UMONS inforTech complexys

, - UMONS RESEARCH INSTITUTE
Université de Mons FOR INFORMATION TECHNOLOGY UMONS RESEARCH INSTITUTE
AND COMPUTER SCIENCE FOR COMPLEX SYSTEMS

Evolving Software Ecosystems

Tom Mens, Mathieu Goeminne
Software Engineering Lab
University of Mons

informatique.umons.ac.be/genlog

http://informatique.umons.ac.be/genlog/

Current Research Interests

software evolution

software quality

model-driven software engineering
empirical software engineering
human-machine interaction

Use of formal techniques to support the above
e graph transformation

* logic-based formalisms

» model checking

 statistical analysis

Develop automated tool support

Ongoing Research Projects

ARC Project « Ecological Studies of Open Source Software Ecoysystems »,
2012-2017
- Interdisciplinary research, using ideas from biological ecology to understand
and improve evolution/maintenance of software ecosystems

FRFC Project « Data-Intensive Software System Evolution », 2013-2017
- Collaboration with University of Namur (A. Cleve)

- Empirical study of co-evolution of programs and database in data-intensive
software systems

COST Action IC1404 « Multi-Paradigm Modelling for Cyber-Physical
Systems », 2015-2018

FRIA PhD Scholarship « Executable Modeling of Gestural Interaction
Applications », 2011-2015
- Romuald Deshayes. Using domain-specific modeling languages, model
transformation, executable modelling through high-level Petri nets

Human-machine interaction

Executable Modeling of Gestural Interaction Applications

L1

Controlling interactive applications
(e.g. games, domotics, ...)
using hand gestures

Java Server

C++ Client

Using an executable, domain-specific,
modelling language

O 1| |
I R S . nf04001=0 | | info,1001 =0
A [|| =
d]] d
-
&N, d
L T 4 L1 V2l |
DragGesture E:G‘“” ArrowReady [DragGesture o4
d y a ‘ _ d
._.,.,[\a |
O — :
IREE 9 d
L

Human-machine interaction

Executable Modeling of Gestural Interaction Applications

Executable operational semantics
based on high-level Petri nets
(ICO models, IRIT, Toulouse)

<id,left,hand,move>
e —
- newHandEvent >
<id,left,hand,move > <id,|'eft,hand1,mm7e’f:‘ L2
icl left han _old,changed_old,move_old>
<id,headl>
ConpareHeads — P headsSet L1 f,left,hand,changed,move> raise_llov_eJ
§7aS . € <id,head2> led,move> .
<id,head2> — L ‘<Id>‘ newUser_>
<id,headl> _.
<id,head1> <id,head2> N
<id,head1> / nd,changed,move>)
— i <id,headl> N I ra:l.se_NeHUse‘rI
HeadEvent_ > newHeadEve>nt > enptysetHeadsl ra:.se_NewUser'
,changed,move> <id,hand,changed,move>
<id,hand1> Y A cihand,changed
<id.left.hand1> <id,hand1> | I"alSG_HandEvent ppe <id,hand,changed,move> — @ Even‘tsToFiltqb
P ’ ’ <l an: change move>
HandEvent y > » emptySetHands PewUser X id,hand,changed,
—> newHandE vent —> € > Lose trash
<id,left,hand1> / topen]<— -"""-'"gej
<id,|eft,hand1> ... <id,hand,changed,move>
<id,left,hand1l> <id,left,hand2>
<id,left,hand1> /
N .
CompareHands & handsSef <id,left,hand2>
<id,left,hand2> ~_ 7

MY NEW DESIGN WILL
MEET ALL OF OUR

Research Context [eis:

Tom Mens
Alexander Serebrenik

Tom Mens '
Serge Demeyer (Eds) . An;hony Cleve
Editors

I Software Evolvi ng
Evolution ?‘j Sy Ste ms o

N 2014

$WILEY

@ Springer

yyyyyyyyyyyyyyyyyyy

February 2014 - CSMR-WCRE Software Evolution Week, Antwerp, Belgium 3

Research Context

Software Ecosystems

Chapter 10

Studying Evolving Software Ecosystems
based on Ecological Models

Tom Mens, Maélick Claes, Philippe Grosjean and Alexander Serebrenik

Research on software evolution is very active, but evolutionary principles, models
and theories that properly explain why and how software systems evolve over time
are still lacking. Similarly, more empirical research is needed to understand how
different software projects co-exist and co-evolve, and how contributors collaborate
within their encompassing software ecosystem.

