Mission Invitée supported by IUT @ Fad
Nantes t >
=

I =

M

LM

Liniversite de Nantes

Traceability Forensics: ldentifying
Semantic Relations in Legacy Software

Systems

Joost Noppen
University of East Anglia

E\

University of East Anglia

Joost Noppen

Lecturer in
Software Engineering

University of
East Anglia
Norwich, UK

j.noppen@uea.ac.uk

mailto:j.noppen@uea.ac.uk
mailto:j.noppen@uea.ac.uk

Research at the School of Computing Sciences at UEA

Research is divided into three laboratories:

Computational Biology
Machine Learning and Statistics
Graphics, Vision and Speech

Software Engineering is a recent addition:

Started in 2011

Aligned with the Machine Learning and Statistics Group
Currently consisting of 4 members (1 lecturer, 3 PhD students)
Related research being done in systems analysis and usability

A Short Introduction

Software Engineering Research at UEA

Development
Activity n-1

Intermediate

i Artefact X Transform
| .

1

1

|

|

1

: Validate L Intermediate
:

1

|

|

— e mm mm Em mm mm mm o = = = P

Artefact Y

Development
Activity n+1

The overall interest and goal at UEA is to create systematic analysis methods
that can offer accurate support for these activities, realised in software tools.

Software Engineering Research at UEA

Decision Support for Software Engineering

Our research focusses on decision support
approaches for software development activities,
such as architecture analysis, change impact, fault
prediction, etc.

Our approaches use historical data and
mathematical analysis approaches to achieve this:

e Historical data mining and pattern recognition

e Probabilistic and Fuzzy models to represent
uncertainty

e (Goal functions and optimisation methods to
determine the best option to choose

e Realised in software tools that can be used by
developers

Forensic Analysis of Legacy Software Systems

Modern software systems remain
in service for a long time. In most
cases their creators are gone
before the systems themselves.

O 0 0D eeiy,

Green field Software Engineering
does not really exist in the real
world...

Developing in the real world typically involves building on existing
software systems ...

... that have complex interactions with other software systems ...

... that are built with technology that no longer is in fashion ...

... that have limited documentation and detail ...

... that have designers that have long left the company ...

... that were never designed to do the things you want to do

.. but have become too important and costly to redevelop or replace.

it e e
[ENE=2 £ openTppmeT
; ocn oY
£princE{stdeTT. w Am ETEOT

. 00””0!'04‘.

v elewment
~are °orderil b gt
/* alloca o e >

Forensic Analysis of Legacy Software Systems

The Challenge of Understanding Legacy Software
Systems (with David Cutting)

Legacy systems can be considerable in size, up to
thousands of classes or more. Often they are without
documentation to speak off, and no experts to consult

Traditional reverse engineering tries to reconstruct a class
diagram from source code. At best this leaves the
developer with a massive class diagram of potentially
thousands of classes.

Which of these belong to the same semantic concepts (e.g.
MVC, or related model classes)?

And how do these classes correlate to the requirements
description we might have for this?

<<Java nierface>

© AccountsessionData
s cs cose Zes 312010 groupt services face
© getSignedinUser(): User
g setSignedinUser

Forensic Analysis of Legacy Software Systems

Verface>
MovieService
20 jhu.c5 cose ee 1212010 groupS services face

o

° vod
© getilostRecentReview(Siring Jong): Review |
°

°

© getFavorteMovies(Strng): Listclovie>

© getlfostRecentilovies(): List<llovie>

@ folowMovie(String,ong): void

© removeFromifovieFollowingList(String ong): void
© updateltovieRankng(ong,nt): void

© alusersitovieRe

© RecommendationService
o803 cose e 151201 goups services fsce

© findSimiarUsers(String). Lt
© friendsRe mmmn(slmu) Lndlwr

commendator
° ani-muulmkemnmwnts‘mg) Letatove
© friendsMovieRecommendation(String): List<Movie>

n(): Listel

6 adaComment(Strng,ong String,t) vod Revie M -
© refreshReview(ong). voit © getReviews(long): ListeReview> M
© oetComments(ong): List<Comment> © getvaidReviews(long): List<Review> o
© getvakaComments(long): List<Comment> void P
° o ° vod M o
o 7 A

