
© Joost Noppen 2016The Art of Decision Making in Software Engineering

The Art of Decision Making
in Software Engineering
Dr. Joost Noppen, School of Computing Sciences
University of East Anglia

Mission Invitée supported by IUT
Nantes

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Software Engineering/Development

 Hundreds of decisions
 Which language?
 Which algorithm?
 Which architectural style?
 How to support extension?
 ...

Decision Making in Software Engineering

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Software Engineering/Development

 Decisions vary in magnitude of impact
 Some decisions are fairly minor

SVN vs. GIT
Eclipse vs. NetBeans vs. Visual Studio
Which coffee brand

Others can be with you for a long time
Which platform to use
Which future extensions to support
Which budgets (to ask for)

 It is the latter ones you want to get right

Decision Making in Software Engineering

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Decision Making in Software Engineering

In short, decisions can be very important

Some decisions may stay with you for the complete
lifespan of your system
Modern developments (Software Product Lines,
Complex Systems) therefore put pressure on decision
making
The longer the life span, the higher the impact when you
get it wrong
It may bread indecisiveness...
 … or deflecting and postponing decisions

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Good vs. Bad Decisions

So what makes a decision good and what
makes it bad?
Is bad all about getting it wrong?

Predicting the wrong evolutions
Underestimating costs
…

 And is good all about getting it right?

Decision Making in Software Engineering

Perhaps, it is certainly a viewpoint that directly relates
to success or failure of a software system.

But it means the quality of your decision making
depends on your ability to predict the future.

I prefer to say that decisions are good if they are
taken from an informed point of view. Bad are
decisions taken from a confused point of view.

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Good vs. Bad Decisions Illustration
 Suppose we are playing a simple gambling game
 We get to bet four 1 pound coins on the outcome of the roll of a die
 If we get it right, we get three times our bet
 If we get it wrong, all money is lost
 We can play as many times as we want

Bad Decision
Putting all your money on a single face every time.
You might get lucky, but you loose in the long run. You would win once
every six times, losing 20 pounds and winning 12 pounds.

Good Decision
Putting one coin on four different faces
You might get unlucky, but you win in the long run.
You would win four times out of six, losing 8 pounds and winning 12
pounds.

Decision Making in Software Engineering

© Joost Noppen 2016The Art of Decision Making in Software Engineering

What does a decision entail?

A decision is typically seen as selecting a course of action when faced
with a particular choice...

 … from a set of alternative actions …
 … given a set of objectives ...
 … aided by a certain body of knowledge …
 … a level of insight and experience ...
 … and where needed a set of assumptions

The goal of decision making then?

The goal is to select the course of action that best satisfies the
objectives. To determine this, you can use the knowledge, experience
and assumptions.

The Anatomy of a Decision

© Joost Noppen 2016The Art of Decision Making in Software Engineering

The Anatomy of a Decision

A software architecture decision

Alternative actions: MVC or Client-Server
Objectives: Performance and Evolvability
Body of knowledge: books, ...
Experience: Similar systems we worked on
Assumptions: performance is this, evolvability that

So where does it go wrong?
All too frequently we lack substantial knowledge and we
have to fill the gap with experience and assumptions.

To make matters worse, alternatives, objectives and what
we know is not always accurate and complete.

In short, we end up in a state of confusion (even if we do
not realise it). And this leads to bad decisions.

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Modelling and Analysis of Information

Modelling our information accurately
● Not knowing everything is not a bad thing
● As long as we are certain about our uncertainty
● For example, consider the response time in a client-

server architecture system
● A single number might not be possible, but a

probability distribution would do
● Similarly, a vague budget objective and estimated

cost can accurately be described using a fuzzy set

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Modelling and Analysis of Information

Benefits:
● Sound insight into risk
● Mostly automatable
● Takes away the sting of

intuitive assumptions

Example 2: Illness and Test

Suppose in a population there is an
illness that will be fatal in a week and
affects 10% of the people. Also
suppose there is a test that is
accurate 90% of the time.
If you would receive a positive test
result, what is the probability of
survival for longer than a week?

Example 1: Tossing a Coin

Suppose you have tossed a coin 99 time and
every single time it came out heads. What is the
chance of it coming up heads again?

