
Static Analysis of Model Transformations
for Effective Test Generation

Jean-Marie Mottu2,Sagar Sen1, Massimo Tisi3, Jordi Cabot3

1Certus V&V Center, Simula Research Laboratory, Oslo
2AeLoS, Universite de Nantes, France

3ATLANMOD, Ecole des Mines, Nantes

1

Monday, November 26, 12

/31

Outline
• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation
Testing

• Effective? Experiments based on Mutation
Analysis

2

Monday, November 26, 12

/31

Introduction

Model Transformation Testing
Effective test models!

Invariants

3

Examples
1. Compilers (Java to Bytecode)
2. Code generators (UML Statemachine to code)
3. Structured data format transformation (XML to XML/text)
4. Object persistence (Class to RDBMS)

Monday, November 26, 12

/31

Outline
• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation
Testing

• Effective? Experiments based on Mutation
Analysis

4

Monday, November 26, 12

/31

Case study: class2rdbms

1. Object persistence benchmark proposed in the MTIP workshop, MoDELS 2005

2. Input domain spec. covers all major metamodelling concepts such as
inheritance, composition, finite and infinite multiplicities.

3. Invariants are both first-order and high-order, contains also transitive closure
invariants

4. Transformation exercises most major model transformation operators
such as navigation, creation, and filtering

5. Available in many transformation languages Kermeta, ATL, VIATRA, QVT

class2rdbmssimple UML
Class Diagrams

RDBMS
Models

5

Monday, November 26, 12

/31

Input MM + Invariants

(a) Input metamodel MMi : Simplified UML CD
(b) A subset of all invariants on MMi (9 invariants)

Ecore Meta-model

name: String

Classifier

name: String

Association

is_primary: Boolean
name: String

Attribute

is_persistent: Boolean

Class

PrimitiveDataType

ClassModel

type

1

classifier

*

dest1 src1

association
*

parent
0..1

1..* attrs

(a)

OCL Invariants
context Class

 inv noCyclicInheritance:
 not self.allParents()->includes(self)

 inv uniqueAttributesName:
 self.attrs->forAll(att1, att2 |
 att1.name=att2.name implies att1=att2)

context ClassModel

 inv uniqueClassifierNames:
 self.classifier->forAll(c1, c2 |
 c1.name=c2.name implies c1=c2)

 inv uniqueClassAssociationSourceName :
 self.association->forAll(ass1, ass2 |
 ass1.name=ass2.name implies
 (ass1=ass2 or ass1.src != ass2.src))

(b)

6

Monday, November 26, 12

/31

Outline
• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation
Testing

• Effective? Experiments based on Mutation
Analysis

7

Monday, November 26, 12

/31

Tediousness of Creating Test Models

8

Monday, November 26, 12

/31

Tediousness of Creating Test Models

= A
is_persistent = false

: Class

name = C
is_persistent = false

: Class

: ClassModel

classifier

classifier

is_primary = true
name = attA

: Attribute
attrs

name = B
is_persistent = true

: Class
classifier

dest

name = String

: PrimitiveDataTypeclassifier
type

name = assoDC

: Association
src

association

is_primary = false
name = attB

: Attribute

is_primary = false
name = attC

: Attributeattrs

attrs

type
type

name = D
is_persistent = true

: Class
classifier

parent

parent

is_primary = false
name = attD

: Attribute

type

parent

A Human-made Test Model
Problems
1. Must conform to metamodel MMi

2. Must satisfy MMi invariants (9 invariants)
3. Must satisfy pre-conditions pre(MT) on model transformation (class2rdbms in
our case, with 22 pre-condition invariants)
4. Must contain test knowledge to find bugs

9

Monday, November 26, 12

/31

Outline
• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation
Testing

• Effective? Experiments based on Mutation
Analysis

10

Monday, November 26, 12

/31

Story so far!(1)
• 2008: How to generate models that satisfy knowledge from heterogeneous sources?

• Published in: Sen et. al. On Combining Multi-formalism Knowledge to Select Test
Models, ICST 2008

11

MM
(Ecore)

Invariants
(OCL)

Pre-conditions
(OCL)

Model Fragments

Transformation
to Alloy

Alloy
Model

SAT
Solver

XMI
solutions

Alloy
Solution

to
XMI

XMI
solutions

XMI
solutions

Monday, November 26, 12

/31

Story so far!(1)
• 2008: How to generate models that satisfy knowledge from heterogeneous sources?

• Published in: Sen et. al. On Combining Multi-formalism Knowledge to Select Test
Models, ICST 2008

12

Classes to Alloy Signatures

Implicit constraints
to Alloy Facts

Invariants/pre-conditions to
Alloy Facts

sig Class extends Classifier
{
	
 is_persistent: one Bool,
	
 parent : lone Class,
	
 attrs : some Attribute
 }
fact associationContainment
{
all a:Association | a in ClassModel.association
}

fact noCyclicInheritance
{
	
 no c: Class | c in c.^parent
}

Source Element Target Alloy Construct

auto

auto

manual

Monday, November 26, 12

/31

Story so far!(2)
• 2009: How to test models satisfying coverage criteria and how to validate the quality of

these test models?

• Published in: Sen et. al. Automatic Model Generation Strategies for Model
Transformation Testing. ICMT 2009

• 40 Test Models Covering Input Domain vs. 200 Unguided Models

13

68.56%

87.60%
86.60%

64.69%

71.13%

81.43%

55.67%

72.68%

65.98%

72.68%

82.72%

69.07%

55%

60%

65%

70%

75%

80%

85%

90%

Random
(5 models/set in 8 sets)

AllPartitions(5/8) Random(15/8) AllRanges(15/8)
Strategy

M
ut

at
io

n
Sc

or
e

3rd quartile max
median min
1st quartile

Fig. 4. Box-whisker Diagram to Compare Automatic Model Generation Strategies

contains statistically significant values. A box may also indicate which observations, if
any, might be considered outliers or whiskers. In the box whisker diagram of Figure 4
we shown 4 boxes with whiskers for random sets and sets for AllRanges and AllParti-
tions. The X-axis of this plot represents the strategy used to select sets of test models
and the Y-axis represents the mutation score for the sets.

We make the following observations from the box-whisker diagram:

– Both the boxes of AllRanges and AllPartitions represent mutation scores higher than
corresponding random sets although the random sets were selected using models
of larger size.

– The high median mutation scores for strategies AllRanges 81% and AllPartitions
82.7% indicate that both these strategies return consistently good test sets. The
median for AllPartitions 82.72% is highest among all sets.

– The small size of the box for AllPartitions compared to the AllRanges box indicates
its relative convergence to good sets of test models.

– The small set of 5 models/set using AllPartitions gives mutations scores equal or
greater than 15 models/set using AllRanges. This implies that it is a more efficient
strategy for test model selection. The main consequence is a reduced effort to write
corresponding test oracles [17] with 5 models compared to 15 models.

The freely and automatically obtained knowledge from the input meta-model using
the MMCC algorithm shows that AllRanges and AllPartitions are successful strategies
to guide test generation. They have higher mutation scores with the same sources of
knowledge used to generate random test sets. A manual analysis of the test models
reveals that injection of inheritance via the parent relation in model fragments results
in higher mutation scores. Most randomly generated models do not contain inheritance
relationships as it is not imposed by the meta-model.

What about the 12% of the mutants that remain alive given that the highest mutation
score is 87.6%? We note by an analysis of the live mutants that they are the same for
both AllRanges and AllPartitions. There remain 25 live mutants in a total of 200 injected
mutants (with 6 equivalent mutants). In the median case the AllRanges strategy gives a

Input Domain Coverage

Unguided

Monday, November 26, 12

/31

Story so far! (3)
• 2011: How use “partial knowledge” by introducing a human-in-the-loop for test model

generation?

• Published in: Sen S.,et. al. Using Models of Partial Knowledge to Test Model Transformations.
ICMT 2012

14

is_persistent=True
:Class

:Class :Class

:Associationsrc dest

parentparent

pred PartialModel
{

some c1 : Class, c2: Class, c3:Class |
 c1!=c2 and c2!=c3 and
 c1.is_persistent=True and
 c2.parent = c1 and c3.parent=c1
 and c2!=c3 and c2!=c1 and
 some a1: Association |
 a1.src =c2 and a1.dest=c3
}

(a) (b)

is_persistent=True
7:Class

is_persistent=True
6:Class

is_persistent=True
-8:Class

4:Associationsrc dest

parentparent

is_primary=True
-3:Attribute

is_primary=True
5:Attribute

is_primary=True
6:Attribute

5:PrimitiveDataType

type

type

type

attrs

attrs

attrs

(c)

ClassModel

Expressing pure testing ideas
as partial models!

Monday, November 26, 12

/31

Story so far! (3)
• 2011: How use “partial knowledge” by introducing a human-in-the-loop for test model

generation?

• Published in: Sen S.,et. al. Using Models of Partial Knowledge to Test Model Transformations.
ICMT 2012

15

is_persistent=True
:Class

:Class :Class

:Associationsrc dest

parentparent

pred PartialModel
{

some c1 : Class, c2: Class, c3:Class |
 c1!=c2 and c2!=c3 and
 c1.is_persistent=True and
 c2.parent = c1 and c3.parent=c1
 and c2!=c3 and c2!=c1 and
 some a1: Association |
 a1.src =c2 and a1.dest=c3
}

(a) (b)

is_persistent=True
7:Class

is_persistent=True
6:Class

is_persistent=True
-8:Class

4:Associationsrc dest

parentparent

is_primary=True
-3:Attribute

is_primary=True
5:Attribute

is_primary=True
6:Attribute

5:PrimitiveDataType

type

type

type

attrs

attrs

attrs

(c)

ClassModel

Partial Model Rewritten Alloy Model

Monday, November 26, 12

/31

Story so far! (3)
• 2011: How use “partial knowledge” by introducing a human-in-the-loop for test model

generation?