<<Java Cass>>
-

P —reviewsenvice 0.1

-movieServigg 0,

~<Java Class>>
@ ReviewServicelmpl
3u .5 oose i2ee 1812010 groups services impl

@ Recom

<<Java Class>>
mendationServicelmpl

Servic
‘edu .5 gose i2se 1412010 group servioss imgl

© findSmiarUsers(String): List<User>

isersMovieRecommendation(String): List<Movie>
© friendsMovieRecommendaton(Strng): List<liovie>

I}
s 7 55 0058 2ee 1aK2010 grovss servioes imsi

°
© refreshilovie(ong): vod

=<Java Class=>

°
© refreshReview(ong): vod
© getComments(long): List<Comment>

© getilostValuableReview (ong): Review
° 1R

s pu o5 oose j2ee 1212010, grosg services imp!

o S lTaiorservce
50 s o5 095 2o 1312010 gous$ servies e

° uunm(smw.svw) ol

© signout(): void

© getSnedinAdmin(): Adminstrator

© updateAdmiistrator(String String): void

Administrator
. ‘setSignedinAdmin(): void

A o

<<Java Classr>

© AccountSessionDataimpl |
odu o3 0030 2ee 1812010
@ getSignednUser(): User
© setSignednUser(): void
© getSignednAdmin(: Admnistrator
© setSignednAdmin(): vod
© getCurrentuserType(): String

void

°
o ‘searchliovie(String): List<Movie>

° void
© getvaidReviews(ong): List<Review>

Lsteliovie
o getitostRecentiovies(): L-(dluvr)

—

mr.m.uuv.rnw..;.z(smg ong): void

© updatellovieRankng(ong nt): void

© createlovie(String,String,String Categoryl): void
Cat

-use

rvice | © requestFriend(Strig Strng): void

<<Java nierfaces>
Userservice
edu o cs cose 2ee £a12010 grousS servioss face
@ signUp(String,String Categoryl): voil

© sigaUp(String,String Categoryll vor
‘signin(String,Strng): void

°
© sgnout(): void
© getSignednAdmin():
© updateAdministrator(String,String): void

-reviewRepostory |0..1

CommentRepository
s s c5 cose 2ee 1312010 gt repostionss fsce
© findByKi(long): Comment
© findAN): List<Comment>

~<Java nisrfaces>

| o s o5 cose 2ee 1412010 groups repostoses iface

© tndByi(ong): Review
© fGAN): ListReview>
1R

YieFolowedRepostory, 0.1

© updateUser(Sirig,String Category(): vo
© updoteUseimage(Sirng S void

© actateUser(String): vo

© descoatumatSungy vou

© updatelser(String String Categoryl String): v
© getusers(): List<User

© getuser(String): User

0.1

°

© signOut(): void

© getSignednUser(): User

© updateUser(String,String Category(l) void

© updateUserimage(String,String): void
© actvateUser(String): void

© deactvateUser(String): void

© getusers(: List<User>

© getuser(String): User

updateUser(String, String Category() String): void|

~<Java nierface>>

© acceptFriend(String String): vod

© getRefusedFriends(String) ListcUser>

~<Java ierface->
O messageservice

i o5 92 2 212010 goug sarvis fsce

@ sendMessage(Strng String, String)” void

@ deletellessage(ong). vod

© getnboxllessage(String) List<Message>

© getSentiessage(Strng). Lst<lessage>

°

<<Java Class>>
@ FriendServiceimp!
o .5 0oz 2ee 1312010 groupS services ol

© requestFriend(String,Strng): void
© acceptFriend(String String): void
© refuseFriend(Siring String): voxd

© getPendingFriends(String): Lst<User>
© getRequestedFriends(String): List<User,
© getRefusedFriends(String): List<User>

° l-veDrIlDdlM'men: vod
o deleteFriendo): vo

(srmm List<String>

[

<<Tava Class>
@ MessageServicelmpl
30 .3 cose Pee 182010 groupS servioss mpl

© sendllessage(String String String): vt

© deletelessage(ong) vorl

© getnboxllessage(String): List<lessage>

© getSentifessage(Strng): Listclessage>
L

1

© saveOrUpdate(lessage): void

<<Java nterfaces>

© findByid(long): Message

© getRecentSignhTime(): String
°

°

© getuser() User

S vou

© getReview(): Re
mevgw(mgw; vold

o gethovie(): Movie 0.1
fovie(Wovie): void

& getContent(): String

° -tconm((smng) vod

© geRanti

° mnmw‘o void

sethlovied(long): void
gethovieName(): String
samnmm(im) Vol
g-tPnlhﬂ.lRl.()
Pm«um(mg; vold
getSummary(): String.
setSummary(String) void
getCastedTime(): String
setCastedTime(String): void
getllovieCategories(): Categoryl]
sethovieCategories(Category[): vod

XXl

cosoccocso

etRanking(): int
setRanking(int): void

<<Java Class>>
® MovieFollowed

o 7 cs coze 2ee 1312010 groupS mada

© getuser(;: User

& SCENTFIC: categories
& DRAMA: categories.

