately stays forever in one of the class

Lemma

I The game is determined.

I Positional strategies (on {0, 1}∗ × A) are enough for Eve.

Theorem
Emptiness of bounded choice is decidable

Sketch of proof:

I Checking only canonical choices for Adam is enough

I Define an (exponentially larger) nonzero automata that
recognize positional winning strategies for Eve
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Application to PCTL∗ satisfiability

PCTL∗[∀,∃,P=1,P>0]

State formulas φ p | ¬φ | φ ∨ φ | φ ∧ φ | ∀ψ | ∃ψ | P∼bψ
(Qualitative fragment ∼ b ∈ {= 1, > 0})

Path formulas ψ φ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | Gψ
(LTL with states formulas as prepositions)

To b or not to b
∀ (G [a =⇒ ∃(>Ub) ∧ P>0(Ga)]) ∧ P=1(>UGa)

From PCTL∗ to bounded choice

I Build deterministic parity automaton for LTL (2-EXP)
I Eve propose a valuation of the states formulas. Adam can

either
I Accept this valuation (canonical choice)
I Pick a formula to check (non-canonical)

goes deeper in the formula
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Conclusion

I Alternating nonzero automaton

I Sub-class of bounded choice

I Application: satisfiability of PCTL∗ in 3-NEXPTIME

Future work

I Complement of bounded choice
I Positionality for Adam?

I Quantitative
I Adapt jumping game for quantitative