• Published in: Sen S.,et. al. Using Models of Partial Knowledge to Test Model Transformations.
ICMT 2012

16

is_persistent=True
:Class

:Class :Class

:Associationsrc dest

parentparent

pred PartialModel
{

some c1 : Class, c2: Class, c3:Class |
 c1!=c2 and c2!=c3 and
 c1.is_persistent=True and
 c2.parent = c1 and c3.parent=c1
 and c2!=c3 and c2!=c1 and
 some a1: Association |
 a1.src =c2 and a1.dest=c3
}

(a) (b)

is_persistent=True
7:Class

is_persistent=True
6:Class

is_persistent=True
-8:Class

4:Associationsrc dest

parentparent

is_primary=True
-3:Attribute

is_primary=True
5:Attribute

is_primary=True
6:Attribute

5:PrimitiveDataType

type

type

type

attrs

attrs

attrs

(c)

ClassModel

is_persistent=True
:Class

:Class :Class

:Associationsrc dest

parentparent

pred PartialModel
{

some c1 : Class, c2: Class, c3:Class |
 c1!=c2 and c2!=c3 and
 c1.is_persistent=True and
 c2.parent = c1 and c3.parent=c1
 and c2!=c3 and c2!=c1 and
 some a1: Association |
 a1.src =c2 and a1.dest=c3
}

(a) (b)

is_persistent=True
7:Class

is_persistent=True
6:Class

is_persistent=True
-8:Class

4:Associationsrc dest

parentparent

is_primary=True
-3:Attribute

is_primary=True
5:Attribute

is_primary=True
6:Attribute

5:PrimitiveDataType

type

type

type

attrs

attrs

attrs

(c)

ClassModel

Partial models when completed give 100% mutation score

just like human-made complete models with the same knowledge.

Monday, November 26, 12

/31

Question for this talk!

17

Premise

• Partial testing knowledge is effective if the source is a human expert

• Model transformations themselves are human-made. Do they contain testing
knowledge? Why cannot we use them as a source?

Question

Can we extract effective testing knowledge via
static analysis of a model transformation?

Monday, November 26, 12

/31

Outline

• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation Testing

• Effective? Experiments based on Mutation Analysis

• Conclusion

18

Monday, November 26, 12

/31

Part 1: Extracting
Footprints

19

Model
transformation

MT

Input
Metamodel

MMI

Metamodel
Footprint

Footprint
Model Fragments

MF

Inputs
Testing

Knowledge

Static Metamodel
Footprinting

(2)
Footprint

Partitionning (1)

Fig. 3. Extraction of partial test knowledge

1) Static Metamodel Footprinting
The first step is the static analysis of a model transformation

called static metamodel footprinting. This analysis consists of
collecting metamodel elements referenced by transformation
operations. In an imperative model transformation language
such as Kermeta [24], metamodel elements are collected
along the control flow graph of the transformation. For ev-
ery operation in the model transformation we create tuples
hOperation, Feature, Typei with the name of the operation,
the feature of the metamodel in use, and the type of the
feature. A detailed explanation of the footprinting process is
described in Jeanneret et. al. [19]. The implementation of static
footprinting in Kermeta [24] is available in a technical report
[20]. This transformation is depicted as step (1) of Figure 3.

The class2rdbms case study gives us 43 footprint tu-
ples. Table I shows the footprint tuples generated for two
operations of class2rdbms: getAllClasses and getPersistent-
Class. The operation getAllClasses contains expressions using
the class Classifier, the class ClassModel, and the property
ClassModel::classifier of type Classifier. The transformation
operation getPersistentClass involves the class Class, the re-
lation Class::is persistent of type Boolean, and the relation
Class::parent of type Class. The footprint tuples will be used
as a source of structural information to eventually generate
test models.

TABLE I
A SUBSET OF METAMODEL FOOTPRINT TUPLES FROM CLASS2RDBMS

Operation Metamodel Feature Types
getAllClasses Classifier Classifier
getAllClasses ClassModel ClassModel
getAllClasses ClassModel::classifier Classifier

getPersistentClass Class Class
getPersistentClass Class::is persistent Boolean
getPersistentClass Class::parent Class

2) Transformation from Footprint to Model Fragments
In this paper we propose a novel strategy to generate model

fragments from metamodel footprint tuples. The transformation
of footprint tuples to model fragments is based on parti-
tioning the domain of each property in the footprint and
combining in every possible way tuples referring to the same
operation. For partitioning we follow the approach presented
in [13]. Attributes are partitioned depending on their types,
associations are partitioned depending on their cardinality. For
instance, Table II presents the partitions for the Class Diagram
metamodel. The is primary and is persistent attributes are

TABLE II
PARTITIONS FOR THE CLASS DIAGRAM METAMODEL

Metamodel feature Partitions
Attribute::is primary true, false
Attribute::name ””, x | x!=””
Attribute::#type 1
Classifier::name ””, x | x!=””
Class::is persistent true, false
Class::#parent 0, 1
Class::#attrs 1, x | x>1
Association::name ””, x | x!=””
Association::#dest 1
Association::#src 1
ClassModel::#association 0, 1, x | x>1
ClassModel::#classifier 0, 1, x | x>1

partitioned in two partitions True and False. The name attribute
is partitioned in two partitions name empty and name not
empty. The parent relation is partitioned by the number of
associated Classes: 0 or 1. The type, dest and src relations
have only one partition: 1 since their cardinalities are exactly
1. Finally association and classifier have three partitions: 0,
1, more than 1.

The strategy we propose creates several model fragments
per operation. Each model fragment of an operation contains
the features of all the operation’s tuples. For classes (e.g.,
Classifier and ClassModel for getAllClasses operation) the
model fragment requires an instance of this class. When
those features are classes’ properties (ClassModel::classifier
for getAllClasses operation) then we create several model
fragments, one per partition. For instance, getAllClasses op-
eration has 3 model fragments, each one requires a Classifier
and a ClassModel, each one requires a different number of
classifier following the partitioning of classifier property: no
classifier, 1 classifier, more than one classifier. In the same
way, getPersistentClass has 4 model fragments, they combine
the different partitions of the properties is persistent (True or
False) and parent (no parent or one parent).

The 7 model fragments generated from the operations
getAllClasses and getPersistentClass are shown in Table III.
Those model fragments should be contained in the test models
we generate. For instance, in the fragment MFgetAllClasses1
we require at least one ClassModel object cm which doesn’t
have any classifier. In another fragment MFgetAllClasses2 we
require cm to have only one classifier. In MFgetAllClasses3
cm needs to have more than one classifier. The fragments
of getPersistentClass operation cover all combinations of
partition values for is persistent attribute of a Class and for
the number of parents of another Class.

TABLE III
SUBSET OF MODEL FRAGMENTS GENERATED USING FOOTPRINT

STRATEGY

Model-Fragment Description
MFgetAllClasses1 a Classifier & a ClassModel cm | #cm.classifier = 0
MFgetAllClasses2 a Classifier & a ClassModel cm | #cm.classifier = 1
MFgetAllClasses3 a Classifier & a ClassModel cm | #cm.classifier > 1
MFgetPersistentClass1 a Class c|c.is persistent=True & a Class c2|#c2.parent=0
MFgetPersistentClass2 a Class c|c.is persistent=True & a Class c2|#c2.parent=1
MFgetPersistentClass3 a Class c|c.is persistent=False & a Class c2|#c2.parent=0
MFgetPersistentClass4 a Class c|c.is persistent=False & a Class c2|#c2.parent=1

Monday, November 26, 12

/31

Static Metamodel Footprinting (1)

20

Fig. 3. Extraction of partial test knowledge

1) Static Metamodel Footprinting
The first step is the static analysis of a model transformation

called static metamodel footprinting. This analysis consists of
collecting metamodel elements referenced by transformation
operations. In an imperative model transformation language
such as Kermeta [24], metamodel elements are collected
along the control flow graph of the transformation. For ev-
ery operation in the model transformation we create tuples
hOperation, Feature, Typei with the name of the operation,
the feature of the metamodel in use, and the type of the
feature. A detailed explanation of the footprinting process is
described in Jeanneret et. al. [19]. The implementation of static
footprinting in Kermeta [24] is available in a technical report
[20]. This transformation is depicted as step (1) of Figure 3.

The class2rdbms case study gives us 43 footprint tu-
ples. Table I shows the footprint tuples generated for two
operations of class2rdbms: getAllClasses and getPersistent-
Class. The operation getAllClasses contains expressions using
the class Classifier, the class ClassModel, and the property
ClassModel::classifier of type Classifier. The transformation
operation getPersistentClass involves the class Class, the re-
lation Class::is persistent of type Boolean, and the relation
Class::parent of type Class. The footprint tuples will be used
as a source of structural information to eventually generate
test models.

TABLE I
A SUBSET OF METAMODEL FOOTPRINT TUPLES FROM CLASS2RDBMS

Operation Metamodel Feature Types
getAllClasses Classifier Classifier
getAllClasses ClassModel ClassModel
getAllClasses ClassModel::classifier Classifier

getPersistentClass Class Class
getPersistentClass Class::is persistent Boolean
getPersistentClass Class::parent Class

2) Transformation from Footprint to Model Fragments
In this paper we propose a novel strategy to generate model

fragments from metamodel footprint tuples. The transformation
of footprint tuples to model fragments is based on parti-
tioning the domain of each property in the footprint and
combining in every possible way tuples referring to the same
operation. For partitioning we follow the approach presented
in [13]. Attributes are partitioned depending on their types,
associations are partitioned depending on their cardinality. For
instance, Table II presents the partitions for the Class Diagram
metamodel. The is primary and is persistent attributes are

TABLE II
PARTITIONS FOR THE CLASS DIAGRAM METAMODEL

Metamodel feature Partitions
Attribute::is primary true, false
Attribute::name ””, x | x!=””
Attribute::#type 1
Classifier::name ””, x | x!=””
Class::is persistent true, false
Class::#parent 0, 1
Class::#attrs 1, x | x>1
Association::name ””, x | x!=””
Association::#dest 1
Association::#src 1
ClassModel::#association 0, 1, x | x>1
ClassModel::#classifier 0, 1, x | x>1

partitioned in two partitions True and False. The name attribute
is partitioned in two partitions name empty and name not
empty. The parent relation is partitioned by the number of
associated Classes: 0 or 1. The type, dest and src relations
have only one partition: 1 since their cardinalities are exactly
1. Finally association and classifier have three partitions: 0,
1, more than 1.