© getPassworcHash(): bytell

© setPassworsHasn(oytel) vols

© getimageURL() Sirn
SelinageURL(String): voild

© setuser(User): voud
© gethtovie(): Movie
© setiovie(Movie): vod

° Categoryll
© setfavorteCategores(Category(): void

bookean
lean): vold

0:0ser 0.1

N © findByReview(ong): List<Comment> S <<Java Interface>> <<Java Iterface>> o mmﬁ?ﬁ:ﬁ t;-.«m © findBySenderUsername(String): List<Message>
°): List<Comment> i i i © saveOrUpdate(User): vod = (String,String): String i
T e usicReriews s i gt oo | e 2t A g g e © indoy(Stmg) Laser- A N e
© Administrat Iy © save(lovieFolowed). void ' fndBykd(int): Category A <<Java Class>> Iy
1 ° © findAN): List<Category> i @ FriendofRepositor
i ° Listetiovie> H sessonFaciory. SessenFactory
3 A H 3 <<Jova Clas>>
i o sesswnFactory: Sessi <<Java Casso> @ saveOrUpdate(Friendof). void @ MessageRepositorylmpl
Sc 55 * S @ CategoryRepositoryimpl © UserRepositoryimpt © dekte(Friendof) voit
° LsteStrag> o
o = © delete(Movie): o sessionFactory. SessonFactory
= AN (kikloros o sessinFactory: SessionFactory © fndPendingFriends(String): List<String> ST
inatratorRopes o) e porstviiaumiond © naoreoney ove © fnddyia(e) Category ST © fndRequestedFiends(String): ListeSting> © fndByid(ono): Message
SqpRdat); . ListReviow> Listetiovies o © fdAI) List<Category> ® ListUse © fndRefusedFriends(String): List<String> @ ficBySanderlsermame(Sring): Lisi<ilessage>
o sessionFactory: SessionFacory M < Comment ° steReview> ° e > = i © serendsausSiing Sirng) Sing &
© update(Admnstrator: vod ° © delete(lovieFolowed void = = i © Sdbuniisssare(Sina: ntiesssges
© findByUser(String): List<Movie> G.;mwm i
. ¥ ®© categoryld: int © getUser(): User = -
<o s T A e G T E i G o setmarisr v iescane
@ Amistio N © Comment O Revien T # movctgaes,_| © SECHeR0D P © getFriend(: User
@ setFriend(User): ve o messageld: ong
= admanane. Strg 5 = o reviewd: ong = movield: ong - = usemane: Sting o :
= passwordHash byte] DT o content Strng o movtiame: Sting ! : WWMTMMS‘:; e | O o passwordHash byel / SChEEIoiEr | < st sty
o recentSignnTime: String © score: int o rankng int o posterURL: String o imageURL: String. %J/ M\FL 2
© getadmname(): String @ getCommenta(): long Do) Java Enurerations> o terminated: boolean e — o= ~
e Sl o castedTime: String @ categories ' getUsername(): Strag FriendStatus . ,,,f:;m °
© getPasswordHasn(): bytel] © getContent(): Strng Qlrd bm L ° Lo &,
© setPasswordHash(Dytel)): void @ setContent(String): voild [~<2ve [getiovied): long & COMIC: categories.
getScore(): int

4 ACCEPT. FriendStatus.
& PENDNG: FriendStatus.
& REFUSED: FriendStatus.

o getContent(): Strng.

© setilessageStatus(iessageStatus): void|

.....,.,sm.{?..:?

~Java Enumeratons>
B Messagestatus

& UNREAD: WessageStatus.
4 READ. Messagestatus
& DELETED: MessageStatus

enrolled 1.8

nnnnnnnnnn

o ordered, FIFO}

nnnnnnnnnnn

Forensic Analysis of Legacy Software Systems

Automatic Identification of Semantic Concepts

Sometimes classes are related but they do not have
explicit relations in a class diagram.

