Systematic Product Line Testing: Methodologies, Automation and Industrial Application

Shuai Wang

Simula Research Laboratory

http://zen-tools.com/people/shuaiw.html

shuai@simula.no

Where do I work?

[simula . research laboratory]

- by thinking constantly about it *

- Located in Oslo, Norway
- Founded in 2001
- Non-profit, public utility enterprise, organized as a limited company owned by the Ministry of Education and Research.

Centre for

Innovation

www.simula.no

Simula conducts research, education and innovation in communication systems, scientific computing, and software engineering.

Simula has two critical assets for European collaboration: Scientific excellence and international networks

62 research groups evaluated by the National Evaluation of Research in ICT,

5 groups rated Excellent, of which 2 at Simula (one is Software Engineering)

19

143 employees> 30 nationalities

Simula is the 6th largest recipient of funding in LEIT-ICT 2014

Centre for Research-based Innovation

Software Engineering Department

- Main Research Areas
 - Model-based verification and validation of softwareintensive systems (e.g., CPSs)
 - Software evolution, effort and quality estimation
- Profile
 - Ranked as the second most publishing software engineering research group in the world
 - Was evaluated as "Excellent" by the Research Council of Norway
- Close collaboration with industry

Software Engineering Department

Cancer Registry of Norway

ABB Robotics Stavanger

Cisco Systems Norway

Centre for Research-based Innovation

Outline

Industrial Case Study

Motivation

Methodologies and Key Results

8

Industrial Case Study

Context: Video Conferencing System Product Line

Motivation

Challenges

Time-consuming and error-prone

Largely depend on domain expertise

Low test efficiency

Not repeatable and scalable

Research Problems

Methodologies and Key Results

Test Selection:

Test Selection Methodology using Feature Model

- Wang, S., Ali, S., Gotlieb, A., and Liaaen, M. Automated Product Line Test Case Selection: Industrial Case Study and Controlled Experiment. Journal of Software and Systems Modeling (SOSYM), vol 16(2), pp. 417-441, 2017.
- Wang, S., Ali, S., Gotlieb, A., and Liaaen, M. A Systematic Test Case Selection Methodology for Product Lines: Results and Insights from an Industrial Case Study. Journal of Empirical Software Engineering (EMSE), vol 21(4), pp. 1586-1622, 2016.

Centre for

Research-based

17

• Wang, S., Gotlieb, A., Ali, S., and Liaaen, M. Automated Selection of Test Cases using Feature Model: An Industrial Case Study. In: Proceedings of the 16th International Conference on Model-Driven Engineering Languages and Systems (MODELS 2013), Best Application Paper Award, pp. 237-253, 2013.

Configuration Process

20

Evaluation: Industrial Case Study

Seven VCS products (C20, C40, C60, C90, SX200, MX200 and MX300)

Reduced selection effort on average: 83%

Discussion

Abstraction and automation Hide the implementation details No need to go through test cases manually

□ Improved effectiveness

Less reliance on domain knowledge

22

Controlled Experiment

🛛 Goal

 compare cost, effectiveness, and efficiency of our methodology with the manual approach

Plan and design

- 20 graduate students divided into two groups
- One cost measure, four effectiveness measures and two efficiency measures
- Results show the methodology can significantly reduce the cost and improve the effectiveness and efficiency

Research Problems

Test Minimization: Search-Based Test Minimization Approach

25

Centre for

Research-based

Search-Based Test Minimization Approach

- Wang, S., Ali, S., and Gotlieb, A. Cost-Effective Test Suite Minimization in Product Lines Using Search Techniques. Journal of Systems and Software (JSS), vol (103), pp. 370-391, 2015.
- Wang, S., Ali, S., and Gotlieb, A. Random-Weighted Search-Based Multi-Objective Optimization Revisited. In: Proceedings of the 6th International Symposium on Search-Based Software Engineering (SSBSE), pp. 184-198. 2014.
- Wang, S., Ali, S., and Gotlieb, A. Minimizing Test Suites in Software Product Lines using Weight-Based Genetic Algorithms. In: Proceedings of the 15th International Conference on Genetic and Evolutionary Computation Conference (GECCO 2013), pp. 1493-1500, 2013. 26
 5
 6
 Centre for Research-based Innovation

Cost-Effectiveness Measures

Cost

- Overall Execution Time (OET)
 - Measure the amount of time used by a solution

Effectiveness

- Test Minimization Percentage (TMP)
 - Aeasure how many test case can be reduced
- □ Feature Pairwise Coverage (FPC)
 - Measure how many feature pairs can be covered
- □ Fault Detection Capability (FDC)
 - Measure how many test cases in the solution can find faults
- □ Average Execution Frequency (AEF)
 - Measure how often test cases in the solution are executed

Test Minimization Percentage (TMP)

TMP is used to measure the amount of reduction in the number of test cases

$$TMP_{s_k} = (1 - \frac{m_{s_k}}{nt_{p_i}})$$

Feature Pairwise Coverage (FPC)

FPC is used to measure how much pairwise coverage can be achieved by a chosen solution.