The strategy we propose creates several model fragments
per operation. Each model fragment of an operation contains
the features of all the operation’s tuples. For classes (e.g.,
Classifier and ClassModel for getAllClasses operation) the
model fragment requires an instance of this class. When
those features are classes’ properties (ClassModel::classifier
for getAllClasses operation) then we create several model
fragments, one per partition. For instance, getAllClasses op-
eration has 3 model fragments, each one requires a Classifier
and a ClassModel, each one requires a different number of
classifier following the partitioning of classifier property: no
classifier, 1 classifier, more than one classifier. In the same
way, getPersistentClass has 4 model fragments, they combine
the different partitions of the properties is persistent (True or
False) and parent (no parent or one parent).

The 7 model fragments generated from the operations
getAllClasses and getPersistentClass are shown in Table III.
Those model fragments should be contained in the test models
we generate. For instance, in the fragment MFgetAllClasses1
we require at least one ClassModel object cm which doesn’t
have any classifier. In another fragment MFgetAllClasses2 we
require cm to have only one classifier. In MFgetAllClasses3
cm needs to have more than one classifier. The fragments
of getPersistentClass operation cover all combinations of
partition values for is persistent attribute of a Class and for
the number of parents of another Class.

TABLE III
SUBSET OF MODEL FRAGMENTS GENERATED USING FOOTPRINT

STRATEGY

Model-Fragment Description
MFgetAllClasses1 a Classifier & a ClassModel cm | #cm.classifier = 0
MFgetAllClasses2 a Classifier & a ClassModel cm | #cm.classifier = 1
MFgetAllClasses3 a Classifier & a ClassModel cm | #cm.classifier > 1
MFgetPersistentClass1 a Class c|c.is persistent=True & a Class c2|#c2.parent=0
MFgetPersistentClass2 a Class c|c.is persistent=True & a Class c2|#c2.parent=1
MFgetPersistentClass3 a Class c|c.is persistent=False & a Class c2|#c2.parent=0
MFgetPersistentClass4 a Class c|c.is persistent=False & a Class c2|#c2.parent=1

<Operation, Feature, Type>

C. Jeanneret, M. Glinz, and B. Baudry. Estimating footprints of model operations.
ICSE’11, Honolulu, USA, May 2011. IEEE.

Features are unbounded!

Monday, November 26, 12

/31

Unbounded to Bounded: Partitioning

21

Fig. 3. Extraction of partial test knowledge

1) Static Metamodel Footprinting
The first step is the static analysis of a model transformation

called static metamodel footprinting. This analysis consists of
collecting metamodel elements referenced by transformation
operations. In an imperative model transformation language
such as Kermeta [24], metamodel elements are collected
along the control flow graph of the transformation. For ev-
ery operation in the model transformation we create tuples
hOperation, Feature, Typei with the name of the operation,
the feature of the metamodel in use, and the type of the
feature. A detailed explanation of the footprinting process is
described in Jeanneret et. al. [19]. The implementation of static
footprinting in Kermeta [24] is available in a technical report
[20]. This transformation is depicted as step (1) of Figure 3.

The class2rdbms case study gives us 43 footprint tu-
ples. Table I shows the footprint tuples generated for two
operations of class2rdbms: getAllClasses and getPersistent-
Class. The operation getAllClasses contains expressions using
the class Classifier, the class ClassModel, and the property
ClassModel::classifier of type Classifier. The transformation
operation getPersistentClass involves the class Class, the re-
lation Class::is persistent of type Boolean, and the relation
Class::parent of type Class. The footprint tuples will be used
as a source of structural information to eventually generate
test models.

TABLE I
A SUBSET OF METAMODEL FOOTPRINT TUPLES FROM CLASS2RDBMS

Operation Metamodel Feature Types
getAllClasses Classifier Classifier
getAllClasses ClassModel ClassModel
getAllClasses ClassModel::classifier Classifier

getPersistentClass Class Class
getPersistentClass Class::is persistent Boolean
getPersistentClass Class::parent Class

2) Transformation from Footprint to Model Fragments
In this paper we propose a novel strategy to generate model

fragments from metamodel footprint tuples. The transformation
of footprint tuples to model fragments is based on parti-
tioning the domain of each property in the footprint and
combining in every possible way tuples referring to the same
operation. For partitioning we follow the approach presented
in [13]. Attributes are partitioned depending on their types,
associations are partitioned depending on their cardinality. For
instance, Table II presents the partitions for the Class Diagram
metamodel. The is primary and is persistent attributes are

TABLE II
PARTITIONS FOR THE CLASS DIAGRAM METAMODEL

Metamodel feature Partitions
Attribute::is primary true, false
Attribute::name ””, x | x!=””
Attribute::#type 1
Classifier::name ””, x | x!=””
Class::is persistent true, false
Class::#parent 0, 1
Class::#attrs 1, x | x>1
Association::name ””, x | x!=””
Association::#dest 1
Association::#src 1
ClassModel::#association 0, 1, x | x>1
ClassModel::#classifier 0, 1, x | x>1

partitioned in two partitions True and False. The name attribute
is partitioned in two partitions name empty and name not
empty. The parent relation is partitioned by the number of
associated Classes: 0 or 1. The type, dest and src relations
have only one partition: 1 since their cardinalities are exactly
1. Finally association and classifier have three partitions: 0,
1, more than 1.

The strategy we propose creates several model fragments
per operation. Each model fragment of an operation contains
the features of all the operation’s tuples. For classes (e.g.,
Classifier and ClassModel for getAllClasses operation) the
model fragment requires an instance of this class. When
those features are classes’ properties (ClassModel::classifier
for getAllClasses operation) then we create several model
fragments, one per partition. For instance, getAllClasses op-
eration has 3 model fragments, each one requires a Classifier
and a ClassModel, each one requires a different number of
classifier following the partitioning of classifier property: no
classifier, 1 classifier, more than one classifier. In the same
way, getPersistentClass has 4 model fragments, they combine
the different partitions of the properties is persistent (True or
False) and parent (no parent or one parent).

The 7 model fragments generated from the operations
getAllClasses and getPersistentClass are shown in Table III.
Those model fragments should be contained in the test models
we generate. For instance, in the fragment MFgetAllClasses1
we require at least one ClassModel object cm which doesn’t
have any classifier. In another fragment MFgetAllClasses2 we
require cm to have only one classifier. In MFgetAllClasses3
cm needs to have more than one classifier. The fragments
of getPersistentClass operation cover all combinations of
partition values for is persistent attribute of a Class and for
the number of parents of another Class.

TABLE III
SUBSET OF MODEL FRAGMENTS GENERATED USING FOOTPRINT

STRATEGY

Model-Fragment Description
MFgetAllClasses1 a Classifier & a ClassModel cm | #cm.classifier = 0
MFgetAllClasses2 a Classifier & a ClassModel cm | #cm.classifier = 1
MFgetAllClasses3 a Classifier & a ClassModel cm | #cm.classifier > 1
MFgetPersistentClass1 a Class c|c.is persistent=True & a Class c2|#c2.parent=0
MFgetPersistentClass2 a Class c|c.is persistent=True & a Class c2|#c2.parent=1
MFgetPersistentClass3 a Class c|c.is persistent=False & a Class c2|#c2.parent=0
MFgetPersistentClass4 a Class c|c.is persistent=False & a Class c2|#c2.parent=1

Monday, November 26, 12

/31

Model Fragments

22

Fig. 3. Extraction of partial test knowledge

1) Static Metamodel Footprinting
The first step is the static analysis of a model transformation

called static metamodel footprinting. This analysis consists of
collecting metamodel elements referenced by transformation
operations. In an imperative model transformation language
such as Kermeta [24], metamodel elements are collected
along the control flow graph of the transformation. For ev-
ery operation in the model transformation we create tuples
hOperation, Feature, Typei with the name of the operation,
the feature of the metamodel in use, and the type of the
feature. A detailed explanation of the footprinting process is
described in Jeanneret et. al. [19]. The implementation of static
footprinting in Kermeta [24] is available in a technical report
[20]. This transformation is depicted as step (1) of Figure 3.

The class2rdbms case study gives us 43 footprint tu-
ples. Table I shows the footprint tuples generated for two
operations of class2rdbms: getAllClasses and getPersistent-
Class. The operation getAllClasses contains expressions using
the class Classifier, the class ClassModel, and the property
ClassModel::classifier of type Classifier. The transformation
operation getPersistentClass involves the class Class, the re-
lation Class::is persistent of type Boolean, and the relation
Class::parent of type Class. The footprint tuples will be used
as a source of structural information to eventually generate
test models.

TABLE I
A SUBSET OF METAMODEL FOOTPRINT TUPLES FROM CLASS2RDBMS

Operation Metamodel Feature Types
getAllClasses Classifier Classifier
getAllClasses ClassModel ClassModel
getAllClasses ClassModel::classifier Classifier

getPersistentClass Class Class
getPersistentClass Class::is persistent Boolean
getPersistentClass Class::parent Class

2) Transformation from Footprint to Model Fragments
In this paper we propose a novel strategy to generate model

fragments from metamodel footprint tuples. The transformation
of footprint tuples to model fragments is based on parti-
tioning the domain of each property in the footprint and
combining in every possible way tuples referring to the same
operation. For partitioning we follow the approach presented
in [13]. Attributes are partitioned depending on their types,
associations are partitioned depending on their cardinality. For
instance, Table II presents the partitions for the Class Diagram
metamodel. The is primary and is persistent attributes are

TABLE II
PARTITIONS FOR THE CLASS DIAGRAM METAMODEL

Metamodel feature Partitions
Attribute::is primary true, false
Attribute::name ””, x | x!=””
Attribute::#type 1
Classifier::name ””, x | x!=””
Class::is persistent true, false
Class::#parent 0, 1
Class::#attrs 1, x | x>1
Association::name ””, x | x!=””
Association::#dest 1
Association::#src 1
ClassModel::#association 0, 1, x | x>1
ClassModel::#classifier 0, 1, x | x>1

partitioned in two partitions True and False. The name attribute
is partitioned in two partitions name empty and name not
empty. The parent relation is partitioned by the number of
associated Classes: 0 or 1. The type, dest and src relations
have only one partition: 1 since their cardinalities are exactly
1. Finally association and classifier have three partitions: 0,
1, more than 1.

