Parametric Statistical Model Checking of UAV Flight Plan

Ran BAO¹, Christian Attiogbé², Paulin Fournier² and Didier Lime³

¹ PIXIEL Group / LS2N UMR CNRS 6004, Nantes, France

²Université de Nantes / LS2N UMR CNRS 6004, Nantes, France

³Central Nantes / LS2N UMR CNRS 6004, Nantes, France

MSR 2019

Summary

- Introduction
 - Motivation and Contribution
 - UAV flight model
- 2 Foundations of model and tool
 - Parametric Markov Chains
 - Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

MSR 2019

Outline

- Introduction
 - Motivation and Contribution
 - UAV flight model
- - Parametric Markov Chains
 - Monte Carlo
- - Experimental results
 - Summary and future work

MSR 2019

Motivation

UAVs flying above a crowd (Entertainment)

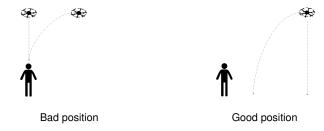
⇒ How to ensure that the flight is secure?

Contributions

We propose a model of the UAV system

- In the context of a flight plan
- Parametric : takes into account
 - Sensor/Filter precision and failure
 - Wind force
- Allows to predict the trajectory

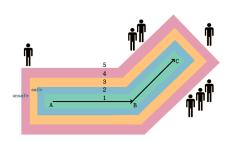
We propose and use parametric statistical model checking techniques


- Computes an approximation of the probability of satisfying a property
 - as a parametric function
 - polynomial
 - with parametric confidence intervals
- Experimentations with industrial case study

Position of drone security concerns

calculate probability of being in the good/bad position

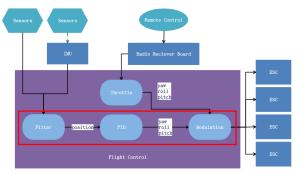
 \Rightarrow What is the good position?



Safety zone

5 zones inline with avionic certification(DO-178C)

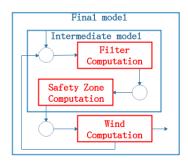
- Take account flight plan and components
- Fixed size : depended application
- critical zones: 4,5



Main components of an UAV

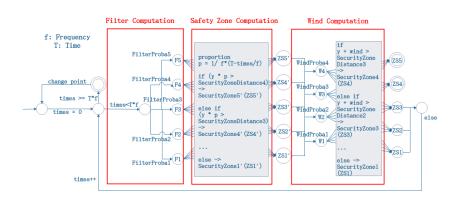
Physical components + Software

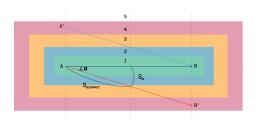
- Position estimation = Sensors + filter
- Stabilize computation = PID
- Parameter = Precision of (sensors + filter)



The proposed approach

A method to build and verify UAV model


- Filter capacity in parameters
 - Computation filter effect
- Add rotate effect (angles in the trajectory)
- Add wind effect (additional parameter of the model)


Resulting model

The estimated position (A') impacts on the target. The time impact (T_{answer})

$$Sn = \sin \alpha * S_{answer}$$
 (1)

$$\sin\alpha = \frac{AA'}{A'B} = \frac{AA'}{\sqrt{AA'^2 + AB^2}}$$
 (2)

$$S_{answer} = V * T_{answer}$$
 (3)

(V: UAV's velocity)

Outline

- 1 Introduction
 - Motivation and Contribution
 - UAV flight model
- 2 Foundations of model and tool
 - Parametric Markov Chains
 - Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

A Markov Chain is a purely probabilistic model $\mathcal{M} = (S, s_0, P)$, where S is a set of states.

 $s_0 \in S$ is the initial state, and

 $P: S \times S \mapsto [0, 1]$ is a probabilistic transition function that, given a pair of states (s_1, s_2) , yields the probability of moving from s_1 to s_2 .

Definitions:

- Finite run : $\rho = s_0 s_1 \dots s_n$ s.t. $P(s_i, s_{i+1}) > 0$
- \blacksquare $\Gamma(I)$: set of all runs of length I in \mathcal{M}
- Probability of finite run : $\rho = s_0 s_1 \dots s_n$, $\mathbb{P}_{\mathcal{M}}(\rho) = \prod_{i=1}^n P(s_{i-1}, s_i)$

A pMC is a tuple $\mathcal{M} = (\mathcal{S}, s_0, P, \mathbb{X})$ such that

S is a finite set of states.

