

SAN \rightsquigarrow SCADA, lessons from MODELSWARD'17

Refinement-Based and Model-Driven Development of Service-Oriented SCADA Applications from Models of Sensor and Actuator Networks

Jérôme Rocheteau

ICAM (and LS2N?!!), Nantes, France

AELOS'17 - March 1, 2017

MDE Model-Driven Engineering

SAN Sensor and Actuator Network

SCADA Supervisory Control And Data Acquisition

WS Web Service

- **EE** Electeric Engineering
- IT Information Technology
- **PV** Photo-Voltaic
- LED Light-Emitting Diode

FUSE-IT (ITEA2 Project)

- build a smart lighting demonstrator
 - PV panels, batteries, LED
 - Iuminosity and motion sensors
 - manually controlled switches
 - automatically controlled dimmers

provide SCADA functionality to partners

Issue: SAN and SCADA design at the same time

- EE team on SAN, IT team on SCADA
- SAN design continuously evolving
- MDE approach: orthogonal! relevant?

Challenge

Publication at MODELSWARD'17 1-step MDE: SAN design ~-> SCADA implementation

Benefits

✓ SAN structure (places, instruments & devices)

Drawbacks

- × dependency of WS model elements in SAN models
- × SAN behaviour (processes)

... Refinement-Based & Model-Driven SAN Engineering

Overview

SAN to WS Model Mapping

SAN MetaModel

SAN MetaModel

Requirements

- Nested zones
- Instances of sensors and actuators located into a zone
- Types or models of instruments (sensors, actuators)
- Control command units
 - units of communication
 - retrieve/receive measurements from sensors
 - send commands to actuators
 - receive commands from users
 - units of computation
 - trigger computation on event
 - trigger computation at fixed rate

icam

SAN MetaModel

C

C Model

icam

WS MetaModel

WS MetaModel

icam

icam

WS MetaModel

icam

WS MetaModel

Fixed Mapping

Services

/places (GET) : \emptyset → list(Place) /places (POST) : Place → list(Place) /devices (POST) : Place → list(Device)

Mapping of SAN Instruments MyInstrument

Conditions

- type ∈ Type
- result \in type

Mapping of SAN Devices MyDevice of MyInstrument

Mapping of SAN Devices MyDevice of MyInstrument

Settings

- name = issued
- table = MyDevice

Mapping of SAN Devices MyDevice of MyInstrument

Settings

Mapping of SAN Devices MyDevice of MyInstrument

/mydevice/list (POST) : Timestamp² \rightarrow list(MyInstrument)

Mapping of SAN Devices MyDevice of MyInstrument Services or Activities based on MyDevice.mode

$$\label{eq:mydevice/push (post)} \begin{split} &/\text{mydevice/push (post)}: \text{MyInstrument} \to \varnothing \\ &/\text{mydevice/pull (NONE)}: \varnothing \to (\text{MyInstrument}) \to \varnothing \\ &/\text{mydevice/pool (LOOP)}: \end{split}$$

Mapping of SAN Process MyProcess on event MyDevice

Mapping of SAN Process MyProcess at fixed rate delay

This is the end!

Thank you!