The strategy we propose creates several model fragments
per operation. Each model fragment of an operation contains
the features of all the operation’s tuples. For classes (e.g.,
Classifier and ClassModel for getAllClasses operation) the
model fragment requires an instance of this class. When
those features are classes’ properties (ClassModel::classifier
for getAllClasses operation) then we create several model
fragments, one per partition. For instance, getAllClasses op-
eration has 3 model fragments, each one requires a Classifier
and a ClassModel, each one requires a different number of
classifier following the partitioning of classifier property: no
classifier, 1 classifier, more than one classifier. In the same
way, getPersistentClass has 4 model fragments, they combine
the different partitions of the properties is persistent (True or
False) and parent (no parent or one parent).

The 7 model fragments generated from the operations
getAllClasses and getPersistentClass are shown in Table III.
Those model fragments should be contained in the test models
we generate. For instance, in the fragment MFgetAllClasses1
we require at least one ClassModel object cm which doesn’t
have any classifier. In another fragment MFgetAllClasses2 we
require cm to have only one classifier. In MFgetAllClasses3
cm needs to have more than one classifier. The fragments
of getPersistentClass operation cover all combinations of
partition values for is persistent attribute of a Class and for
the number of parents of another Class.

TABLE III
SUBSET OF MODEL FRAGMENTS GENERATED USING FOOTPRINT

STRATEGY

Model-Fragment Description
MFgetAllClasses1 a Classifier & a ClassModel cm | #cm.classifier = 0
MFgetAllClasses2 a Classifier & a ClassModel cm | #cm.classifier = 1
MFgetAllClasses3 a Classifier & a ClassModel cm | #cm.classifier > 1
MFgetPersistentClass1 a Class c|c.is persistent=True & a Class c2|#c2.parent=0
MFgetPersistentClass2 a Class c|c.is persistent=True & a Class c2|#c2.parent=1
MFgetPersistentClass3 a Class c|c.is persistent=False & a Class c2|#c2.parent=0
MFgetPersistentClass4 a Class c|c.is persistent=False & a Class c2|#c2.parent=1

Model fragments of are combinations of partitions on
footprints
Eg. 3 model fragments for partitions on types used in
getAllClasses operation

Fig. 3. Extraction of partial test knowledge

1) Static Metamodel Footprinting
The first step is the static analysis of a model transformation

called static metamodel footprinting. This analysis consists of
collecting metamodel elements referenced by transformation
operations. In an imperative model transformation language
such as Kermeta [24], metamodel elements are collected
along the control flow graph of the transformation. For ev-
ery operation in the model transformation we create tuples
hOperation, Feature, Typei with the name of the operation,
the feature of the metamodel in use, and the type of the
feature. A detailed explanation of the footprinting process is
described in Jeanneret et. al. [19]. The implementation of static
footprinting in Kermeta [24] is available in a technical report
[20]. This transformation is depicted as step (1) of Figure 3.

The class2rdbms case study gives us 43 footprint tu-
ples. Table I shows the footprint tuples generated for two
operations of class2rdbms: getAllClasses and getPersistent-
Class. The operation getAllClasses contains expressions using
the class Classifier, the class ClassModel, and the property
ClassModel::classifier of type Classifier. The transformation
operation getPersistentClass involves the class Class, the re-
lation Class::is persistent of type Boolean, and the relation
Class::parent of type Class. The footprint tuples will be used
as a source of structural information to eventually generate
test models.

TABLE I
A SUBSET OF METAMODEL FOOTPRINT TUPLES FROM CLASS2RDBMS

Operation Metamodel Feature Types
getAllClasses Classifier Classifier
getAllClasses ClassModel ClassModel
getAllClasses ClassModel::classifier Classifier

getPersistentClass Class Class
getPersistentClass Class::is persistent Boolean
getPersistentClass Class::parent Class

2) Transformation from Footprint to Model Fragments
In this paper we propose a novel strategy to generate model

fragments from metamodel footprint tuples. The transformation
of footprint tuples to model fragments is based on parti-
tioning the domain of each property in the footprint and
combining in every possible way tuples referring to the same
operation. For partitioning we follow the approach presented
in [13]. Attributes are partitioned depending on their types,
associations are partitioned depending on their cardinality. For
instance, Table II presents the partitions for the Class Diagram
metamodel. The is primary and is persistent attributes are

TABLE II
PARTITIONS FOR THE CLASS DIAGRAM METAMODEL

Metamodel feature Partitions
Attribute::is primary true, false
Attribute::name ””, x | x!=””
Attribute::#type 1
Classifier::name ””, x | x!=””
Class::is persistent true, false
Class::#parent 0, 1
Class::#attrs 1, x | x>1
Association::name ””, x | x!=””
Association::#dest 1
Association::#src 1
ClassModel::#association 0, 1, x | x>1
ClassModel::#classifier 0, 1, x | x>1

partitioned in two partitions True and False. The name attribute
is partitioned in two partitions name empty and name not
empty. The parent relation is partitioned by the number of
associated Classes: 0 or 1. The type, dest and src relations
have only one partition: 1 since their cardinalities are exactly
1. Finally association and classifier have three partitions: 0,
1, more than 1.

The strategy we propose creates several model fragments
per operation. Each model fragment of an operation contains
the features of all the operation’s tuples. For classes (e.g.,
Classifier and ClassModel for getAllClasses operation) the
model fragment requires an instance of this class. When
those features are classes’ properties (ClassModel::classifier
for getAllClasses operation) then we create several model
fragments, one per partition. For instance, getAllClasses op-
eration has 3 model fragments, each one requires a Classifier
and a ClassModel, each one requires a different number of
classifier following the partitioning of classifier property: no
classifier, 1 classifier, more than one classifier. In the same
way, getPersistentClass has 4 model fragments, they combine
the different partitions of the properties is persistent (True or
False) and parent (no parent or one parent).

The 7 model fragments generated from the operations
getAllClasses and getPersistentClass are shown in Table III.
Those model fragments should be contained in the test models
we generate. For instance, in the fragment MFgetAllClasses1
we require at least one ClassModel object cm which doesn’t
have any classifier. In another fragment MFgetAllClasses2 we
require cm to have only one classifier. In MFgetAllClasses3
cm needs to have more than one classifier. The fragments
of getPersistentClass operation cover all combinations of
partition values for is persistent attribute of a Class and for
the number of parents of another Class.

TABLE III
SUBSET OF MODEL FRAGMENTS GENERATED USING FOOTPRINT

STRATEGY

Model-Fragment Description
MFgetAllClasses1 a Classifier & a ClassModel cm | #cm.classifier = 0
MFgetAllClasses2 a Classifier & a ClassModel cm | #cm.classifier = 1
MFgetAllClasses3 a Classifier & a ClassModel cm | #cm.classifier > 1
MFgetPersistentClass1 a Class c|c.is persistent=True & a Class c2|#c2.parent=0
MFgetPersistentClass2 a Class c|c.is persistent=True & a Class c2|#c2.parent=1
MFgetPersistentClass3 a Class c|c.is persistent=False & a Class c2|#c2.parent=0
MFgetPersistentClass4 a Class c|c.is persistent=False & a Class c2|#c2.parent=1

Footprint for
getAllClasses:

Monday, November 26, 12

/31

Part 2: Transformation to Alloy

23

(b)�&RQVWUDLQts
to Alloy

(manual)

OCL Invariants
Inv(MMI)

Pre-condition
pre(MT)

(a) Metamodel
to Alloy

Input Metamodel
MMI

Footprint Model
Fragments

MF

(c) Footprint
to Alloy

Alloy Signatures
and Facts

Ab

Model Fragment
Predicates
Amf

Pramana

Fig. 4. Transformation to ALLOY

Alloy
Analyzer

(SAT Solver)

List of Invalid
Predicates
Finvalid

Footprint
Test Models

XMI Instances

Alloy Signatures
and Facts

Ab

Model Fragment
Predicates

Amf

Alloy2XMI
Footprint

Test Models
Alloy Instances

Generation Design D
- Scope per Signature
- Integer Bitwidth
- Number of
 non-isomorphic
 instances I

Fig. 5. Generation of test models

We generate a total of 72 model fragments representing
combinations of partitions of features found in the footprints of
class2rdbms. The footprint to model fragment transformation
is depicted as step (2) of Figure 3.

IV. GENERATING TEST MODELS FROM TESTING
KNOWLEDGE

In this section we present a methodology to generate
test models from footprint model fragments. We describe its
application on class2rdbms in the following subsections.
Section IV-A describes the transformation of heterogeneous
sources of knowledge to ALLOY (Figure 4). Section IV-B
describes the generation of test inputs by solving the obtained
ALLOY models (Figure 5).

