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Binary trees

Random walk on full binary tree {0,1}*
A node = flip fair coin
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Nonzero automata [Bojanczyk,16]
Nonzero automata A = (Q, >, X, A, Qy, Q1, Q=o)

» (Q,>) ordered finite set of states
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Run p:{0,1}* — Q on an input tree t : {0,1}* — X
» Branch parity : Qoo = limsup, g

Acceptance condition

> QR € Qy for every branch
> Qs € @1 for almost every branch

» Every times the run enters Q¢ it stays in Qo with positive
probability
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Jumping game 1/3

Emptiness problem [Bojanczyk,Gimbert,Kelmendi,17]
Emptiness of nonzero automata is decidable in NP

Sketch of proof
Splitting the probabilistic and sure conditions with jumping game.

Jumping game

» 2 players : Pathfinder and Automaton

» Moves of Automaton:

A winning strategy o for Q1 and Q- conditions q—o
» Moves of pathfinder:
"Jump” to a state of o oI g

Automaton wins if the maximal state seen infinitely often is in Qy
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Lemma
Non emptiness = Automaton wins the game
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Jumping game 2/3
Lemma
Non emptiness = Automaton wins the game
Sketch of proof: Automaton plays the (shifted) accepting strategy
Lemma
Automaton wins the game = Non emptiness

Sketch of proof:
> Inner regularity
» Recombine the winning strategy
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Jumping game 3/3
Lemma
For any strategy o winning for Q1, Q>0 there exists 005 such
that:
> Opos IS positional (finite representation)
> Opos is winning for Q1, Qo

» Every "jump” in opos is also a jump in o

Corollary
We can turn the jumping game in a finite game (using sets of
jumps instead of strategy)



Jumping game 3/3
Lemma
For any strategy o winning for Q1, Q>0 there exists 005 such
that:
> Opos IS positional (finite representation)

> Opos is winning for Q1, Qo

» Every "jump” in opos is also a jump in o

Corollary
We can turn the jumping game in a finite game (using sets of
jumps instead of strategy)

NP Algorithm

> Guess a positional wining strategy in the finite game
> Verify its winning in NP:
» For every set of "jumps” guess the corresponding winning

strategy
» Check its indeed winning in polynomial time



Alternating nonzero automata

Alternating nonzero automata

A=(Q Qe Q< T4, Qy, Q1 Quo)

» Two player Eve and Adam
> Qf, Qa: partition of @ in Eve states, and Adam states

> A
» local transitions (q, a, q) (stays in place)
» split transitions (q, a, (go, q1)) (moves in the tree)

Given two strategies o, 7 we obtain a run p, - : {0,1}* — Q

Acceptance conditions
There exists o such that VT,
» Qx € Q for all branches of p, -
> Qs € Q1 for almost all branches of p, -
> every times p, r enters Qg it stays in it with positive
probability



Alternating nonzero automata

Closure properties

» Intersection (Adam choice)
» Union (Eve choice)

» Complement 7 open

A nice sub-class
Bounded choice similar to hesitant automaton [KVW,00]
» Weak automaton

» One canonical choice for Adam

» Goes deeper on non-canonical choices



Bounded choice

Properties

» Finite number of non-canonical choices on every play

» Ultimately stays forever in one of the class

Lemma

> The game is determined.

» Positional strategies (on {0,1}* x A) are enough for Eve.



Bounded choice

Properties

» Finite number of non-canonical choices on every play

» Ultimately stays forever in one of the class

Lemma

> The game is determined.
» Positional strategies (on {0,1}* x A) are enough for Eve.

Theorem
Emptiness of bounded choice is decidable

Sketch of proof:
» Checking only canonical choices for Adam is enough

» Define an (exponentially larger) nonzero automata that
recognize positional winning strategies for Eve
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Application to PCTL* satisfiability
PCTL*[V,3,P_y, P<o]

State formulas ¢ p | —¢ | ¢V O | dN D | VY | T | Popt)
(Qualitative fragment ~ b € {=1, > 0})

Path formulas ) ¢ | ¢ | YV |V AY | XY | YUY | Gy

(LTL with states formulas as prepositions)

To bornottob
V (Gla = 3(TUb) AP<o(Ga)]) A P=1(T UGa)

From PCTL* to bounded choice

» Build deterministic parity automaton for LTL (2-EXP)
» Eve propose a valuation of the states formulas. Adam can
either
» Accept this valuation (canonical choice)
» Pick a formula to check (non-canonical)
goes deeper in the formula



Conclusion

> Alternating nonzero automaton
» Sub-class of bounded choice
> Application: satisfiability of PCTL* in 3-NEXPTIME

Future work

» Complement of bounded choice
» Positionality for Adam?
» Quantitative
» Adapt jumping game for quantitative