Rather than structural, the relations are semantic, ie they
are the result of the intention of classes

These semantic relations are as useful as structural ones,
for example to identify all classes related to the GUI

Another scenario is in case of determining change impact.
Classes without a specific relation in a class diagram can
frequently collaborate to perform a specific task (share a
semantic concept). Pure structural reasoning would miss
this out.

We try to extract this information from
Version Management Systems

Forensic Analysis of Legacy Software Systems

Customer

-customerName : ring
l-address : string
-email : string

I-phoneno - int

-creditcardinfo : sifing

Administrator

FadminName : string
Femail : string

User Session Manager
Luserld : string Luserld : string
—{ P-password string +departmentName : string
FHloginStatus : string [rgetUser()
HverifyLogin() : bool I+getdepartment()

1

ItupdateCatalog() - bool

Department
|- departmentid

Fname

+-description

+getCategoryinDepartment()

Category

Fcategoryld : int
Fdepartmentld : int
-categoryName : string
I-description : string

FgetProducsinalegon) |

1

0.t -shippinglnfo : stri
+register()
ShoppingCart [+login()
[-cartid : int
FproductiD : int 1 Shippinginfo
l-quantity : int " shipp zint
| dateAdded : int 0. 1 |shippingType : string
[+addCartitem() -shipp@ng(:os;:im ;
+deleteCartitem() I-shippingRegionid : int
+updatequantity() +updateShippingInfo()
+viewCartDetails()
[+checkout()
[9]
0. OrderDetail
lorderld : int
I-productid : int
[-productName : string
-quantity : int
1] |unitCost : float
|-subtotal : float
[+calcPrice()

1

Product

+productld :int
tname : string
iption : string

+price - int
+HimageFileName : string

+displayProduct()
+getProductDetails()

\'__/

Repositories capture human behaviour

The classes that developers commit in a single
transaction are related to the problem they are
working on.

If classes are committed together more frequently
than not, there is a semantic relation there. We
call this a co-commit.

If a set of classes are co-committed frequently in
a short period of time, this suggests a semantic
relation even more.

Forensic Analysis of Legacy Software Systems

User Session Manager
Luserld : string Fuserld : string
+password : string LdepartmentName : string
FHoginStatus : string [rgetUser)
tverifyLogin() : bool Hgetdepartment()
1
Customer
[customerName : string Administrator
l-address : string FadminName : string
-email : string Femail : string
-phoneno - int FupdateCatalog() - bool Department
-creditcardinfo : string I-departmentid
0.t -shippinglnfo : string Fname
+register() [-description
ShoppingCart +ogin() [+getCategorylnDepartment()
[-cartid : int
LproductiD : int ’ Shippinginfo
l-quantity : int " st zint
| dateAdded : int 0. 1 FshippingType : string
[+addCartitem() shippingCost - int
+deleteCartitem() I-shippingRegionid : int
+updatequantity() +updateShippingInfo()
+viewCartDetails() :
+checkout() -mloggryNama string
I-description : string
HgetProductsinCategory()
0. OrderDetail
lorderld : int 1
I-productid : int
[-productName : string 1
-quantity : int
1] |unitCost : float
|-subtotal : float Product
[+calcPrice() Cproductid - int
tname : string
- iption : string
+price - int
+HimageFileName : string
+displayProduct()
+getProductDetails()

Quantifying the Relations

Every pair of classes will have a different frequency
of co-committence.

We model this by attaching every relation between
classes with a number on the domain [0..1].

Relations in the (reverse engineered) class diagram
always have a value of 1, which we call ground
truth.

The value attached to detected semantic relations
between classes from repositories is calculated
using the co-commit data harvested:

#Co-commits of C1 and C2

Max(#Commits of C1, #Commits of C2)

Forensic Analysis of Legacy Software Systems

10

11

. User

1 0.5

. SessionManager

0.2

0.3

. Customer

. Administrator

0.6

. Department

. ShoppingCart

0.4

. Orders

8.

Shippinginfo

0.7

0.8

9.

OrderDetail

10. Category

11. Product

Relationship Matrix

We can now describe
the full set of class
relations using a relation
matrix.

This matrix combines the
ground truth of the
structural diagram with
the detected semantic
relations.

This matrix now is akin
to similarity matrices
used for clustering in
pattern recognition.

Forensic Analysis of Legacy Software Systems

Clustering the D-UEA-ST System

When we group together the classes with the
strongest relationships using clustering
algorithms, we can generate graphs such as
the one on the left.