 $s_0 \in \mathcal{S}$ is the initial state,

X is a finite set of parameters, and

 $P: \mathcal{S} \times \mathcal{S} \mapsto Poly(\mathbb{X})$ is a parametric transition probability function, expressed as a polynomial on X.

If $v \in \mathbb{R}^{\mathbb{X}}$ is a valuation of the parameters,

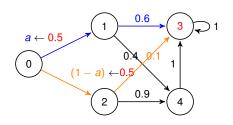
- P_v : transition probabilities under $v: P_v(s, s') = P(s, s')(v)$
- \mathbf{v} is valid if (S, s_0, P_v) is a MC
- $\blacksquare \mathcal{M}^{\mathsf{v}} = (\mathcal{S}, s_0, P_{\mathsf{v}})$
- Runs and probabilities are similar to MC, but parametric

Our formal model of the UAV is built using a parametric Markov chain. Now, we need to check our model.

Basis for statistic model checking: Monte Carlo for MCs

1
$$\rho_1 = 0 \to 2 \to 4$$
 $R(\rho_1) = 0$
2 $\rho_2 = 0 \to 1 \to 3$ $R(\rho_2) = 1$
3 $\rho_3 = 0 \to 2 \to 4$ $R(\rho_3) = 0$
4 $\rho_4 = 0 \to 1 \to 4$ $R(\rho_4) = 0$
5 $\rho_5 = 0 \to 1 \to 4$ $R(\rho_5) = 0$
6 $\rho_6 = 0 \to 1 \to 3$ $R(\rho_6) = 1$
7 $\rho_7 = 0 \to 2 \to 3$ $R(\rho_7) = 1$
8 $\rho_8 = 0 \to 2 \to 4$ $R(\rho_8) = 0$

- Run *n* simulations ρ_i of length *l*. (here n=8 and l=2)
- $r(\rho_i) = 1$ if ρ_i reaches 3 in two steps
- $\blacksquare \ \mathbb{E}'_{\mathcal{M}}(r) \sim \frac{\sum r(\rho_i)}{n} \Rightarrow \mathsf{Here}, \ \mathbb{E}^2_{\mathcal{M}}(r) \sim \tfrac{3}{8} = 0.375 \ (\textit{exact} : 0.35)$

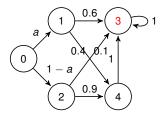

Expected reward $\mathbb{E}^{l}_{\mathcal{M}}(r)$ is the expected value of r on the runs of length l.

Basis for statistic model checking : Monte Carlo for pMCs

1
$$\rho_1 = 0 \rightarrow 2 \rightarrow 4$$
 $R(\rho_1) = 0$
2 $\rho_2 = 0 \rightarrow 1 \rightarrow 3$ $R(\rho_2) = 0.6a$
3 $\rho_3 = 0 \rightarrow 2 \rightarrow 4$ $R(\rho_3) = 0$
4 $\rho_4 = 0 \rightarrow 1 \rightarrow 4$ $R(\rho_4) = 0$
5 $\rho_5 = 0 \rightarrow 1 \rightarrow 4$ $R(\rho_5) = 0$
6 $\rho_6 = 0 \rightarrow 1 \rightarrow 3$ $R(\rho_6) = 0.6a$

7 $\rho_7 = 0 \rightarrow 2 \rightarrow 3$ $R(\rho_7) = 0.1(1 - a)$

8 $\rho_8 = 0 \to 2 \to 4 \ R(\rho_8) = 0$


- Use a normalization function $f \to \mathcal{M}^f$
- \blacksquare $R(\rho_i) = \mathbb{P}_{\mathcal{M}}(\rho)$ if ρ_i reaches 3 in two steps, 0 otherwise
- $\blacksquare \mathbb{E}_{\mathcal{M}}^{I}(r) = \mathbb{E}(\sum_{i=1}^{n} (\frac{R(\rho_{i})}{\mathbb{P}_{\mathcal{M}^{f}}(\rho_{i})})/n)(v)$
- Here, $\mathbb{E}^2_{\mathcal{M}}(r') \sim 0.275a + 0.25$ (exact : 0.5a+0.1)
- For v(a)=0.6 : $\mathbb{E}^2_{M}(r') \sim 0.415$ (exact : 0.4)