A. Transformation to ALLOY

Our methodology to generate test models involves transfor-
mation of five sources of knowledge to the lightweight formal
specification language ALLOY [17], [18]. The final formal
ALLOY represents a constraint satisfaction problem that when
solved gives us one or more test models. In Figure 4 we
represent the four sources available and their target artifacts
in ALLOY: (1) Input metamodel MMI to ALLOY signatures

and facts Ab, (2) OCL invariants Inv(MMI) and (3) pre-
conditions pre(MT) to ALLOY facts, (4) Footprint model
fragments (from Figure 3) to ALLOY predicates.
(I) Metamodel MMI to ALLOY. PRAMANA transforms a

metamodel MMI expressed in the EMF format Ecore using
the transformation rules presented in [27] to ALLOY. Classes
in the input metamodel are transformed to ALLOY signatures
and implicit constraints such as inheritance, opposite proper-
ties, and multiplicity constraints are transformed to ALLOY
facts in the base model Ab as shown in Figure 4.
(II) Constraints to ALLOY. We need to address the issue

of transforming invariants and pre-conditions expressed on
metamodels in the industry standard OCL to ALLOY. In the
current version of PRAMANA, we manually transform OCL
constraints to ALLOY facts in Ab as shown in Figure 4. The
automatic transformation of OCL to ALLOY presents a number
of challenges that are discussed in [1]. The core of ALLOY is
declarative and is based on first-order relational logic with
quantifiers while OCL includes higher-order logic and has
imperative constructs to call operations and messages making
some parts of OCL more expressive and difficult to transform
to ALLOY in the most general case. In our case study, we have
been successful in transforming all meta-constraints on the
simplified UMLCD metamodel to ALLOY from their original
OCL specifications.

(III) Footprint Model Fragments to ALLOY. We au-
tomatically transform model fragments to a set of ALLOY
predicates Amf . This transformation is purely syntactic. In
our use case, the model fragments of Table III are translated
into the predicates of Listing 1.

pred M F g e t A l l C l a s s e s 1 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r =0}

pred M F g e t A l l C l a s s e s 2 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r =1}

pred M F g e t A l l C l a s s e s 3 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r >1}

pred M F g e t P e r s i s t e n t C l a s s 1 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = True and # c2 . p a r e n t = 0}

pred M F g e t P e r s i s t e n t C l a s s 2 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = True and # c2 . p a r e n t = 1}

pred M F g e t P e r s i s t e n t C l a s s 3 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = F a l s e and # c2 . p a r e n t = 0}

pred M F g e t P e r s i s t e n t C l a s s 4 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = F a l s e and # c2 . p a r e n t = 1}

Listing 1. Footprint as Alloy Predicates Representing Combination of
Partitions

The model fragment to ALLOY predicate transformation is
a new contribution, integrated into the PRAMANA tool chain.
This is depicted in grey boxes of Figure 4.

B. Generating Test Models
The ALLOY signatures, facts, and predicates (Ab and Amf)

are transformed to a set of expressions in relational calculus
by the ALLOY analyzer. These expressions are then trans-
formed to Conjunctive Normal Form (CNF) using KodKod
[32]. Finally, the CNF is solved using a SAT solver [23].

Monday, November 26, 12

/31

Model Fragment to Alloy

24

(b)�&RQVWUDLQts
to Alloy

(manual)

OCL Invariants
Inv(MMI)

Pre-condition
pre(MT)

(a) Metamodel
to Alloy

Input Metamodel
MMI

Footprint Model
Fragments

MF

(c) Footprint
to Alloy

Alloy Signatures
and Facts

Ab

Model Fragment
Predicates
Amf

Pramana

Fig. 4. Transformation to ALLOY

Alloy
Analyzer

(SAT Solver)

List of Invalid
Predicates
Finvalid

Footprint
Test Models

XMI Instances

Alloy Signatures
and Facts

Ab

Model Fragment
Predicates

Amf

Alloy2XMI
Footprint

Test Models
Alloy Instances

Generation Design D
- Scope per Signature
- Integer Bitwidth
- Number of
 non-isomorphic
 instances I

Fig. 5. Generation of test models

We generate a total of 72 model fragments representing
combinations of partitions of features found in the footprints of
class2rdbms. The footprint to model fragment transformation
is depicted as step (2) of Figure 3.

IV. GENERATING TEST MODELS FROM TESTING
KNOWLEDGE

In this section we present a methodology to generate
test models from footprint model fragments. We describe its
application on class2rdbms in the following subsections.
Section IV-A describes the transformation of heterogeneous
sources of knowledge to ALLOY (Figure 4). Section IV-B
describes the generation of test inputs by solving the obtained
ALLOY models (Figure 5).

A. Transformation to ALLOY

Our methodology to generate test models involves transfor-
mation of five sources of knowledge to the lightweight formal
specification language ALLOY [17], [18]. The final formal
ALLOY represents a constraint satisfaction problem that when
solved gives us one or more test models. In Figure 4 we
represent the four sources available and their target artifacts
in ALLOY: (1) Input metamodel MMI to ALLOY signatures

and facts Ab, (2) OCL invariants Inv(MMI) and (3) pre-
conditions pre(MT) to ALLOY facts, (4) Footprint model
fragments (from Figure 3) to ALLOY predicates.
(I) Metamodel MMI to ALLOY. PRAMANA transforms a

metamodel MMI expressed in the EMF format Ecore using
the transformation rules presented in [27] to ALLOY. Classes
in the input metamodel are transformed to ALLOY signatures
and implicit constraints such as inheritance, opposite proper-
ties, and multiplicity constraints are transformed to ALLOY
facts in the base model Ab as shown in Figure 4.
(II) Constraints to ALLOY. We need to address the issue

of transforming invariants and pre-conditions expressed on
metamodels in the industry standard OCL to ALLOY. In the
current version of PRAMANA, we manually transform OCL
constraints to ALLOY facts in Ab as shown in Figure 4. The
automatic transformation of OCL to ALLOY presents a number
of challenges that are discussed in [1]. The core of ALLOY is
declarative and is based on first-order relational logic with
quantifiers while OCL includes higher-order logic and has
imperative constructs to call operations and messages making
some parts of OCL more expressive and difficult to transform
to ALLOY in the most general case. In our case study, we have
been successful in transforming all meta-constraints on the
simplified UMLCD metamodel to ALLOY from their original
OCL specifications.

(III) Footprint Model Fragments to ALLOY. We au-
tomatically transform model fragments to a set of ALLOY
predicates Amf . This transformation is purely syntactic. In
our use case, the model fragments of Table III are translated
into the predicates of Listing 1.

pred M F g e t A l l C l a s s e s 1 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r =0}

pred M F g e t A l l C l a s s e s 2 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r =1}

pred M F g e t A l l C l a s s e s 3 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r >1}

pred M F g e t P e r s i s t e n t C l a s s 1 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = True and # c2 . p a r e n t = 0}

pred M F g e t P e r s i s t e n t C l a s s 2 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = True and # c2 . p a r e n t = 1}

pred M F g e t P e r s i s t e n t C l a s s 3 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = F a l s e and # c2 . p a r e n t = 0}

pred M F g e t P e r s i s t e n t C l a s s 4 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = F a l s e and # c2 . p a r e n t = 1}

Listing 1. Footprint as Alloy Predicates Representing Combination of
Partitions

The model fragment to ALLOY predicate transformation is
a new contribution, integrated into the PRAMANA tool chain.
This is depicted in grey boxes of Figure 4.

B. Generating Test Models
The ALLOY signatures, facts, and predicates (Ab and Amf)

are transformed to a set of expressions in relational calculus
by the ALLOY analyzer. These expressions are then trans-
formed to Conjunctive Normal Form (CNF) using KodKod
[32]. Finally, the CNF is solved using a SAT solver [23].

Monday, November 26, 12

/31

Part 3: Generating Test Models

25

(b)�&RQVWUDLQts
to Alloy

(manual)

OCL Invariants
Inv(MMI)

Pre-condition
pre(MT)

(a) Metamodel
to Alloy

Input Metamodel
MMI

Footprint Model
Fragments

MF

(c) Footprint
to Alloy

Alloy Signatures
and Facts

Ab

Model Fragment
Predicates
Amf

Pramana

Fig. 4. Transformation to ALLOY

Alloy
Analyzer

(SAT Solver)

List of Invalid
Predicates
Finvalid

Footprint
Test Models

XMI Instances

Alloy Signatures
and Facts

Ab

Model Fragment
Predicates

Amf

Alloy2XMI
Footprint

Test Models
Alloy Instances

Generation Design D
- Scope per Signature
- Integer Bitwidth
- Number of
 non-isomorphic
 instances I

Fig. 5. Generation of test models

We generate a total of 72 model fragments representing
combinations of partitions of features found in the footprints of
class2rdbms. The footprint to model fragment transformation
is depicted as step (2) of Figure 3.

IV. GENERATING TEST MODELS FROM TESTING
KNOWLEDGE

In this section we present a methodology to generate
test models from footprint model fragments. We describe its
application on class2rdbms in the following subsections.
Section IV-A describes the transformation of heterogeneous
sources of knowledge to ALLOY (Figure 4). Section IV-B
describes the generation of test inputs by solving the obtained
ALLOY models (Figure 5).

A. Transformation to ALLOY

Our methodology to generate test models involves transfor-
mation of five sources of knowledge to the lightweight formal
specification language ALLOY [17], [18]. The final formal
ALLOY represents a constraint satisfaction problem that when
solved gives us one or more test models. In Figure 4 we
represent the four sources available and their target artifacts
in ALLOY: (1) Input metamodel MMI to ALLOY signatures

and facts Ab, (2) OCL invariants Inv(MMI) and (3) pre-
conditions pre(MT) to ALLOY facts, (4) Footprint model
fragments (from Figure 3) to ALLOY predicates.
(I) Metamodel MMI to ALLOY. PRAMANA transforms a

metamodel MMI expressed in the EMF format Ecore using
the transformation rules presented in [27] to ALLOY. Classes
in the input metamodel are transformed to ALLOY signatures
and implicit constraints such as inheritance, opposite proper-
ties, and multiplicity constraints are transformed to ALLOY
facts in the base model Ab as shown in Figure 4.
(II) Constraints to ALLOY. We need to address the issue

of transforming invariants and pre-conditions expressed on
metamodels in the industry standard OCL to ALLOY. In the
current version of PRAMANA, we manually transform OCL
constraints to ALLOY facts in Ab as shown in Figure 4. The
automatic transformation of OCL to ALLOY presents a number
of challenges that are discussed in [1]. The core of ALLOY is
declarative and is based on first-order relational logic with
quantifiers while OCL includes higher-order logic and has
imperative constructs to call operations and messages making
some parts of OCL more expressive and difficult to transform
to ALLOY in the most general case. In our case study, we have
been successful in transforming all meta-constraints on the
simplified UMLCD metamodel to ALLOY from their original
OCL specifications.