Interesting aspects and semantic concepts
can already be observed:

e Alarge cloud of classes clumped that
represent the initial commit

e Another large clump is an extension by
an MSc project student

e Six structured classes are the GUI
abstraction mechanism

The last two definitely are semantic concepts
that are hard to spot with a diagram only.

Forensic Analysis of Legacy Software Systems

%3

Clustering the Eclipse IDE

A far more mature repository, and depending
on the scope you choose, you can see clear
semantic concepts emerge:

e The progression of colours are the
various releases (not highlighted in the
repository itself)

e The blue element at the right top is the
compile, the most stable element

Forensic Analysis of Legacy Software Systems

User Session Manager

Luserld : string Luserld : string Change Impact AnaIYSis

Emg;rz s si;:ag -de;:amnsnle : string
HverifyLogin() : bool [+getdepartment()
: Used to determine how changing one class

e T affects the rest of the system.
— g"(:w o ___ Traditional approaches rely on structural
ot i 1 St 1 information combined with source code
b] -l N analysis to determine the affected areas.
2 e "] | This typically creates a flooding algorithm that
e ﬁgm : can miss out on semantic relations.
e AR We have combined traditional flooding
N [algorithms with our semantic relation
oD information, and this improves change impact

analysis.

Forensic Analysis of Legacy Software Systems

Bl console | 4" Search I*k Debug |] JRipple

fiew o5

P nlerarcnical v
G 1a © or |0 | % | B~ P B

Class ~ Mark Change Proba... Full Name

® crde Unchanged shapes. Circle

® O Dpetermin. shapes.Determi...
] @. Main _ Main

B Ppaint _ shapes.Point

@ O Shapes shapes.Shapes
ERC) Square Unchanged shapes.Square

B % Triangle | Unchange:

_ shapes. Triangle _

Article

= name : String

- contents : String

+ PAGENAME_SUFFIX : String
+ getName() : String

+ setName(newName : String) : void
+ getContents() : String
+ setContents(newContents : String) : void

Change Impact Analysis
Evaluation

To assess the effectiveness of
our approach, we have
compared performance to
JRipples, one of the most well
known CIA tools.

As we needed independent
data to run the tools on, we
leveraged our knowledge of
repositories.

/l\b

Commit 1 Commit 2 Commit n

l l l

{C1,C2,..} {C1,C4, .1} {C2,C3, ..}

Article

= hame

: String

- contents : String
+ PAGENAME_SUFFIX : String

+ getName() : String

+ setName(newName : String) : void

+ getContents() : String

+ setContents(newContents : String) : void

Forensic Analysis of Legacy Software Systems

/

#(Approach N Base)

Precision:
#Approach
#(Approach N Base)
Recall:
#Base

-

Early Evaluation Results

For every case based on industrial software
repositories so far:

Our approach finds at least all classes
identified by JRipples in Base
This suggests our approach has an equal
or better recall than JRipples
However, our approach tends to have a
somewhat lower precision than JRipples
o Adjusting semantic relation threshold
o Considering this in flooding algorithm
Without the need for analysing source code

Resource - Test Project/Test.uxf - Eclipse Platform

File Edit Navigate Search Projec

E-EES M R B2S-

BES ®°

= ECOOP

v & Test Project

R Project Explorer x

(= Arborcraft Runs

(= ASE Questionnaire Trees
(= ECOOP 2011 Demo

(= Mining Patterns

(= Mining Results
(= Models Paper Example Case

(= Question 8

(= Similarity Results

(= Similarity Test Trees
[¢) Test.uxf

t Run Window Help
CRE B

B *Test.uxf x

SimpleClass

Forensic Analysis of Legacy Software Systems

UMLet

AbstractClass

«Stereotype»
Package::FatClass
{Some Properties}

-id: Long
-ClassAttribute: Long

SimpleClass AbstractCla:

«Stereotypes
Package: :FatClass

-id: Long
-ClassAttribute: Long

#Operation(iz int): int
+AbstractOperation()
Responsibilities

-- Respl

-- Resp2

#Operation(i: int): int
+AbstractOperation()

Responsibilities
-~ Respl
-- Resp2

«nns(aA'wceof»

I
object: Class
id: Long="36548"
[waiting for message)

V- BERE 1 Advice 2
. [SP:1] UML Advice 1
., [SP:2] UML Advice 2
. [SP:3] UML Advice 3

ssssss

Implementation

Our approach is implemented on the D-
UEA-ST platform, a software toolkit
developed at UEA.

Runs as an extension for Eclipse and

can interact with git-based repositories
and most modern reverse-engineering
tools using XMI and XMlI-transformers.