In this chapter, we explore the differences and analogies between natural ecosys-
tems and biological evolution on the one hand, and software ecosystems and soft-
ware evolution on the other hand. The aim is to learn from research in ecology to
advance the understanding of evolving software ecosystems. Ultimately, we wish
to use such knowledge to derive diagnostic tools aiming to analyse and optimise
the fitness of software projects in their environment, and to help software project
communities in managing their projects better.

S —— e —

February 2014 - CSMR-WCRE Software Evolution Week, Antwerp, Belgium

software?
ecosy st em evolutlon

software prOJecthology statIStICS

version control 1 €SE€Al(ch
empirical study open source

computer s cience

interdi

collaborative work

;ecology

Tom Mens

Alexander Serebrenik
Anthony Cleve
Editors

Evolving
Software

Systems

O
2014

@ Springer

Research Context Becosyoinar®

e o M- statisticseVOIUtion
S biology-:

Software Ecosystems g . opensource

e Study of macro-level software evolution

— evolution of large collections or distributions of
software projects or packages

— E.g. forges like GITHUB, SourceForge, Savannah,
Google Code

J.M. Gonzalez-Barahona et al. Macro-level software evolution: a case

study of a large software compilation. Empirical Software Engineering
14(3): 262-285 (2009)

M. Caneill, S. Zacchiroli. Debsources: Live and historical views on
macro-level software evolution. Int. Symp. ESEM 2014

Research Context ecodeiog
O
O
@

e - _evolution
il tdeOIOgyv.'msoncomrcl
empirical stuay

collaborative work open Source

Software Ecosystems

* Study of macro-level software evolution

— evolution of large collections or distributions of software
projects or packages

— E.g. forges like GITHUB, SourceForge, Savannah, Google
Code

 Study socio-technical aspects of the community of
contributors (end-users, developers, debuggers, ...)
* Focus on coherent collections of projects or packages

— a.k.a. software ecosystems
— E.g. Debian, Ubuntu, GNOME, KDE, CRAN, Eclipse, ...

Software Ecosystems
Definitions
e David Messerschmitt & Clemens Szyperski, 2003

* “a collection of software products that have some
given degree of symbiotic relationships.”

 Mircea Lungu, 2008 [Ph.D. dissertation]

e “a collection of software projects that are developed
and evolve together in the same environment.”

e Slinger Jansen et al., 2013

e “a set of actors functioning as a unit and interacting
with a shared market for software and services,
together with the relationships among them.”

0.

open source

Research Context

* Focus on open source software

* Free access to source code, defect data, developer
and user communication

* Historical data available in open repositories
— Observable communities
— Observable activities

* Increasing popularity for personal and commercial use

* A huge range of community and software sizes

software
Cosy st em evolutlon

empiri Itbd)I/OIOgy
evcoper ooy OIEI SOUICE

Long-term goals

;ecology

 Determine and improve the factors that
drive success or failure of OSS projects
within their ecosystem

* Investigate new techniques and
mechanisms to predict and improve
quality and survival of OSS projects
— Inspired by research in ecology, social network

analysis, ...

informatique.umons.ac.be/genlog/projects/ecos

http://informatique.umons.ac.be/genlog/projects/ecos/

o ecosy st em _evolution

ttttttttttttttttt

Research Questions biology =

. p col!aborf:m(jy vork open Source

> software
o
(&)
(b

* Specific questions depend on the software
ecosystem under study

CRAN

@ Debian
c Ghome

Research Questions

* Specific questions for CRAN

R package archive network

 Which packages are more likely to cause, upon
update, problems in dependent packages?

« When and why is code cloned across packages?

Daniel German, Bram Adams et al.
“The Evolution of the R Software Ecosystem”, CSMR 2013

Maelick Claes, Tom Mens, Philippe Grosjean
“On the Maintainability of CRAN Packages”, CSMR-WCRE 2014
“maintaineR: web-based dashboard for maintainers of CRAN packages”, ICSME 2014
“An empirical study of identical function clones in CRAN” [In preparation]

16

Research Questions

« CRAN (R package archive)
* R package description file format:

Package: pkgname

Version: 0.5-1

Date: 2004-01-01

Title: My First Collection of Functions

Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),

email = "Joe.Developer@some.domain.net"),
person("Pat", "Developer", role = "aut"),
person("A.", "User", role = "ctb",

email = "A.User@whereever.net"))

Author: Joe Developer and Pat Developer, with contributions from A. User
Maintainer: Joe Developer <Joe.Developer@some.domain.net>
Depends: R (>= 1.8.0), nlme
Suggests: MASS
Description: A short (one paragraph) description of what
the package does and why it may be useful.
License: GPL (>= 2)
URL: http://www.r-project.org, http://www.another.url
BugReports: http://pkgname.bugtracker.url

