Alternating nonzero automata

Application to PCTL* satisfiability

Paulin Fournier
Joint work with Hugo Gimbert

ANR Stoch-MC
01/02/2018

Binary trees

Random walk on full binary tree $\{0,1\}^{\omega}$
 A node $=$ flip fair coin

Binary trees

Random walk on full binary tree $\{0,1\}^{\omega}$
 A node $=$ flip fair coin

Nonzero automata [Bojanczyk,16]

Nonzero automata $A=\left(Q, \geq, \Sigma, \Delta, Q_{\forall}, Q_{1}, Q_{>0}\right)$

- (Q, \geq) ordered finite set of states
- Σ finite input alphabet,
- $\Delta \subseteq Q \times \Sigma \times Q \times Q$
- $Q \supseteq Q_{\forall} \supseteq Q_{1}$ and $Q \supseteq Q_{>0}$
- Run $\rho:\{0,1\}^{*} \rightarrow Q$ on an input tree $t:\{0,1\}^{*} \rightarrow \Sigma$
- Branch parity: $Q_{\infty}=\lim \sup _{n} q_{n}$

Acceptance condition

- $Q_{\infty} \in Q_{\forall}$ for every branch
- $Q_{\infty} \in Q_{1}$ for almost every branch
- Every times the run enters $Q_{>0}$ it stays in $Q_{>0}$ with positive probability

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q: ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q: ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta:(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q: ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta:(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$
$Q_{\forall}: A, B$
(does not look for b forever)

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q: ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta:(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$
Q*: A, B
(does not look for b forever)
$Q_{1} A$
(does not see B infinitely often)

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b
$Q: ? \leq A \leq B$
(?:looks for b, B : found b, A nothing)
$\Delta:(q, a,(?, A)),(q, a,(A, ?)), \quad(q, b,(B, B))$
$Q_{\forall}: A, B$
(does not look for b forever)
$Q_{1} A$
(does not see B infinitely often)
$Q_{>0}$?, A
positive probability to never see b again

Example

To b or not to b

- Below every a there is a b
- Below every a there is positive probability to never see b
- Almost surely a branch has finitely many b

Jumping game 1/3

Emptiness problem [Bojanczyk,Gimbert,Kelmendi,17]
Emptiness of nonzero automata is decidable in NP

Jumping game $1 / 3$

Emptiness problem [Bojanczyk,Gimbert,Kelmendi,17]
Emptiness of nonzero automata is decidable in NP
Sketch of proof
Splitting the probabilistic and sure conditions with jumping game.
Jumping game

- 2 players: Pathfinder and Automaton
- Moves of Automaton:

A winning strategy σ for Q_{1} and $Q_{>0}$ conditions $\quad q \rightarrow \sigma$

- Moves of pathfinder: "Jump" to a state of σ

$$
\sigma \xrightarrow{q_{\max }} q
$$

Automaton wins if the maximal state seen infinitely often is in Q_{\forall}

Jumping game 2/3

Lemma
Non emptiness \Rightarrow Automaton wins the game

Jumping game 2/3

Lemma

Non emptiness \Rightarrow Automaton wins the game
Sketch of proof: Automaton plays the (shifted) accepting strategy

Jumping game 2/3

Lemma

Non emptiness \Rightarrow Automaton wins the game
Sketch of proof: Automaton plays the (shifted) accepting strategy Lemma
Automaton wins the game \Rightarrow Non emptiness

Jumping game 2/3

Lemma

Non emptiness \Rightarrow Automaton wins the game
Sketch of proof: Automaton plays the (shifted) accepting strategy
Lemma
Automaton wins the game \Rightarrow Non emptiness
Sketch of proof:

- Inner regularity
- Recombine the winning strategy

Jumping game 3/3

Lemma
For any strategy σ winning for $Q_{1}, Q_{>0}$ there exists $\sigma_{p o s}$ such that:

- $\sigma_{\text {pos }}$ is positional
(finite representation)
- $\sigma_{\text {pos }}$ is winning for $Q_{1}, Q_{>0}$
- Every "jump" in $\sigma_{\text {pos }}$ is also a jump in σ

Corollary

We can turn the jumping game in a finite game (using sets of jumps instead of strategy)

Jumping game 3/3

Lemma
For any strategy σ winning for $Q_{1}, Q_{>0}$ there exists $\sigma_{p o s}$ such that:

- $\sigma_{\text {pos }}$ is positional
(finite representation)
- $\sigma_{\text {pos }}$ is winning for $Q_{1}, Q_{>0}$
- Every "jump" in $\sigma_{\text {pos }}$ is also a jump in σ

Corollary

We can turn the jumping game in a finite game (using sets of jumps instead of strategy)

NP Algorithm

- Guess a positional wining strategy in the finite game
- Verify its winning in NP:
- For every set of "jumps" guess the corresponding winning strategy
- Check its indeed winning in polynomial time