Parametric Statistical Model Checking (IMCpMC) 1


```
For 500 runs, we get : \mathbb{E}^3_{\mathcal{M}}(r')\sim 0.592*a+0.092\sim 0.4552
```

For 5000 runs, we get : $\mathbb{E}^3_{M}(r') \sim$

 $0.516 * a + 0.092 \sim 0.4016$

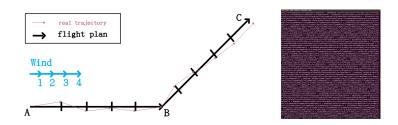
(exact : 0.5a+0.1 \sim 0.4)

(ps: v(a) = 0.6)

```
import model old
from sympy import symbols
a = symbols('a')
Length=2
class Example(model old.AbstractPMC):
    def getLength(self):
        return Length
    def initial(self):
        return [0,0]#/state, times]
    def next(self, a state):
        s.t=a state
        12=[[0,01]
        if s==0:
            l1 = [a, 1-a]
            12 = [[1,t+1],[2,t+1]]
            11 = [0.6, 0.4]
            12 = [[3, t+1], [4, t+1]]
            11 = [0.1, 0.9]
            12 = [[3,t+1],[4,t+1]]
        elif s==3:
            11 = [1]
            12 = [[3, t+1]]
        elif s==4:
            11 = [1]
            12 = [[3, t+1]]
        return 11.12
    def end(self, a state):
        print(a state)
        s.t = a state
       return t==Length, s==3
```

- PRISM : with filter
- PARAM : with filter on parameter
- Parametric Statistical Model Checking (Python): IMCpMC

Outline


- 1 Introduction
 - Motivation and Contribution
 - UAV flight model
- 2 Foundations of model and too
 - Parametric Markov Chains
 - Monte Carlo
- 3 Experiments and Summary
 - Experimental results
 - Summary and future work

Advantage of polynomial


```
senario: 1 Time= 1 , f= 1 , NbSim= 100000 , > 80 , for(0, 1 )
Computation duration (s): 115.70776295661926
0.04766666666666667*ProbaFilter3*ProbaWind1 + 0.125666666666667*ProbaFilter3*Prob
aWind2 + 0.1984*ProbaFilter3*ProbaWind3 + 0.277*ProbaFilter3*ProbaWind4 + 0.9444
9999999999*ProbaFilter4*ProbaWind1 + 0.867666666666666*ProbaFilter4*ProbaWind2
+ 0.812*ProbaFilter4*ProbaWind3 + 0.73200000000001*ProbaFilter4*ProbaWind4
```

- Which probability is more present?
- Wind effect

Experimentation

Results interpretation

	Model	10k		20k		50k	
		V1	V2	V1	V2	V1	V2
Running time	Α	28s		51-54s		142-143s	
Scenario 1	Α	4.99%	5.09%	4.74%	5.10%	4.91%	4.98%
Conf. interv.	Α	±0.85%	±0.82%	±0.55%	±0.56%	±0.36%	±0.37%
Running time	В	28s		53-54s		149-155s	
Scenario 1	В	5.44%	5.31%	5.61%	5.21%	5.59%	5.47%
Conf. interv.	В	±0.98%	±0.86%	±0.69%	±0.64%	±0.42%	±0.43%
Running time	С	185-190s		311-314s		612-621s	
Scenario 1	С	4.95%	5.97%	5.28%	6.62%	4.16%	5.61%
Conf. interv.	С	±5.22%	±5.71%	±4.71%	±6.25%	±1.86%	±4.38%

model A: Filters as parameters

model B: Wind as parameter (number) but not present in polynomial

model C: Parameter filter and wind all in polynomial

Summary and future work

Summary:

- Formal model of UAV flight plan
- Parametric safety analysis
- Parametric Monte Carlo procedure for pMC
- Polynomial parametric confidence interval
- Prototype implementation

Future work:

- Experimentation and implementation improvements
- Change the direction of the wind

Thanks

Thank you for your attention

Any questions?