Research Questions

Firefox v] (@ CRAN Package Check Results
€ S % ’z‘} cran.r-project.org/web/checks/check_summary.htmi| @av e {—7 H E

i
4
|
i

Package Version x86_64 x86_64 x86_64 x86_64 Maintainer

E
:

i
2
1]
i
3
I
B
ik
EEE

g

R BB R ERR R R ER R FE R E R RREREE EEE
=]
2! E

A3 0.9.2
abc 1.8
abcdeFBA 0.4
ABCExtremes 1.0
ABCoptim 0.13.11
ABCp2 1.1
abctools 0.2-2
[abd 0.2-5
abf2 0.7-0
[abind 1.4-0
|g___bn 0.83
abundant 1.0
accelerometry 2.0
[AcceptanceSampling 1.0-3
ACCLMA 1.0
accrued 1.0
ACD 153
Ace 0.0.8
lacepack 1.3-3.3
IM 0.1.2
aCGH.Spline 2.2
acmdr 1.0
ACNE 0.7.0
acopula 0.9.2
aCRM 0.1.0
acs 1.2
ACTCD [1.0-0
Actigraphy 1.2
actuar 1.1-6
ActuDistns 3.0
ada 2.0-3
adabag 3.2
adagio 0.5.9
AdapEnetClass 1.0
AdaptFit 0.2-2
AdaptFitOS 0.45
[AdaptiveSparsity [13
AdaptiveSparsity 14
adaptivetau 1.1-1

| T Y TR YT 1 1

Z
S
=
Z
S
=
Z
S
rm
Z
S
=

NOTE NOTE

g
=
Irm
Z
T
g
=)
irm
Z
=
2}
Z
=t
™
Z
=t
Itm

OK Ecot‘t Fortmann-Roe
NOTE" WARN" Michael Blum
Abhilash Gangadharan

38
-

“

:
:
&

38
38
:

g
=1
Irm
Z
=
Irm
Z
S
Irm
Z
=
Irm
3
[~
Irm
g
]
I
g
[~
Irm
Z
=
I
g
=
Irm

iGeorge Vega Yon

M. Catherine Duryea
[Matt Nunes

[Kevin M. Middleton
[Matthew Caldwell
[Tony Plate

fl_"raser Lewis

lAdam J. Rothman
IDane R. Van Domelen
lAndreas Kiermeier
[Tal Carmi

Julie Eaton

[Fabio Mathias Correa
lﬁrian Claggett
[fonathan Baron
Even Haug

[Tom Fitzgerald
lAndrea Benedetti
IHenrik Bengtsson
Tomas Bacigal
IMichel Ballings

IEzra Haber Glenn
Wenchao Ma
IBerkley Shands
Vincent Goulet
aralees Nadarajah
[Mark Culp

[Esteban Alfaro

IHans W. Borchers
[Hasinur Rahaman Khan
[Tatyana Krivobokova
IManuel Wiesenfarth
IKristen Zygmunt
IKristen Zygmunt
IPhilip Johnson

T TR T WY § s

Pl
=llg]
=]
Jﬂ
(=]
7~
dﬂ
=
=
=
2.
ﬁl
=]
7

2R
R B
o

AR

dElE

dﬂ

&ﬁEﬁEi

=
=]
[

M

2

S

rm

V4

S

m
O ZOlO[
7 7
el

Z
S
irm)
Z
S
™)
Z
S
irm| i
Z
S
™)
B
=
Irm)

[NGTE

(=]
7

EE%

g
"(Hl

g% =) [6| = B | =| =] =

ZER

A
al
Z
3
g
3
g
gl
A
gl

Al
8l
gl
8l
Al
8l
Al
gl

Z
S
rm
ﬁﬁ[

RRE
=
=
=
2

B[R

E

m

RE

3

RE

i

RE

3]

=i

RE

3 m
S

Z

S

m

V4

S

m

ﬁl
ﬁl
Eﬁﬁm
[Z
rm

Z
=
Z
=G
=
<
~8
Z
=
-
:

=]
7~
=]
7~
=]
Ol |Z
7~
=]
=]
7~
=]
7
=]
7~
=]
7~

&R%m

2

SRS

=]
7

S
SR

ERER
2B

g
=]
rm

AEEEL
el

e
ACEEL

Irm
g
™
g
]
o]
g
=
Irm

8l
|
|
|
dl
|
al
|

G
=
rm)

z
5
|
| Z]
S
|
v
S
)|
2
S
el
2
A=l
|

|
2
=
)