Alternating nonzero automata

Alternating nonzero automata
$A=\left(Q, Q_{E}, Q_{A} \leq, \Sigma, \Delta, Q_{\forall}, Q_{1}, Q_{>0}\right)$

- Two player Eve and Adam
- Q_{E}, Q_{A} : partition of Q in Eve states, and Adam states
- Δ :
- local transitions (q, a, q)
- split transitions $\left(q, a,\left(q_{0}, q_{1}\right)\right)$

Given two strategies σ, τ we obtain a run $\rho_{\sigma, \tau}:\{0,1\}^{*} \rightarrow Q$
Acceptance conditions
There exists σ such that $\forall \tau$,

- $Q_{\infty} \in Q_{\forall}$ for all branches of $\rho_{\sigma, \tau}$
- $Q_{\infty} \in Q_{1}$ for almost all branches of $\rho_{\sigma, \tau}$
- every times $\rho_{\sigma, \tau}$ enters $Q_{>0}$ it stays in it with positive probability

Alternating nonzero automata

Closure properties

- Intersection (Adam choice)
- Union (Eve choice)
- Complement ? open

A nice sub-class
Bounded choice

- Weak automaton
- One canonical choice for Adam
- Goes deeper on non-canonical choices

Bounded choice

Properties

- Finite number of non-canonical choices on every play
- Ultimately stays forever in one of the class

Lemma

- The game is determined.
- Positional strategies (on $\{0,1\}^{*} \times A$) are enough for Eve.

Bounded choice

Properties

- Finite number of non-canonical choices on every play
- Ultimately stays forever in one of the class

Lemma

- The game is determined.
- Positional strategies (on $\{0,1\}^{*} \times A$) are enough for Eve.

Theorem
Emptiness of bounded choice is decidable
Sketch of proof:

- Checking only canonical choices for Adam is enough
- Define an (exponentially larger) nonzero automata that recognize positional winning strategies for Eve

Application to $P C T L^{*}$ satisfiability

PCTL $L^{*}\left[\forall, \exists, \mathbb{P}_{=1}, \mathbb{P}_{>0}\right]$
State formulas $\phi p|\neg \phi| \phi \vee \phi|\phi \wedge \phi| \forall \psi|\exists \psi| \mathbb{P}_{\sim b} \psi$
(Qualitative fragment $\sim b \in\{=1,>0\}$)
Path formulas $\psi \phi|\neg \psi| \psi \vee \psi|\psi \wedge \psi| X \psi|\psi U \psi| G \psi$
(LTL with states formulas as prepositions)

Application to $P C T L^{*}$ satisfiability

PCTL* $\left[\forall, \exists, \mathbb{P}_{=1}, \mathbb{P}_{>0}\right]$
State formulas $\phi p|\neg \phi| \phi \vee \phi|\phi \wedge \phi| \forall \psi|\exists \psi| \mathbb{P}_{\sim b} \psi$
(Qualitative fragment $\sim b \in\{=1,>0\}$)
Path formulas $\psi \phi|\neg \psi| \psi \vee \psi|\psi \wedge \psi| X \psi|\psi U \psi| G \psi$
(LTL with states formulas as prepositions)
To b or not to b
$\forall\left(G\left[a \Longrightarrow \exists(T U b) \wedge \mathbb{P}_{>0}(G a)\right]\right) \wedge \mathbb{P}_{=1}(T U G a)$

Application to $P C T L^{*}$ satisfiability

PCTL ${ }^{*}\left[\forall, \exists, \mathbb{P}_{=1}, \mathbb{P}_{>0}\right]$
State formulas $\phi p|\neg \phi| \phi \vee \phi|\phi \wedge \phi| \forall \psi|\exists \psi| \mathbb{P}_{\sim b} \psi$
(Qualitative fragment $\sim b \in\{=1,>0\}$)
Path formulas $\psi \phi|\neg \psi| \psi \vee \psi|\psi \wedge \psi| X \psi|\psi U \psi| G \psi$
(LTL with states formulas as prepositions)

To b or not to b
$\forall\left(G\left[a \Longrightarrow \exists(T U b) \wedge \mathbb{P}_{>0}(G a)\right]\right) \wedge \mathbb{P}_{=1}(T U G a)$
From PCTL* to bounded choice

- Build deterministic parity automaton for LTL
- Eve propose a valuation of the states formulas. Adam can either
- Accept this valuation
- Pick a formula to check goes deeper in the formula
(canonical choice) (non-canonical)

Conclusion

- Alternating nonzero automaton
- Sub-class of bounded choice
- Application: satisfiability of PCTL* in 3-NEXPTIME

Future work

- Complement of bounded choice
- Positionality for Adam?
- Quantitative
- Adapt jumping game for quantitative