Answer: 50%!
Initially, you will be in one of four groups:

● Ill and test correct (1/10 * 9/10 = 9/100)
● Ill and test wrong (1/10 * 1/10 = 1/100)
● Well and test correct (9/10 * 9/10 = 81/100)
● Well and test wrong (9/10 * 1/10 = 9/100)

Once you know the test is positive:
● Ill and test correct (1/10 * 9/10 = 9/100)
● Well and test wrong (9/10 * 1/10 = 9/100)

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Modelling and Analysis of Information

A better insight on the credibility of our information

We now have insight into the risks that come with a
specific path of action
Risks that arise from objectives, assumptions, information
can be treated uniformly
And we can include that accordingly in our assessment
But what if there is no clear winner?

Systematic support for deferring risky decisions
 Commit to more than one path of action
 Higher workload but lower risk
 Requires modelling extensions

1/12

4/12 2/12
1/12

4/12

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Deferring Decision that are Too Risky

From and Object-Oriented point of view, nothing new

The bread and butter, design patterns, plugins, etc.
Requires planning and insight, some knowledge of the
future
And it is expensive if you predict it wrong
More importantly, it needs support on more levels

Requirements, feature modelling, architecture, etc.

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Leveraging Experience

And what about the knowledge already out there?

● How do we use that to our advantage?
● Experts in your team are very useful
● Domain specific approaches are gaining momentum
● The internet with fora contain a wealth of knowledge

But there is more...
● Similar projects by you and others
● Best practices
● The question of how to capture the knowledge of

experts

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Leveraging Experience

Learning from the past, not that easy

● If you want to leverage from existing projects, there
are some issues to resolve

● Different project have different focus and terms
● Bridge the differences, establish similarities using

○ Natural Language Processing
○ Graph matching
○ …

● Identify which parts can be of use to you
○ Manually
○ Automatically: pattern recognition, data mining,

etc.

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Example Approaches

Modelling Vague Requirements and Estimations

● Sometimes it is not possible to provide strict
requirements on budget, performance, etc.

● Equally, you might not be certain about the exact
performance and cost that can be expected.

● How would you assess alternatives without making
strong assumptions and falling into the confused
decision trap?

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Example Approaches

How to analyse?

● How do you compare fuzzy estimations and
fuzzy requirements?

● Or even fuzzy estimations and probabilistic
requirements?

● A new analysis method was needed, a
specialised comparison operator

And the results?

● Vagueness in requirements and
estimations captured

● Evaluation results in a risk
indicator for more insight

● Automated support for calculations

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Example Approaches

Examining Feature Models for Advice

● When building a new Software Product Line,
one might take inspiration from others

● By looking at models from existing, similar
systems, you can identify recurring patterns

● So how to do that?

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Example Approaches

A combination of techniques

● Natural Language Processing
● Graph Matching
● Fuzzy Clustering

© Joost Noppen 2016The Art of Decision Making in Software Engineering

Not Just Ideas, We Need Tools!

The typical research my group tends to...

● … focuses on trade-offs in software development
● … involves interpreting historical data
● … builds on connections between development artefacts (ie traces)
● … deals with natural language as well as formalised models
● … requires defining partial knowledge representations
● … as well as logical reasoners that can interpret these

The tools that result have to provide…

● … sophisticated optimisation implementations for the trade-offs
● … visualisations of the results to aid the developer
● … integration with industry standard tools and formats
● ... and it needs to return the results fast, no waiting around for days

And finally it needs to get in front of developers fast!!

© Joost Noppen 2016The Art of Decision Making in Software Engineering

What would be the ideal?

● The integrated tools must be a decision support
approaches (SatNav) for developers

● It should take in data, run a bespoke analysis
algorithm and visualise the results

● It can be triggered and driven by the user or do
this autonomously

An architecture that allows for easy creation of
such tools can support:

● Sharing of models and analysis algorithms
● Sharing of visualisation mechanisms
● Sharing of standards integratio
● Uniform parallellisation of tasks

The Vision of a Software Engineering GPS

© Joost Noppen 2016The Art of Decision Making in Software Engineering

The Vision of a Software Engineering GPS

© Joost Noppen 2016The Art of Decision Making in Software Engineering

D-UEA-ST Plugin Architecture

© Joost Noppen 2016The Art of Decision Making in Software Engineering

D-UEA-ST: A Flexible Reuse Platform

● Architecture aimed at the creation
and support of decision support for
software engineering

● Currently runs as an Eclipse Plugin
● Multiple plugins created as a result

of research.

● Continuous integration and
deployment for collaboration and
easy feedback

● Usable as a delivery mechanism
and student projects

http://seg.cmp.uea.ac.uk/software/dueas
t

The Vision of a Software Engineering GPS

