
© Joost Noppen 2015Traceability Forensics

Traceability Forensics: Identifying
Semantic Relations in Legacy Software
Systems
Joost Noppen
University of East Anglia

Mission Invitée supported by IUT
Nantes

© Joost Noppen 2015Traceability Forensics

A Short Introduction

Joost Noppen

Lecturer in
Software Engineering

University of
East Anglia
Norwich, UK

j.noppen@uea.ac.uk

mailto:j.noppen@uea.ac.uk
mailto:j.noppen@uea.ac.uk

© Joost Noppen 2015Traceability Forensics

A Short Introduction

Research at the School of Computing Sciences at UEA

Research is divided into three laboratories:
● Computational Biology
● Machine Learning and Statistics
● Graphics, Vision and Speech

Software Engineering is a recent addition:
● Started in 2011
● Aligned with the Machine Learning and Statistics Group
● Currently consisting of 4 members (1 lecturer, 3 PhD students)
● Related research being done in systems analysis and usability

© Joost Noppen 2015Traceability Forensics

The overall interest and goal at UEA is to create systematic analysis methods
that can offer accurate support for these activities, realised in software tools.

Intermediate
Artefact X

Intermediate
Artefact Y

Development Activity n

Development
Activity n+1

Development
Activity n-1

Transform

Validate

Software Engineering Research at UEA

© Joost Noppen 2015Traceability Forensics

Software Engineering Research at UEA

Decision Support for Software Engineering

Our research focusses on decision support
approaches for software development activities,
such as architecture analysis, change impact, fault
prediction, etc.

Our approaches use historical data and
mathematical analysis approaches to achieve this:

● Historical data mining and pattern recognition
● Probabilistic and Fuzzy models to represent

uncertainty
● Goal functions and optimisation methods to

determine the best option to choose
● Realised in software tools that can be used by

developers

© Joost Noppen 2015Traceability Forensics

Modern software systems remain
in service for a long time. In most
cases their creators are gone
before the systems themselves.

Green field Software Engineering
does not really exist in the real
world...

Developing in the real world typically involves building on existing
software systems …
● … that have complex interactions with other software systems …
● … that are built with technology that no longer is in fashion …
● … that have limited documentation and detail …
● … that have designers that have long left the company ...
● … that were never designed to do the things you want to do
● … but have become too important and costly to redevelop or replace.

Forensic Analysis of Legacy Software Systems

© Joost Noppen 2015Traceability Forensics

The Challenge of Understanding Legacy Software
Systems (with David Cutting)

Legacy systems can be considerable in size, up to
thousands of classes or more. Often they are without
documentation to speak off, and no experts to consult

Traditional reverse engineering tries to reconstruct a class
diagram from source code. At best this leaves the
developer with a massive class diagram of potentially
thousands of classes.

Which of these belong to the same semantic concepts (e.g.
MVC, or related model classes)?

And how do these classes correlate to the requirements
description we might have for this?

Forensic Analysis of Legacy Software Systems

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

© Joost Noppen 2015Traceability Forensics

Automatic Identification of Semantic Concepts

Sometimes classes are related but they do not have
explicit relations in a class diagram.

Rather than structural, the relations are semantic, ie they
are the result of the intention of classes

These semantic relations are as useful as structural ones,
for example to identify all classes related to the GUI

Another scenario is in case of determining change impact.
Classes without a specific relation in a class diagram can
frequently collaborate to perform a specific task (share a
semantic concept). Pure structural reasoning would miss
this out.

We try to extract this information from
Version Management Systems

Forensic Analysis of Legacy Software Systems

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Repositories capture human behaviour

The classes that developers commit in a single
transaction are related to the problem they are
working on.

If classes are committed together more frequently
than not, there is a semantic relation there. We
call this a co-commit.

If a set of classes are co-committed frequently in
a short period of time, this suggests a semantic
relation even more.

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Quantifying the Relations

Every pair of classes will have a different frequency
of co-committence.

We model this by attaching every relation between
classes with a number on the domain [0..1].

Relations in the (reverse engineered) class diagram
always have a value of 1, which we call ground
truth.

The value attached to detected semantic relations
between classes from repositories is calculated
using the co-commit data harvested:

#Co-commits of C1 and C2

Max(#Commits of C1, #Commits of C2)

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

1 2 3 4 5 6 7 8 9 10 11

1. User 1 1 1 0.5

2. SessionManager 1 0.2 1 0.3

3. Customer 1 1 1

4. Administrator 1 0.6

5. Department 1 1

6. ShoppingCart 1 0.4 1

7. Orders 1 1 1

8. ShippingInfo 1 0.7 0.8

9. OrderDetail 1 1

10. Category 1 1

11. Product 1

Relationship Matrix

We can now describe
the full set of class
relations using a relation
matrix.

This matrix combines the
ground truth of the
structural diagram with
the detected semantic
relations.

This matrix now is akin
to similarity matrices
used for clustering in
pattern recognition.