Pairs

- (Multi-way, SIF)
- (Multi-way, H323)
- (Multi-site, SIF)
- (Multi-site, H323)

• • • •

$$FPC_{s_k} = \frac{Num_FP_{s_k}}{Num_FP_{p_i}}$$

29

Search Algorithms

Different Mechanisms			Algorithms	Minimization Before?
Evolutionary Algorithms (EAs)	GAs	Weight-Based GA	WBGA	Yes
			WBGA-MO	Yes
			RWGA	Yes
		Sorting-Based GA	NSGA-II	Yes
		Cellular-Based GA	MOCell	No
	Strength Pareto EA		SPEA2	Yes
	Evolution Strategies		PAES	No
Swarm Algorithm	Particle Swarm Optimization		SMPSO	No
Hybrid Algorithm	Cellular genetic algorithm + differential evolution		CellDE	No
Stochastic Algorithm	Random Search		RS	Yes

Fitness = f(TMP, FPC, FDC, OET, AEF)

Industrial Case Study and Artificial Problems

31

Industrial Case Study
C20
C40
C60
C90

500 Artificial Problems
 1200 features
 60000 test cases

Key Results for Evaluation

Industrial Case Study

- Search algorithms can achieve the acceptable level for test minimization in terms of cost and effectiveness
- Random-Weighted Genetic Algorithm (RWGA) achieves the best performance when considering all the objectives together

500 Designed Artificial Problems (Varying Complexity)

- □ Similarly as industrial case study
- Search algorithms can preserve high performance as the increasing complexity of problems

Research Problems

Test Generation:

Using Feature Model to Support Model-based Testing

Select features in FM_T through the Selection Front-end

Configure attributes CFM_B through the Configuration Front-end

34

Innovation

[•] Wang, S., Ali, S., Yue. T., Liaaen, M. Using Feature Model to Support Model-Based Testing of Product Lines: An Industrial Case Study. In: Proceedings of 13th International Conference on Quality Software (QSIC), pp. 75-84, 2013.

Evaluation: Industrial Case Study

Industrial Case Study
C20
C40
C60
C90

The complexity of configuration is reduced significantly

The required modeling expertise is reduced

Research Problems

Test Prioritization:

Search-Based Test Prioritization Approach

 S. Wang, S. Ali, T. Tue, Ø. Bakkeli, and M. Liaaen. Enhancing Test Case Prioritization in an Industrial Setting with Resource Awareness and Multi-Objective Search. In The 38th International Conference on Software Engineering (ICSE), Software Engineering in Practice (SEIP) track. pp. 182-191, 2016.

> Research-based Innovation

• Wang, S., Buchmann, D., Ali, A., Pradhan, D., and Liaaen, M. Multi-Objective Test Prioritization in Software Product Line Testing: An Industrial Core Study. In: Proceedings of 18th International Software Product Line Conference (SPLC 2014), Best Paper Nominees, pp. 32-41, 2014. 37

Cost-Effectiveness Measures

Overall Execution Cost (OEC)

Measure the amount of time used for a solution

Prioritized Extent (PE)

lacksquare Measure the extent of prioritization

□ Feature Pairwise Coverage (FPC)

Measure how many feature pairs can be covered

□ Fault Detection Capability (FDC)

Measure how many test cases in the solution can find faults

38

Effectiveness

Prioritized Extent (PE)

> Measure the extent of prioritization by a chosen solution

$$PE_{s_k} = \frac{nt_{s_k}}{nt}$$

39

Innovation

Search Algorithms

Fitness_
$$P = 1 - w_1 * (1 - nor (OEC)) - w_2 * nor (PE) - w_3 * nor (FPC) - w_4 * nor (FDC)$$

40

Genetic Algorithm (GA)

□ (1+1) Evolutionary Algorithm (EA)

Alternating Variable Method (AVM)

Random Search (RS)

Industrial Case Study and Artificial Problems

□ Saturn product line: one testing cycle

- 257 test cases
- □ 53 features
- **5**9 available resources
- **500** artificial problems
 - 3000 test cases
 - 600 features
 - 1000 available resources

Key Results for Evaluation

Industrial Case Study

- Search algorithms can achieve the acceptable level for test prioritization in terms of cost and effectiveness
- □ (1+1) EA achieves the best performance among all the search algorithms

500 Designed Artificial Problems (Varying Complexity)

- □ Similarly as industrial case study
- Search algorithms can preserve high performance as the increasing complexity of problems

Conclusion

Thank You! Questions?

ertus