Z]
S
|

=]
7~
=]
7

Rﬁl
Rﬁﬁﬁl

Sl

g
RRRRI
R

Rﬁl
RRRR‘
°RRREE[
RQRRI
RQRQQEQRRRI
°ﬁﬁ§ﬁ§ﬁﬁﬁﬁﬁ§ﬁﬁﬁl
BEEEEEEEEE E

BR|l
O
7
O
7
=
7
O
7
E%%
O
7
O
7
[
7
[
7
O
7

[=]
7

:
El
El
gl
El
El
El
El

A

g
Z
=
Z
=
Z
=
z
z
=
g
Z
=
g
fal
gal
gal

2@@@
Z
S
rm
Z
S
T

RRRQ

QRQ
Rﬁﬁa
Rﬁﬁ@
ﬁﬁﬁa
REE%

3l
w1
[Z
S
rm
3l
=
2
S
o]
R
Z
S
rn
2
S
o]
2
rm
2
S
o]
(=]
7
RRERE

Eﬁﬁ°ﬁﬁ§ﬁﬁ°ﬁﬁﬁﬁ'QRQQQEQQREQQEQ°RFQEi

Eﬁﬁ°ﬁﬂ

Bl

d
dl
d
fl
£
Bl
:
o

2
S
m
2,
g
™
7
=
m
7
g
lea]
z
=
m
Z
E
m
z
=]
m
z
=
rm
Z
g
(o7}
z
=
m
g
(oo}
éﬁ
(oo}

NOTE

E RRZQRRRM

Z
S
I
Z
=
]
Z
S
il
Z
=
]
g
=
Irml
2
Z
S
o]
Z
=
irml
Z
=
o]
=
™1
Z
=
]
Z
=
]

el
"l

g
g
d

A
i
R

A
i
(R
g

4
)
n
B
3
n
4
3
n

NOTE N T

g

NATE

g

NOYT L

Z
]
2|
D
=

Research Questions

* Tool support for CRAN packages: maintaineR

package dependency, conflict and clone analysis

Summary History

Dependency list

Minimum clone AST size

10

Minimum clone LOC
3
Sort packages by

(o) Oldest first
(O Alphabetical

Show only

(] Last CRAN version

»

Dependency graph Namespace Clones

Functions

Size

LOC Packages

1348 214 aplpack 1.2.7

aplpack_1.2.9

Hash

da3f45d4292b49364d55{9¢251285d7¢c

[l RceneraTe

] raimmawcen

] mobForest
| RandForestGul
B Maciinical

] navits

I RMAWGEN

bfast

—/

strucchange

Name

abc

cvdabc
cvé4postpr
expected.deviance

postpr

Type

function

function
function
function

function

Conflicts

gvem.cat_1.6
forams_2.0-4
pomp_0.49-2

None
None
None

None

19

Research Questions

* Specific questions for Debian

* Open source Linux distribution

 Which packages are more likely to cause future
co-installation (CI) conflicts with other packages?

 Can I upgrade a set of installed Debian packages
without "breaking” my installation?

* Based on a formalisation and SAT solving
« Automated tooling coinst.irill.org

Jerome Vouillon and Roberto Di Cosmo
“Broken Sets in Sotware Repository Evolution”, ICSE 2013

20

http://coinst.irill.org

Research Questions

* Specific questions for Debian

* Open source Linux distribution

 Which packages are more likely to cause future
co-installation (CI) conflicts with other packages?

 Can I upgrade a set of installed Debian packages
without "breaking” my installation?

* Based on a formalisation and SAT solving
« Automated tooling coinst.irill.org
 How do CI conflicts evolve over time?

Maelick Claes, Tom Mens, Roberto Di Cosmo .
“A historical analysis of Debian package co-installability conflicts”, [Submitted] I g

21

http://coinst.irill.org

Research Questions

Debian historical evolution of package CI-conflicts
(testing and stable distribution)

40000 -

30000 -

20000 -

2005-01 ~

1 .
! S Il J:‘_l’.-"‘lv"'---.. doleee lav = msm” 20y

)))
() %) Q %) Q v
N (© N © N ©
() Q v o (O} (]
] LT L. 5
e L Y= pu
PUASEL IS
testing... |
stable
------------ o
....... ‘-
| | | | | | | |
b T b ™ ™ ™ ™™ b
& & & & 5 5 &5 5
© ~ © o) o — Y ™
o o o o — — — —
S S S S o o o o
Y ~ ~ N N N N ~

2014-01 "

2015-01

all packages

22

Research Questions

Debian historical evolution of package CI-conflicts
Some results

Ratio of CI-conflicting packages remains constant over time

Occasional “jumps” correspond to introduction or removal
of problematic packages that spread the problem to
(in)direct depending packages

The more often a package is CI-conflicting, the shorter it
tends to live

The longer it takes for a package to become CI-conflicting,
the longer it tends to live

The most likely causes of introduction or removal of CI-
conflicts are the introduction or removal of declared
conflicts in Debian package control files

Research Questions

» Specific questions for GNOME
* Linux desktop environment

* Which projects have a higher chance of
survival?