(III) Footprint Model Fragments to ALLOY. We au-
tomatically transform model fragments to a set of ALLOY
predicates Amf . This transformation is purely syntactic. In
our use case, the model fragments of Table III are translated
into the predicates of Listing 1.

pred M F g e t A l l C l a s s e s 1 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r =0}

pred M F g e t A l l C l a s s e s 2 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r =1}

pred M F g e t A l l C l a s s e s 3 {some C l a s s i f i e r and
some cm : ClassModel | #cm . c l a s s i f i e r >1}

pred M F g e t P e r s i s t e n t C l a s s 1 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = True and # c2 . p a r e n t = 0}

pred M F g e t P e r s i s t e n t C l a s s 2 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = True and # c2 . p a r e n t = 1}

pred M F g e t P e r s i s t e n t C l a s s 3 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = F a l s e and # c2 . p a r e n t = 0}

pred M F g e t P e r s i s t e n t C l a s s 4 {some c : C lass , c2 : C l a s s |
c . i s p e r s i s t e n t = F a l s e and # c2 . p a r e n t = 1}

Listing 1. Footprint as Alloy Predicates Representing Combination of
Partitions

The model fragment to ALLOY predicate transformation is
a new contribution, integrated into the PRAMANA tool chain.
This is depicted in grey boxes of Figure 4.

B. Generating Test Models
The ALLOY signatures, facts, and predicates (Ab and Amf)

are transformed to a set of expressions in relational calculus
by the ALLOY analyzer. These expressions are then trans-
formed to Conjunctive Normal Form (CNF) using KodKod
[32]. Finally, the CNF is solved using a SAT solver [23].

23 Consistent Fragments out of 72 Fragments

Monday, November 26, 12

/31

Example Test Model

26

<<persistent>>

12:Class

<<primary>> 13: 14

‐6:Class

<<primary>> ‐4: 14

<<persistent>>

13:Class

<<primary>> ‐15: ‐8

<<persistent>>

15:Class

<<primary>> 13:11

<<persistent>>

11:Class

<<primary>> 15:14

‐16:PrimitiveDataType

‐8:PrimitiveDataType

14:PrimitiveDataType 10:PrimitiveDataType

15

15

‐6

12

‐15

Fig. 6. Generated Test Model from one Model Fragment

The low-level SAT solutions are transformed back to XMI4

models that conform the initial metamodel MMI , pre(MT),
Inv(MMI), and the predicates in Amf . In Figure 6, we
present a test model generated by solving the predicate for
fragment MFgetPersistentClass2, defined in Listing 1.

A certain number of predicates in Amf may not conform
to the base ALLOY model Ab. An attempt to generate a
test model by executing a run command for such predicates
fails with no instance. This implies that a model fragment
predicate is inconsistent with respect to the input domain
specification represented by Ab. The invalid predicates are
inconsistent with respect to ALLOY signatures and facts from
either MMI , Inv(MMI), pre(MT), or a conjunction of
facts. For instance, MFgetAllClasses1 is inconsistent with
an Alloy fact specifying that a Classifier is contained by a
ClassModel, as illustrated in the MM , Figure 2(a). We weed
out these inconsistent predicates into a set Finvalid. Predicates
in Finvalid, are removed from Amf for further generation.
From the original set of 72 model fragment predicates gen-
erated for class2rdbms, 23 are consistent and can be used
for test generation. In our case study, 68% of the predicates
were eliminated. This happens because footprint predicates
use generic partitioning on relevant metamodel properties. We
may improve the domain-specificity of these predicates by
analyzing expression trees of these metamodel properties. The
analysis can give us more insight into the valid domain of
properties. This step is out of the scope of this article.

Starting a test model generation in ALLOY requires ALLOY
run statements that depict the number of objects (atoms in
ALLOY) that need to be generated for each class (signature in
ALLOY) in order to solve a predicate. The run statements also
must specify bounds/scopes on Integer values and sequence
lengths. These signatures can be seen as factors and their
scopes as factor levels in the experimental design [11] [15] par-
lance. A generation design D is the fifth source of knowledge
(Figure 5). It is a set of ALLOY run statements that contain the
bounds/scope for each ALLOY signature and Integer ranges
for each of the M predicates, where M is the number of
fragment predicates in Amf . The set of run statements in D
are generated from a set of numerical parameters. For instance,
in Listing 2, we present a run command to solve predicate

4http://www.omg.org/spec/XMI/2.4.1/

MFgetPersistentClass2 with the scope for each signature. The
exactly keyword ensures the exact number of objects of a
certain type in the model.
run M F g e t P e r s i s e n t C l a s s 2 f o r 1 ClassModel , 5 i n t , e x a c t l y 10

Class , e x a c t l y 5 A t t r i b u t e , e x a c t l y 4 P r i m i t i v e D a t a T y p e ,
e x a c t l y 10 A s s o c i a t i o n

Listing 2. Run Command to Generate Complete Model from a Fragment

A parameter to the ALLOY analyzer is the number of
non-isomorphic test models that need to be generated per
predicate. This parameter I is provided at the time of gen-
eration. Generating multiple non-isomorphic models allow
us to increase the diversity of structure in the test models
generated. The generation of non-isomorphic models is based
on the symmetry breaking scheme of ALLOY described in [16].
The symmetry breaking scheme adds a Boolean constraint to
break the symmetry between the current test model and the
next test model such that every test model is non-isomorphic
with respect to the previous one. The number of symmetry
breaking constraints depends on the number of test models
required from the ALLOY analyzer. In this paper, we validate
the effectiveness of our approach by generating multiple non-
isomorphic models for the same model fragment predicate.

V. EXPERIMENTS

In this section, we perform experiments to address Chal-
lenge 3: Are automatically completed models from transfor-
mation knowledge effective in detecting faults in the transfor-
mation?

The experimentation is divided into two steps:
1) We generate several sets of test models following our

white-box methodology and two black-box methodolo-
gies from related work.

2) We perform mutation analysis [25] to evaluate and com-
pare the fault detecting effectiveness of the generated test
sets.

TABLE IV
GENERATION DESIGN PARAMETERS FOR TEST MODEL GENERATION

Factors: Sets: 1 2 3 4 5 6 7 8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 10 10 5 10 5 10
#Association 5 10 5 10 5 5 10 10
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5
#predicates 23 23 23 23 23 23 23 23
#models/predicates 10 10 10 10 10 10 10 10

When using our methodology we generate test models for
class2rdbms as described in previous sections. We produce
10 non-isomorphic solutions for each one of the 23 predicates
obtaining a test set of 230 test models5.

We generate 8 sets of test models to cover a wide-range
of sizes on metamodel properties. Each set is generated
using different design parameters, with increasing values, as

5These models and other software artifacts are available on the experimen-
tation website: https://sites.google.com/site/staticfootprinting/

<<persistent>>

12:Class

<<primary>> 13: 14

‐6:Class

<<primary>> ‐4: 14

<<persistent>>

13:Class

<<primary>> ‐15: ‐8

<<persistent>>

15:Class

<<primary>> 13:11

<<persistent>>

11:Class

<<primary>> 15:14

‐16:PrimitiveDataType

‐8:PrimitiveDataType

14:PrimitiveDataType 10:PrimitiveDataType

15

15

‐6

12

‐15

Fig. 6. Generated Test Model from one Model Fragment

The low-level SAT solutions are transformed back to XMI4

models that conform the initial metamodel MMI , pre(MT),
Inv(MMI), and the predicates in Amf . In Figure 6, we
present a test model generated by solving the predicate for
fragment MFgetPersistentClass2, defined in Listing 1.

A certain number of predicates in Amf may not conform
to the base ALLOY model Ab. An attempt to generate a
test model by executing a run command for such predicates
fails with no instance. This implies that a model fragment
predicate is inconsistent with respect to the input domain
specification represented by Ab. The invalid predicates are
inconsistent with respect to ALLOY signatures and facts from
either MMI , Inv(MMI), pre(MT), or a conjunction of
facts. For instance, MFgetAllClasses1 is inconsistent with
an Alloy fact specifying that a Classifier is contained by a
ClassModel, as illustrated in the MM , Figure 2(a). We weed
out these inconsistent predicates into a set Finvalid. Predicates
in Finvalid, are removed from Amf for further generation.
From the original set of 72 model fragment predicates gen-
erated for class2rdbms, 23 are consistent and can be used
for test generation. In our case study, 68% of the predicates
were eliminated. This happens because footprint predicates
use generic partitioning on relevant metamodel properties. We
may improve the domain-specificity of these predicates by
analyzing expression trees of these metamodel properties. The
analysis can give us more insight into the valid domain of
properties. This step is out of the scope of this article.