Git harvesting, flooding, and clustering
can be performed locally or on linux-
based supercomputer clusters

Completely open source and freely
available via bitbucket (... very soon!)

Future Work

Change Impact Analysis

Determine the best set of operation
parameters, such as thresholds and
repository filters.

Complete full evaluation and publish

Include additional information sources,
such as call graphs or expert opinion.

Support various levels of change
impact, such as methods and attributes,
or architectures and components.

Future Work

Semantic Concept Identification

Determine the best set of operation
parameters, such as thresholds and
repository filters.

Include additional information sources,
such as domain models or expert
opinion.

Support various levels of concept
identification, architecture, component,
etc.

Evaluation

21

A A el A el A ANl ol ot

P
2 * My first console program for CS 170. ;
3 *
4 * @author (your name goes here) M= YOUE NAME
5 * @version (place the date here))
6 */
7 public class MyFirstConsoleProgram the date e
s {
s {
10 * These are the commands your program will carry out.
11 */
12 public static void main(String[] args)
13
1 System.out.print("Hello, I love you. ");
15 System.out.println("Won 't you tell me your name?");
16 System.out.print("My name is Stephen Gilbert, "
17 System.out.println("by the way.");
18 3
19}
= your name
21
At h s et A S e A e wo‘J
1 /x*
2 * My first console program for CS 170. ;
3 *
4 * @author (your name goes here) == YIOUI NAME
5 * @version (place the date here))
6 *
7 public class MyFirstConsoleProgram the date e
8 {
9 1**
10 * These are the commands your program will carry out.
11 */
12 public static void main(String[] args)
13
1 System.out.print("Hello, I love you. ");
15 System.out.println("Won't you tell me your name?");
16 System.out.print("My name is Stephen Gilbert, ");
17 System.out.println("by the way.");
18 }
19 }
o your name }
21
e R W S

=
* My first console program for CS 170.

*

* @author (your name goes here) = YOUP NAME

* @uersion (place the date here)
*

/
public class MyFirstConsoleProgram the date
{
.
* These are the commands your program will carry out.
x
public static void main(String[] args)
System.out.print("Hello, I love you. ");
System.out.println("Won't you tell me your name?");
System.out.print("My name is Stephen Gilbert, ");
System.out.println("by the way.");
}
L your name

i
¢
2
|
)

[/

Natural
Language
Processing

Methods
JavaDoc

Requirements
Specifications

Future Work

3 Requirements Statement
hesad
n
31 Existing Methods and Procedures
Fronice fareader
oy fa Pk syeees bl D sakd fe
Chiact e 0O 80d LI LUCCAEE BCTAE 38 ICertiad In P ren ook Chagee
e
[se
32 Required Capabiities
321 UserRequremems
W Tras o o
Ta e LN Ll
wretkre e maka
and om rauired Fakre
|l— Ranking | Raguremars Imgeovemane.
MLy andcigand
s »
SOCorLries and Sekcencies
B rdcigand
e =
Sooornrites and detciencies

Future Work

A Flexible Base Relation Structure

a b c d e
a 1 1 1
b 1 1
c 1
a b c d e
d 1
a 1 1 1
e 1
b 1 0.2 1
A+B-AB
c 1 0.6
a b c d e
d 1
a 1 0.3 0.9
e 1
b 1 0.2 0.8
c 1 0.6
d 1
e 1

Conclusions

Software Engineering Research at UEA

e A relatively young group, but well underway in making UEA a centre for
Software Engineering research in the UK

e Research focus is on computational approaches for supporting software
development

e Working on prominent areas such as legacy system analysis, software
product lines and software architectures.

e Combining techniques from fuzzy set and probability theory, pattern
recognition, data mining and optimisation theory.

Traceability Forensics Research

e Aflexible and generic framework for capturing structural and semantic
relations between software artefacts of legacy systems

e Full support for relation harvesting from version management repositories

e Successful application to Change Impact Analysis with competitive results

e Promising first results with concept identification using clustering

Potential for Collaboration

Design Decision Optimisation

Automated reasoning about design decisions
Capture and analyse uncertainty
Insight into quality and functionality trade-offs
Variety of levels

o Process management

o Architectures

o Implementation

Natural Language Processing

Documentation analysis and design
Model similarity
Software trace reconstructions

Data Mining/Pattern Recognition

Leverage historical data in design
Infer and predict faults in software systems
Reaction models for self-aware systems