 How is workload distributed over different
projects/contributors?

* What is the "bus factor” risk? Who are the top
contributors (for a specific activity type)?

B. Vasilescu, A. Serebrenik, M. Goeminne, T. Mens
“On the variation and specialisation of workload:
A case study of the GNOME ecosystem community”
Empirical Software Engingeering journal, 2014.

24

Research Questions

* Gnome visualisation tool support
— E.g. Complicity (Neu et al., University of Lugano

Main View
O Main View L+l -

| L_| http://complicity.inf.usi.ch/main.html v Soogle Q) | B~ | # -

Graphical View | Table View (Followees)

@ Project Details

220,000,000 e X . Q) @
Control Panel Project's Details po
Super-Repository: 200,000,000 !GIM‘PL 8 L
- Productivity Tools
[Gnome H | Major Release |
GNU Image Manipulation Program i} {
Entity: 180,000,000
., — Dates:
Proje: “ Committers
L e Creation Date:
Diagram Type: 160,000,000 Wed, Jan 1st, 1997, 4:47:44 PM ®
Static Timeline Last Activity: 2002 2000 2008 2005 2006 2007 2000 2005 2010 2011
140,000,000 Feb 15th, 2011, 8:37:33 PM
Viewpoints: & Numbers:
[_Size-Age) £ 120000000 14 years (= 5158 days)
—_— € =
: F ®
Bl 202 200 2008 2005 2006 2007 2000 2005 2010 2011
100,000,000
Project Types: 29812 commits
e 5460 files
| 80,000,000 |« D I
Search by projecf —
Search by project — ©
60,000,000 = 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Search by committer: =
Search by committer 40000000 (=] =
1275 projects e -
20,000,000 n '3” @
oo IT.,‘:J) q Et‘ 2002 2000 2008 2005 2006 2007 2000 2008 2010 201
= F i pe w050, P T m
0 4,000 4,500 5,000 5,500
Lifetime (In days)
Te00z 2000 2008 2005 2006 2007 2008 T 209 2000 2011
!
3 2000 2001 2002 2003 2005 2006 2007 2008 2008 2010 2011
~
o 9 5

Data Extraction

% Version control repositories store source code and other
commits

~ E.g., Subversion, Git
| Mailing lists for communication between developers and users

Issue tracking systems for recording bug reports and change
requests

- E.g., Bugzilla, JIRA
Question and Answer websites

o - E.g. StackOverflow

i

26

Data Extraction >

* Using open source MetricsGrimoire tool suite (https://

github.com/MetricsGrimoire)
=| CVSAnalY

extracts information from SVN or Git source code repository logs
and stores it into relational database

-~ MailingListStats
extracts mailing list information from mbox format

a Bicho

extracts information from issue
tracking systems such as
Bugzilla and JIRA

https://github.com/MetricsGrimoire

ldentity merging

3

" Robin Williams,
robinw@gmail.com ¢

28

ldentity merging

;1

Jane ./

-
\ jdoe@gmail.com
<< john@doe.org

\k john_doe@hotmail.com

john.doe@gmail.com

\
\
N
@ john
J
g

7 : A
Contributeurs) (Dépots
John Smith
p
/ John, Doe
\)< Doe, John Dépbt de code source
><i<< john <js@gmail.com> i
/ \ johnny -
| | @ john
L1
John W. Doe
.

Mailing list /»i}
Bug tracker a

29

Ordering

Rajesh Sola

Sola Rajesh

Spelling: misspelling,
diacritics, punctuation

Rene Engelhard

Fene Engelhard

Démurget Demurget
J. A. M. Carneiro J A M Carneiro
Middle initials, patronyms, |Daniel M. Mueth Daniel Mueth

nicknames, additional
surnames, incomplete
names

Alexander Alexandrov
Shopov

Alexander Shopov

Carlos Garnacho Parro

Carlos Garnacho

Jacob “Ulysses” Berkman

Jacob Berkman

A S Alam

Amanpreet Singh Alam

Name variants:
transliteration, diminutives

[Twpyoo

Georgios

Mike Gratton

Michael Gratton

Software-specific:
usernames, projects,
tooling artefacts

mrhappypants

Aaron Brown

Arturo Tena/libole2

Arturo Tena

(16:06) Alex Roberts

Alex Roberts

Mix

Any combination of those

ldentity merging

Semi-automatic approach:

e eliminate specific quirks
observed during extraction
Example: “(16:06) Alex Roberts”

e compute similarity between

each pair of aliases
(based on Levenshtein distance)

e cluster together aliases with
high similarity
e post-process manually

erely on external information (websites)
eprecise but labor-intensive

id=17
{ John Doe,
Doe John,
john@doe.org,
john_doe@hotmail.com,

john.doe@gmail.com }

mailto:john@doe.org
mailto:john_doe@hotmail.com
mailto:john.doe@gmail.com

 several merge algorithms
exist

* the “noisier’ the data, the
worse they perform!