Starting a test model generation in ALLOY requires ALLOY
run statements that depict the number of objects (atoms in
ALLOY) that need to be generated for each class (signature in
ALLOY) in order to solve a predicate. The run statements also
must specify bounds/scopes on Integer values and sequence
lengths. These signatures can be seen as factors and their
scopes as factor levels in the experimental design [11] [15] par-
lance. A generation design D is the fifth source of knowledge
(Figure 5). It is a set of ALLOY run statements that contain the
bounds/scope for each ALLOY signature and Integer ranges
for each of the M predicates, where M is the number of
fragment predicates in Amf . The set of run statements in D
are generated from a set of numerical parameters. For instance,
in Listing 2, we present a run command to solve predicate

4http://www.omg.org/spec/XMI/2.4.1/

MFgetPersistentClass2 with the scope for each signature. The
exactly keyword ensures the exact number of objects of a
certain type in the model.
run M F g e t P e r s i s e n t C l a s s 2 f o r 1 ClassModel , 5 i n t , e x a c t l y 10

Class , e x a c t l y 5 A t t r i b u t e , e x a c t l y 4 P r i m i t i v e D a t a T y p e ,
e x a c t l y 10 A s s o c i a t i o n

Listing 2. Run Command to Generate Complete Model from a Fragment

A parameter to the ALLOY analyzer is the number of
non-isomorphic test models that need to be generated per
predicate. This parameter I is provided at the time of gen-
eration. Generating multiple non-isomorphic models allow
us to increase the diversity of structure in the test models
generated. The generation of non-isomorphic models is based
on the symmetry breaking scheme of ALLOY described in [16].
The symmetry breaking scheme adds a Boolean constraint to
break the symmetry between the current test model and the
next test model such that every test model is non-isomorphic
with respect to the previous one. The number of symmetry
breaking constraints depends on the number of test models
required from the ALLOY analyzer. In this paper, we validate
the effectiveness of our approach by generating multiple non-
isomorphic models for the same model fragment predicate.

V. EXPERIMENTS

In this section, we perform experiments to address Chal-
lenge 3: Are automatically completed models from transfor-
mation knowledge effective in detecting faults in the transfor-
mation?

The experimentation is divided into two steps:
1) We generate several sets of test models following our

white-box methodology and two black-box methodolo-
gies from related work.

2) We perform mutation analysis [25] to evaluate and com-
pare the fault detecting effectiveness of the generated test
sets.

TABLE IV
GENERATION DESIGN PARAMETERS FOR TEST MODEL GENERATION

Factors: Sets: 1 2 3 4 5 6 7 8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 10 10 5 10 5 10
#Association 5 10 5 10 5 5 10 10
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5
#predicates 23 23 23 23 23 23 23 23
#models/predicates 10 10 10 10 10 10 10 10

When using our methodology we generate test models for
class2rdbms as described in previous sections. We produce
10 non-isomorphic solutions for each one of the 23 predicates
obtaining a test set of 230 test models5.

We generate 8 sets of test models to cover a wide-range
of sizes on metamodel properties. Each set is generated
using different design parameters, with increasing values, as

5These models and other software artifacts are available on the experimen-
tation website: https://sites.google.com/site/staticfootprinting/

Monday, November 26, 12

/31

Outline
• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation Testing

• Effective? Experiments based on Mutation Analysis

• Conclusion

27

Monday, November 26, 12

/31

Experimental Setup (1)
Input Test Models

28

<<persistent>>

12:Class

<<primary>> 13: 14

‐6:Class

<<primary>> ‐4: 14

<<persistent>>

13:Class

<<primary>> ‐15: ‐8

<<persistent>>

15:Class

<<primary>> 13:11

<<persistent>>

11:Class

<<primary>> 15:14

‐16:PrimitiveDataType

‐8:PrimitiveDataType

14:PrimitiveDataType 10:PrimitiveDataType

15

15

‐6

12

‐15

Fig. 6. Generated Test Model from one Model Fragment

The low-level SAT solutions are transformed back to XMI4

models that conform the initial metamodel MMI , pre(MT),
Inv(MMI), and the predicates in Amf . In Figure 6, we
present a test model generated by solving the predicate for
fragment MFgetPersistentClass2, defined in Listing 1.

A certain number of predicates in Amf may not conform
to the base ALLOY model Ab. An attempt to generate a
test model by executing a run command for such predicates
fails with no instance. This implies that a model fragment
predicate is inconsistent with respect to the input domain
specification represented by Ab. The invalid predicates are
inconsistent with respect to ALLOY signatures and facts from
either MMI , Inv(MMI), pre(MT), or a conjunction of
facts. For instance, MFgetAllClasses1 is inconsistent with
an Alloy fact specifying that a Classifier is contained by a
ClassModel, as illustrated in the MM , Figure 2(a). We weed
out these inconsistent predicates into a set Finvalid. Predicates
in Finvalid, are removed from Amf for further generation.
From the original set of 72 model fragment predicates gen-
erated for class2rdbms, 23 are consistent and can be used
for test generation. In our case study, 68% of the predicates
were eliminated. This happens because footprint predicates
use generic partitioning on relevant metamodel properties. We
may improve the domain-specificity of these predicates by
analyzing expression trees of these metamodel properties. The
analysis can give us more insight into the valid domain of
properties. This step is out of the scope of this article.

Starting a test model generation in ALLOY requires ALLOY
run statements that depict the number of objects (atoms in
ALLOY) that need to be generated for each class (signature in
ALLOY) in order to solve a predicate. The run statements also
must specify bounds/scopes on Integer values and sequence
lengths. These signatures can be seen as factors and their
scopes as factor levels in the experimental design [11] [15] par-
lance. A generation design D is the fifth source of knowledge
(Figure 5). It is a set of ALLOY run statements that contain the
bounds/scope for each ALLOY signature and Integer ranges
for each of the M predicates, where M is the number of
fragment predicates in Amf . The set of run statements in D
are generated from a set of numerical parameters. For instance,
in Listing 2, we present a run command to solve predicate

4http://www.omg.org/spec/XMI/2.4.1/

MFgetPersistentClass2 with the scope for each signature. The
exactly keyword ensures the exact number of objects of a
certain type in the model.
run M F g e t P e r s i s e n t C l a s s 2 f o r 1 ClassModel , 5 i n t , e x a c t l y 10

Class , e x a c t l y 5 A t t r i b u t e , e x a c t l y 4 P r i m i t i v e D a t a T y p e ,
e x a c t l y 10 A s s o c i a t i o n

Listing 2. Run Command to Generate Complete Model from a Fragment

A parameter to the ALLOY analyzer is the number of
non-isomorphic test models that need to be generated per
predicate. This parameter I is provided at the time of gen-
eration. Generating multiple non-isomorphic models allow
us to increase the diversity of structure in the test models
generated. The generation of non-isomorphic models is based
on the symmetry breaking scheme of ALLOY described in [16].
The symmetry breaking scheme adds a Boolean constraint to
break the symmetry between the current test model and the
next test model such that every test model is non-isomorphic
with respect to the previous one. The number of symmetry
breaking constraints depends on the number of test models
required from the ALLOY analyzer. In this paper, we validate
the effectiveness of our approach by generating multiple non-
isomorphic models for the same model fragment predicate.

V. EXPERIMENTS

In this section, we perform experiments to address Chal-
lenge 3: Are automatically completed models from transfor-
mation knowledge effective in detecting faults in the transfor-
mation?

The experimentation is divided into two steps:
1) We generate several sets of test models following our

white-box methodology and two black-box methodolo-
gies from related work.

2) We perform mutation analysis [25] to evaluate and com-
pare the fault detecting effectiveness of the generated test
sets.

TABLE IV
GENERATION DESIGN PARAMETERS FOR TEST MODEL GENERATION

Factors: Sets: 1 2 3 4 5 6 7 8
#ClassModel 1 1 1 1 1 1 1 1
#Class 5 5 10 10 5 10 5 10
#Association 5 10 5 10 5 5 10 10
#Attribute 25 25 25 25 30 30 30 30
#PrimitiveDataType 4 4 4 4 4 4 4 4
Bit-width Integer 5 5 5 5 5 5 5 5
#predicates 23 23 23 23 23 23 23 23
#models/predicates 10 10 10 10 10 10 10 10

When using our methodology we generate test models for
class2rdbms as described in previous sections. We produce
10 non-isomorphic solutions for each one of the 23 predicates
obtaining a test set of 230 test models5.

We generate 8 sets of test models to cover a wide-range
of sizes on metamodel properties. Each set is generated
using different design parameters, with increasing values, as

5These models and other software artifacts are available on the experimen-
tation website: https://sites.google.com/site/staticfootprinting/

8 x 23 (consistent fragments) x 10 (non-isomorphic
models) = 1840 test models

Monday, November 26, 12

/31

Experimental Setup (2)

29

1. We inject faults into class2rdbms using mutation operators

2. We create 200 mutant versions (6 equivalent mutants) of class2rdbms with one
fault each

3. Mutant operators are expressed on filtering, navigation, and creation
operations (Mottu et. al. ECMDA’06)

4. Each test model (1840 of them) is executed for each of the 200 mutant versions of
class2rdbms

5. An oracle compares the output of the mutant vs. the original class2rdbms
transformation

6. Mutation score is the percentage of faults detected in 200 mutants

Mutation Analysis to Qualify Test Models

Monday, November 26, 12

/31

Mutation Analysis Results

30

Fig. 7. Mutation scores for footprint predicates

the footprint strategy is superior to all the other boxes (each
box representing the results between the first and the third
quartile). Even the minimum score obtained with footprints is
higher than the black-box maximum scores.

2) Q2: What is the effect of generating multiple non-
isomorphic models?: In [28], we concluded by saying that
AllRanges and AllPartitions strategies are more efficient than
unguided strategy with both median scores around 82%. In
this paper, we take a step further to generate 10 models per
predicate. This is due to our new setup for mutation analysis on
a grid. Therefore we can take advantage of the non-isomorphic
criteria of our generation.

We observe an increase in scores for AllRanges and AllPar-
titions from [28] to our results in Figure 7. A gain of 6% and
11% is observed. We also notice that while the box-plots for
unguided strategies were dispersed without non-isomorphic
criteria (6% and 3% between the first and third quartiles, 13%
and 3.7% between the maximum and minimum scores), here
they converge to 70.1%. We conclude that non-isomorphic
criteria reduces the variability and increases the efficiency of
the test model generation made with PRAMANA.

3) Q3: How to deal with remaining live mutants?: In
Table VI, we enlist live mutants per set. f, n letters are
the initials of filtering and navigation indicating the type of
operation altered with the mutation.