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Clustering the D-UEA-ST System

When we group together the classes with the
strongest relationships using clustering
algorithms, we can generate graphs such as
the one on the left.

Interesting aspects and semantic concepts
can already be observed:

● A large cloud of classes clumped that
represent the initial commit

● Another large clump is an extension by
an MSc project student

● Six structured classes are the GUI
abstraction mechanism

The last two definitely are semantic concepts
that are hard to spot with a diagram only.

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Clustering the Eclipse IDE

A far more mature repository, and depending
on the scope you choose, you can see clear
semantic concepts emerge:

● The progression of colours are the
various releases (not highlighted in the
repository itself)

● The blue element at the right top is the
compile, the most stable element

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Change Impact Analysis

Used to determine how changing one class
affects the rest of the system.

Traditional approaches rely on structural
information combined with source code
analysis to determine the affected areas.

This typically creates a flooding algorithm that
can miss out on semantic relations.

We have combined traditional flooding
algorithms with our semantic relation
information, and this improves change impact
analysis.

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Change Impact Analysis
Evaluation

To assess the effectiveness of
our approach, we have
compared performance to
JRipples, one of the most well
known CIA tools.

As we needed independent
data to run the tools on, we
leveraged our knowledge of
repositories.

Commit 1 Commit 2 Commit n

{C1, C2, ...} {C1, C4, ...} {C2, C3, ...}

{C2, C3, C4, ...}

© Joost Noppen 2015Traceability Forensics

Forensic Analysis of Legacy Software Systems

Base: {C2, C3, C4, ...} Approach: {C2, C4, C5, ...}

#(Approach ∩ Base)

#Approach

#(Approach ∩ Base)

#Base

Precision:

Recall:

Early Evaluation Results

For every case based on industrial software
repositories so far:

● Our approach finds at least all classes
identified by JRipples in Base

● This suggests our approach has an equal
or better recall than JRipples

● However, our approach tends to have a
somewhat lower precision than JRipples
○ Adjusting semantic relation threshold
○ Considering this in flooding algorithm

● Without the need for analysing source code

© Joost Noppen 2015Traceability Forensics

Implementation

Our approach is implemented on the D-
UEA-ST platform, a software toolkit
developed at UEA.

Runs as an extension for Eclipse and
can interact with git-based repositories
and most modern reverse-engineering
tools using XMI and XMI-transformers.

Git harvesting, flooding, and clustering
can be performed locally or on linux-
based supercomputer clusters

Completely open source and freely
available via bitbucket (... very soon!)

Forensic Analysis of Legacy Software Systems

© Joost Noppen 2015Traceability Forensics

Change Impact Analysis

Determine the best set of operation
parameters, such as thresholds and
repository filters.

Complete full evaluation and publish

Include additional information sources,
such as call graphs or expert opinion.

Support various levels of change
impact, such as methods and attributes,
or architectures and components.

Future Work

© Joost Noppen 2015Traceability Forensics

Semantic Concept Identification

Determine the best set of operation
parameters, such as thresholds and
repository filters.

Include additional information sources,
such as domain models or expert
opinion.

Support various levels of concept
identification, architecture, component,
etc.

Evaluation

Future Work

© Joost Noppen 2015Traceability Forensics

Future Work

Natural
Language

Processing

Methods
JavaDoc

Requirements
Specifications

© Joost Noppen 2015Traceability Forensics

a b c d e

a 1 1 1

b 1 1

c 1

d 1

e 1

Future Work

a b c d e

a 1 0.3 0.9

b 1 0.2 0.8

c 1 0.6

d 1

e 1

A Flexible Base Relation Structure

a b c d e

a 1 1 1

b 1 0.2 1

c 1 0.6

d 1

e 1

A+B-AB

© Joost Noppen 2015Traceability Forensics

Conclusions

Software Engineering Research at UEA

● A relatively young group, but well underway in making UEA a centre for
Software Engineering research in the UK

● Research focus is on computational approaches for supporting software
development

● Working on prominent areas such as legacy system analysis, software
product lines and software architectures.

● Combining techniques from fuzzy set and probability theory, pattern
recognition, data mining and optimisation theory.

Traceability Forensics Research

● A flexible and generic framework for capturing structural and semantic
relations between software artefacts of legacy systems

● Full support for relation harvesting from version management repositories
● Successful application to Change Impact Analysis with competitive results
● Promising first results with concept identification using clustering

© Joost Noppen 2015Traceability Forensics

Potential for Collaboration

Design Decision Optimisation
● Automated reasoning about design decisions
● Capture and analyse uncertainty
● Insight into quality and functionality trade-offs
● Variety of levels

○ Process management
○ Architectures
○ Implementation

Natural Language Processing
● Documentation analysis and design
● Model similarity
● Software trace reconstructions

Data Mining/Pattern Recognition
● Leverage historical data in design
● Infer and predict faults in software systems
● Reaction models for self-aware systems