 simple algorithms have
higher precision and recall
than more complex ones

ldentity merging

A Comparison of Identity Merge
Algorithms for Software Repositories

Mathieu Goeminne*, Tom Mens*

Institut d’Informatique, Faculté des Sciences, Université de Mons

Science of Computer Programming 28(8), August 2013

Abstract

Software repository mining research extracts and analyses data originating from
multiple software repositories to understand the historical development of soft-
ware systems, and to propose better ways to evolve such systems in the future.
Of particular interest is the study of the activities and interactions between the
persons involved in the software development process. The main challenge with
such studies lies in the ability to determine the identities (e.g., logins or e-mail
accounts) in software repositories that represent the same physical person. To
achieve this, different identity merge algorithms have been proposed in the past.
This article provides an objective comparison of identity merge algorithms, in-
cluding some improvements over existing algorithms. The results are validated
on a selection of large ongoing open source software projects.

Keywords: software repository mining, empirical software engineering,
identity merging, open source, software evolution, comparison

K11 4
GNOME Characteristics

Dataset shared on

https://bitbucket.org/mgoeminne/sgl-flossmetric-dbmerge/downloads
) people_merged] identity_merging Tlpeople v

id INT(11) orig_id INT(11) id INT(11) mi =

S —
name VARCHAR(255) ! < merged _id INT(11) o | 14~ ~ name VARCHAR(255) id INT(11)
|
> > TR email VARCHAR(255) name VARCHAR(255)
] _ >
scml v | +
=L TR — B) commis scies © T
id INT(11
id INT(11) dINT() Plm——== | id INT(11) :
rev MEDIUMTEXT I i
uri VARCHAR(255) | commit_id INT(11)
—— committer_id INT(11) e I 1< |
name VARCHAR(255) |] type MEDIUMTEXT 1
type VARCHAR(30) ! author_id INT(11) ! intensity INT(11) A
L 3 B T S — intensity
= < date DATETIME - -] tag_revisions v
. . - message LONGTEXT id INT(11)
F 3 Y & a3
FLOSSMetrics compliant . . S— g amrn
: repository._id INT(11) (e : commit_id INT(11)
A > I] file_links v .
\ dlabase mL v . !
id INT(11
id INT(11) e e T————|——| e e e e e e 1 T INT()
| | parent_id INT(11)
file_name VARCHAR(255) |y — — 1 _ |
I 1< © file_id INT(11)
repository_id INT(11) 1| |
- ——- | | | | commit_id INT(11)
. N : : £ 1< file_path VARCHAR(4096)
T I === 4-—=- : >
I I ! I 1
L - | | |
I i I I 1
1 Jl 1 |
A A A | “Jactions v
file. v i
] file_copies : id INT(11)] branches =
diNtety | L
(1) 1< © type VARCHAR(1) 4 INT(1)
. . . to_id INT(11 o INTUD) by peme—me—me—m—
Goeminne et al. “A historical dataset . ey P ‘ | 2 ame rcHARSS
. from_id INT(11) by " commit_id INT(11) >
. ” from commit id INT(11) [branch_id INT(11)
for GNOME contributors”, MSR 2013 e !
action_id INT(11)
-

33

https://bitbucket.org/mgoeminne/sgl-flossmetric-dbmerge/downloads

K11 4
GNOME Characteristics e

16 years of activity Bipartite contributor-project graph
> 1.3M of commits

(> 0.6M of code commits) g

> 12M of file touches

(> 6M of code file touches) n

Mainly C, C++, Python 6

\

> 5800 contributors
(> 4300 coders)

> 1400 projects

GNOME '
Top Contributor Distribution e

Who are the too GNOME contributors?