The influence of the generation design parameters on the
number of live mutants looks minor, as we can see with the
spread of the grey box-plot: 2.2% between the first and third
quartiles. The difference between the design parameters of
each set is not significant to conclude a correlation between
design parameters and live mutants.

From Table VI, we observe that 2 mutants remain alive with
all the sets: f19, f21. Clearly, we lack testing knowledge to kill
them. The rest of the mutants are killed because the footprint
strategy gives test models with relevant knowledge.

Analyzing the live mutants we notice that they are affected
by the mutation operator CFCA: A Collection is Filtered
Additionally. For instance, the injected fault subSequence(0,0)
in the following expression is an additional filter.

getAllClasses(model).select{ c | c.parent == cls }
.subSequence(0,0) //Injected fault

Here, cls is a Class selected before (expression not shown),
c is any Class of the model. The instruction selects the classes
which inherit from cls. The mutants wrongly (intentionally
injected) select only the first child Class of cls. This mutant
expression appears in two operations of class2rdbms. One
that collects attributes (in f19) and the other collects associa-
tions (in f21). The only way to see a difference in output and
detect these mutants is to have at least two child Classes with
one Association and Attribute as shown in Figure 8.

Our strategy cannot kill these mutations since the inheri-
tance relationship in the UMLCD metamodel is not bidirec-
tional, as illustrated Figure 2. Only the parent property exists
and not child. A partition of a child property could have
resulted in the creation of more than one child classes in test
models. We are evaluating how to extend our footprint strategy
to introduce a partitioning of implicit opposite references.
However, with the current tool, a user can still add this partial
knowledge describing it in a partial test model as discussed

TABLE VI
LIVE MUTANTS AFTER MUTATION ANALYSIS

Set #live mutants Live mutants
1 2 f19, f21
2 2 f19, f21
3 6 f19, f21, f10, f31, f48
4 2 f19, f21
5 2 f19, f21
6 12 f19, f21, f10, f31, f73, n99 to n105
7 10 f19, f21, f70, n92 to n98
8 2 f19, f21

Fig. 8. Human testing knowledge to kill live mutants

Monday, November 26, 12

/31

Live Mutants?

31

Fig. 7. Mutation scores for footprint predicates

the footprint strategy is superior to all the other boxes (each
box representing the results between the first and the third
quartile). Even the minimum score obtained with footprints is
higher than the black-box maximum scores.

2) Q2: What is the effect of generating multiple non-
isomorphic models?: In [28], we concluded by saying that
AllRanges and AllPartitions strategies are more efficient than
unguided strategy with both median scores around 82%. In
this paper, we take a step further to generate 10 models per
predicate. This is due to our new setup for mutation analysis on
a grid. Therefore we can take advantage of the non-isomorphic
criteria of our generation.

We observe an increase in scores for AllRanges and AllPar-
titions from [28] to our results in Figure 7. A gain of 6% and
11% is observed. We also notice that while the box-plots for
unguided strategies were dispersed without non-isomorphic
criteria (6% and 3% between the first and third quartiles, 13%
and 3.7% between the maximum and minimum scores), here
they converge to 70.1%. We conclude that non-isomorphic
criteria reduces the variability and increases the efficiency of
the test model generation made with PRAMANA.

3) Q3: How to deal with remaining live mutants?: In
Table VI, we enlist live mutants per set. f, n letters are
the initials of filtering and navigation indicating the type of
operation altered with the mutation.

The influence of the generation design parameters on the
number of live mutants looks minor, as we can see with the
spread of the grey box-plot: 2.2% between the first and third
quartiles. The difference between the design parameters of
each set is not significant to conclude a correlation between
design parameters and live mutants.

From Table VI, we observe that 2 mutants remain alive with
all the sets: f19, f21. Clearly, we lack testing knowledge to kill
them. The rest of the mutants are killed because the footprint
strategy gives test models with relevant knowledge.

Analyzing the live mutants we notice that they are affected
by the mutation operator CFCA: A Collection is Filtered
Additionally. For instance, the injected fault subSequence(0,0)
in the following expression is an additional filter.

getAllClasses(model).select{ c | c.parent == cls }
.subSequence(0,0) //Injected fault

Here, cls is a Class selected before (expression not shown),
c is any Class of the model. The instruction selects the classes
which inherit from cls. The mutants wrongly (intentionally
injected) select only the first child Class of cls. This mutant
expression appears in two operations of class2rdbms. One
that collects attributes (in f19) and the other collects associa-
tions (in f21). The only way to see a difference in output and
detect these mutants is to have at least two child Classes with
one Association and Attribute as shown in Figure 8.

Our strategy cannot kill these mutations since the inheri-
tance relationship in the UMLCD metamodel is not bidirec-
tional, as illustrated Figure 2. Only the parent property exists
and not child. A partition of a child property could have
resulted in the creation of more than one child classes in test
models. We are evaluating how to extend our footprint strategy
to introduce a partitioning of implicit opposite references.
However, with the current tool, a user can still add this partial
knowledge describing it in a partial test model as discussed

TABLE VI
LIVE MUTANTS AFTER MUTATION ANALYSIS

Set #live mutants Live mutants
1 2 f19, f21
2 2 f19, f21
3 6 f19, f21, f10, f31, f48
4 2 f19, f21
5 2 f19, f21
6 12 f19, f21, f10, f31, f73, n99 to n105
7 10 f19, f21, f70, n92 to n98
8 2 f19, f21

Fig. 8. Human testing knowledge to kill live mutants

1. Yes. Two major live mutants/faults still remained
2. Present in operations for collecting classes and associations
3. Example below: Fault selects only the first child of Class cls
4. Why not killed by static analysis? No bi-directional parent-child relationship between classes

Fig. 7. Mutation scores for footprint predicates

the footprint strategy is superior to all the other boxes (each
box representing the results between the first and the third
quartile). Even the minimum score obtained with footprints is
higher than the black-box maximum scores.

2) Q2: What is the effect of generating multiple non-
isomorphic models?: In [28], we concluded by saying that
AllRanges and AllPartitions strategies are more efficient than
unguided strategy with both median scores around 82%. In
this paper, we take a step further to generate 10 models per
predicate. This is due to our new setup for mutation analysis on
a grid. Therefore we can take advantage of the non-isomorphic
criteria of our generation.

We observe an increase in scores for AllRanges and AllPar-
titions from [28] to our results in Figure 7. A gain of 6% and
11% is observed. We also notice that while the box-plots for
unguided strategies were dispersed without non-isomorphic
criteria (6% and 3% between the first and third quartiles, 13%
and 3.7% between the maximum and minimum scores), here
they converge to 70.1%. We conclude that non-isomorphic
criteria reduces the variability and increases the efficiency of
the test model generation made with PRAMANA.

3) Q3: How to deal with remaining live mutants?: In
Table VI, we enlist live mutants per set. f, n letters are
the initials of filtering and navigation indicating the type of
operation altered with the mutation.

The influence of the generation design parameters on the
number of live mutants looks minor, as we can see with the
spread of the grey box-plot: 2.2% between the first and third
quartiles. The difference between the design parameters of
each set is not significant to conclude a correlation between
design parameters and live mutants.

From Table VI, we observe that 2 mutants remain alive with
all the sets: f19, f21. Clearly, we lack testing knowledge to kill
them. The rest of the mutants are killed because the footprint
strategy gives test models with relevant knowledge.

Analyzing the live mutants we notice that they are affected
by the mutation operator CFCA: A Collection is Filtered
Additionally. For instance, the injected fault subSequence(0,0)
in the following expression is an additional filter.

getAllClasses(model).select{ c | c.parent == cls }
.subSequence(0,0) //Injected fault

Here, cls is a Class selected before (expression not shown),
c is any Class of the model. The instruction selects the classes
which inherit from cls. The mutants wrongly (intentionally
injected) select only the first child Class of cls. This mutant
expression appears in two operations of class2rdbms. One
that collects attributes (in f19) and the other collects associa-
tions (in f21). The only way to see a difference in output and
detect these mutants is to have at least two child Classes with
one Association and Attribute as shown in Figure 8.

Our strategy cannot kill these mutations since the inheri-
tance relationship in the UMLCD metamodel is not bidirec-
tional, as illustrated Figure 2. Only the parent property exists
and not child. A partition of a child property could have
resulted in the creation of more than one child classes in test
models. We are evaluating how to extend our footprint strategy
to introduce a partitioning of implicit opposite references.
However, with the current tool, a user can still add this partial
knowledge describing it in a partial test model as discussed

TABLE VI
LIVE MUTANTS AFTER MUTATION ANALYSIS

Set #live mutants Live mutants
1 2 f19, f21
2 2 f19, f21
3 6 f19, f21, f10, f31, f48
4 2 f19, f21
5 2 f19, f21
6 12 f19, f21, f10, f31, f73, n99 to n105
7 10 f19, f21, f70, n92 to n98
8 2 f19, f21

Fig. 8. Human testing knowledge to kill live mutants

Human-made partial model to kill the live mutant

Monday, November 26, 12

/31

Outline
• Introduction: Model Transformation Testing

• Case Study: Class2RDBMS

• Problem: Tediousness of Creating Test Models

• The Story So far!

• Approach: Static Analysis for Transformation Testing

• Effective? Experiments based on Mutation Analysis

• Conclusion

32

Monday, November 26, 12

/31

Conclusion

• We present a semi-automatic methodology based on static analysis of a
model transformation for automatic test model generation

• Static analysis out performs input domain partitioning (98.3% vs. 93%)

• Small-model hypothesis verified! They can uncover most of the faults

33

Future of automated model transformation testing?

• Automation for transforming OCL invariants? Specifying a new
Testable OCL that ensures a bi-directional transformation to/from Alloy

• Improving scalability of model loading/saving and operations of them is
important to the future of MDE and hence testing transformations.

• Maturity of model synthesis and static analysis for testing transformation
languages will be consequence of the above.

Monday, November 26, 12

/31

Thank you. Pleased to Address Your
Questions.

34

Monday, November 26, 12