=| in the version repository
. in the bug tracker

< inthe mailing list

GNOME il g
Top Contributor Distribution e

Approach
* Analyse individual GNOME projects

|dentify core groups

— Compute Venn diagrams of
most active (top 20) persons
per considered data source

— Show % of activity
attributable to each person

— Take into account
identity merges

GNOME
Top Contributor Distribution

Brasero

-1 (61%,11%,20%) | -

\ (6%,23%, 7%)
\

- 2%,1%)

o
—— —

(15% 13% 22%) .-
(15%,6%,7%)
\ (3‘70,4"/0,1 °/o)

1 \ (2%,3%,6%)
(3%,-,2%) < _4

(-2%,1%) Y
(-,3%,7%)
3 (1% 270»"

T —— -

bug report changers

000

GNOME ¢
Workload Distribution e

How is workload distributed over different
authors and projects?

38

GNOME
Workload Distribution

<

How is workload distributed over different
authors and projects per activity type”?

JPG @: ,
JPG= Image W e J IA
8< o = K
2:{) ~Code —
\ un w
e =_

—Documentation

*"h It @
ﬁb% 6

39

GNOME g
Workload Distribution e

* Extract file information for each commit in the git
repository of each GNOME project

* Associate a unique activity type t to each file

e Count the number of file touches

Fichiers Reégles @ Activité
4

/foo/bar.c —> (“\¢c -> CODE) CODE

E
Based on [Robles2006]

GNOME
Workload Distribution

How is workload distributed over different
authors and projects per activity type?

* Two dual views (cf. contributor-project graph)

* - Distribution of workload over
different projects per activity type

projects
o

* - Distribution of workload over
different authors per activity type?

GNOME
Workload Distribution

Basic Workload metric APTW(a,p,t)

= number of file touches of an Author a for a given
Project p and activity Type t

Many derived metrics

 based on sum and Gini coefficient

42

GNOME
Workload Metrics

K11 4

mHAHCrOwmww>»

NO—IJD-AmMZ

m<——>»r mX

PROJECT WORKLOAD METRICS

AUTHOR WORKLOAD METRICS

project
specialisation
metrics

absolute project metrics

SumA/

PWS(p) |

SumT

PW(p)

PTW(p.,t)

absolute author metrics

(APTW(a,p,t))

umP

TW(1)

Su

\\SUITIP

ATW(a,t)

A

author
specialisation
metrics

SumT

AW(a)

ol
RPTW(p,t)

relative project metrics

ny 4o

N

RTAW(a,t)

RATW(a,t)

relative author metrics

ain
5 awsq)

GNOME 1A
Workload Metrics e
Main findings -
Workload is £ i _ n B
log-normally & ©] - i
distributed § @ 7 B
over GNOME 2 ¥ - ~ -

44

GNOME "é’
Workload Metrics
. . . occasional frequent
Main findings authors authors
The majority of , 5~
GNOME authors £ S -
are involvedina o 8-

2 7 s0% 185,874
very low number 3 84 .4 1 changes
e

T/ —T— |
0 2 6 8 10 12

45

GNOME K1l
Workload Metrics e

— Main findings
2000000 —
Highest workload is
represented by coding activity,
1500000 - .
followed by activities of
| developbment documentation,
1000000 — [translation/internationalisation,
Eh and build file creation.
01
10
500000 — @01 ‘7 JPG
gz,
0 - Nt ©
L 9 5T g PY2sS S B S gL
TW(t) g 3T =35 E&E o £ 3
2 O S

0
GNOME g
Relative importance of activity types e

What are the favourite activity types for GNOME?

Two dual views

* Relative importance of
each activity type per author

projects
o

* Relative importance of
each activity type per project

GNOME

Relative importance of activity types

What are the favourite activity types for GNOME?

Approach

* Use statistical tests to
compare distributions

* Verify if a data set corresponding
to an activity type tends to have
higher values than a data set
corresponding to
another activity type

X 4

C

48

0
GNOME g
Relative importance of activity types e

Examples of statistical comparison tests
e (Wilcoxon-)Mann—Whitney U test
* Kruskal-Wallis test

Problems with traditional statistical tests:
e Not robust to populations of unequal sizes
e Different tests can be inconsistent with each other
e Pairwise comparison of all activity types requires 78
different combinations (12 * 13/ 2)
e Traditional tests are not transitive

GNOME

Relative importance of activity types

Solution:

* Use a single test that respects transitivity
* T procedure [Konietschke et al 2012]

Pair Lower Upper p-value

Activity Developers
type

A 22233333334444444455
B 11111111111111111122
C 11111111111122222233
D 11122222223333334444

B-A -0.560 -0.444 0.000
C-A -0.503 -0.313 7.536e-10
D-A -0.320 -0.027 1.997e-02
C-B -0.014 0.242 9.742e-02
D-B 0.237 0.470 1.200e-06
D-C 0.090 0.404 2.432e-03

X 4

C

Relative importance of activity types

. ?procedure

GNOME

A—B
A—C
A—D

D—B
D—-C

X 4

C

:

——

-
T
-

Pair |Low High
B-A |-0.56 |-0.44
C-A |-0.50 |-0.31
D-A |-0.32 |-0.03
C-B [-0.01 |0.24
D-B |0.24 |0.47
D-C |0.09 |0.40

51

GNOME

Relative importance of activity types

by author

X 4

C

52

GNOME

Relative importance of activity types

by author by project

53

GNOME

Relative importance of activity types

GNOME projects
and authors are
code-centric

by author by project

54

GNOME

Relative importance of activity types

GNOME projects
and authors are
mainly involved in
4 activity types

by author by project

55

X 4

GNOME ¢

Heterogeneous communities

C

Does the relative importance of activity types differ
between frequent and occasional authors?

ldea ~

Equally split the authors in two bins
of more or less equal size,
based on the author workload:

50%

<14
i Wﬂﬁl

Number of authors

about 50% of all authors were
involved in <14 file touches

100 200 300 400 500 600

0

GNOME

Heterogeneous communities

Occasional authors Frequent authors

R A | 5[RA .y
quent auth/

()| 2are mostly coders, <D

occasional authors
are mostly
translators.

57

GNOME e
Heterogeneous communities 8

Observations

Coders have a higher workload and
are involved in less projects

Translators are less active but are
involved in more projects

Can be explained in part by the use of Damned Lies, a Web application used to manage the
localisation (110n) activities of the GNOME project

Number of Projects

g

g

~

”F

I|

“,, JF-.'ﬂlll

Heterogeneous communities

6,000 8,000

Number of Commits

10,000

[

12,000

©

K11 4

C

GNOME

Sylvia Neu et al. “Telling stories
about GNOME with Complicity”,
VISSOFT 2011

Complicity is a web-based application
supporting software ecosystem analysis by
means of interactive visualizations.

Affectional bond view:
- size of rectangle = author’s lifetime in days
- color = number of projects

59

Number of Projects

GNOME ¢
Heterogeneous communities e

6,000 8,000

Number of Commits

10,000

12,000

O
©

X 4

Unverified assumptions:

1. Authors contributing a lot to few projects
are likely to be developers (D)

2. Authors contributing less often to more
projects are likely to be translators (T)

3. Authors tend to have an affectional bond
to either development or translation work

60

Number of Projects

6,000

Number of Commits

Case Study: GNOME
Heterogeneous communities

- Our work confirms

these assumptions

10,000 12,000

NPA(a)

K11 4

&

Blue cross: code. Red square: [10n. Symbol size: RATW(at)

Potential
¢ misclassifications
in Neu et al.

v

50000 100000 150000

AW(a)

Case Study: GNOME
Relative Workload

How strongly do authors focus
on specific activities?

Basic measures:
« RATW(a,t)
= % of the total workload of author a
dedicated to activity type t

- RAWS(a) = author specialisation
= Gini index of of inequality of RATW(a,t)
aggregated over all activity types

Case Study: GNOME
Relative Workload

How strongly do authors focus?

RAWS(a)
Overall — o o @@q
AW<14 — o oomm} ------
AW>=14 — 0 o @«_+
T I I I 1 : I
0.0 0.2 0.4 0.6 0.8 T 1.0

max Gini for
n=14: 0.9285

6-3-2013 63

Case Study: GNOME
Relative Workload

How strongly do authors focus?

RAWS(a)

Overall -

AW<14 —

AW>=14 —

| | | | | : |
0.0 0.2 0.4 0.6 0.8 1.0

Occasional authors tend to focus
on a single activity type

6-3-2013 64

Case Study: GNOME ‘é’

Relative Workload

How strongly do authors focus?

RAWS(a)

Overall —

AW<14 —

AW>=14 —

| |
0.0 0.2

Frequent authors tend to focus
on few activity types.

6-3-2013 65

Case Study: GNOME
Workload Distribution

Main observations for GNOME ecosystem:

Workload is unevenly distributed over
projects and authors

Clear distinction between
frequent and occasional authors

Authors form heterogeneous subcommunities of
coders and translators

GNOME is code-centric:
workload is concentrated code-related activities
(coding, build files, development documentation)

X 4

GNOME ¢ e
Next steps
Observation: existing generic tool support does not take the specificities of
the ecosystem into account, making the support suboptimal.

Having gained better understanding of the GNOME ecosystem
specificities, we hope to come up with better change support mechanisms

- Dedicated to specific sub communities
e.g. Damned Lies application for translation community

- Estimation (of cost or effort) and prediction models (e.g. of defects)

could be improved
Tools should be able to focus on those activities/projects a contributor

is interested in (based on his historic activity profile)

