
11 Modelling the CoCoME with DisCComp

André Appel, Sebastian Herold, Holger Klus, and Andreas Rausch

Clausthal University of Technology
Department of Informatics - Software Systems Engineering

Julius-Albert-Str. 4
38678 Clausthal-Zellerfeld, Germany

11.1 Introduction

Most large-scaled software systems are logically structured in subsystems
resp. components to cope with complexity. These components are deployed and
executed within an distributed system infrastructure. Consequently, for many
reasons, like for instance multi-user support or performance issues, the compo-
nents are to some extent concurrently executed within an distributed environe-
ment. Note, this also holds for the Common Component M odelling Example
(CoCoME).

11.1.1 Goals and Scope of the Component Model

The first main goal of DisCComp is to provide a sound formal semantic compo-
nent model that is powerful enough to handle distributed concurrent components
but also realistic enough to provide a foundation for component technologies ac-
tually in use, like for instance CORBA, J2EE, and .NET [1,2,3]. Thereby we
claim to close the gap between formal component models and existing program-
ming models (see Section 11.2.1). Hence the semantic component model of Dis-
CComp contains all concepts well known from component programming models
like for instance, dynamically changing structures, a shared global state and
asynchronous message communication, as well as synchronous and concurrent
message calls.

The second main goal of DisCComp is to provide proper UML-based descrip-
tion techniques to describe the structural and behavioural aspects of component-
based systems (see Section 11.2.2). These description techniques have a clear
semantics as they are mapped on the formal semantic component model of Dis-
CComp. The formal component model of DisCComp contains an operational
semantics for distributed concurrent component-based systems the UML-based
descriptons of DisCComp can be directly executed resp. interpreted.

This leeds us to the third main goal of DisCComp: With DisCComp we
claim to support system and component architects and designers in modelling
component-based systems, simulate and execute these models, test and validate
the functional correctness of those models, and finally generate the code for the
finaly system out of the models. Therefore DisCComp provides a set of tools, like
for instance plug-ins for modelling tools, simulation environments for DisCComp
specifications, and code generators.

A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 267–296, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

268 A. Appel et al.

11.1.2 Modeled Cutout of CoCoME

In the Secion 11.3 we present a cutout of the CoCoME modelled using our pro-
posed description technique. In order to focus on specific aspects of our modelling
approach and for the sake of brevity, we will illustrate the parts of the system
which are relevant for the use case Change Price only.

11.1.3 Benefit of the Modeling

The DisCComp approach provides several benefits: As the DisCComp compo-
nent model is close to existing programming models no paradigm gap exists
between the DisCComp and the predominant programming approaches. Hence
programmers, designers, and architects use the same paradigm and share a com-
mon understanding of the models. Thus software engineers can easily learn and
apply the DisCComp approach as it is close to models they are familiar with.

As the description techniques of DisCComp have a clear semantics the re-
sulting models and specifications are not ambiguous but precise. Thus, they can
be directly simulated and executed. Hence the feedback loop and the iteration
cycles are extremely shortened. Models and specifications can directly be tested
and verified in advance without the need of coding them in the target compo-
nent technique, which is more laborious and time-consuming due to the complex
technologies programmers have to cope with.

11.1.4 Effort and Lessons Learned

To model our cutout of CoCoME with DisCComp an effort of 4 person month
were used. During the contest we have learned the following lessons: The formal
model of DisCComp is valid and fits well for real software systems like CoCoME.
The provided specification techniques can be used to describe real software sys-
tems like CoCoME. However, the effort to elaborate these specifications is too
high. The reason for this is, that currently our description techniques are too
low-level. They are closer to the coding level than to a more abstract specifica-
tion level. Hence we have to improve our approach and provide more abstract
specification techniques.

11.2 Component Model

This section elaborates the basic concepts of the proposed formal model for dis-
tributed concurrent component-based software systems. Such a model incorpo-
rates two levels: The instance level and the description level [4]. The description
level - described in Section 11.2.2 - contains a normalized abstract description of
a subset of common instance level elements with similar properties. The instance
level - described in the Section 11.2.1 - is the reliable semantic foundation of the
description level. It provides an operational semantics for distributed concurrent
components - it is an abstraction of existing programming models like CORBA,

Modelling the CoCoME with DisCComp 269

J2EE, and .NET [1,2,3]. Thereby, it defines the universe of all possible software
systems that may be specified at the description level and implemented using
the mentioned programming models.

11.2.1 The DisCComp System Model

The instance level of our proposed formal model for distributed concurrent com-
ponents must be powerful enough to handle the most difficult behavioural as-
pects:

– dynamically changing structures,
– shared global state,
– asynchronous message communication, and
– concurrent method calls.

Figure 1 summarizes these behavioural aspects of the formal model for
distributed concurrent components at the instance level on an abstract level.
Thereby, software systems consist of a set of disjoint instances during run-time:
system, component, interface, attribute, connection, message, thread, and value.
In order to uniquely address these basic elements of the instance level we intro-
duce the infinite set INSTANCE of all instances:
INSTANCE =def { SYSTEM ∪ COMPONENT ∪ INTERFACE ∪ ATTRIBUTE ∪
CONNECTION ∪ MESSAGE ∪ THREAD ∪ VALUE }

The presented four behavioural aspects of distributed concurrent component-
based systems are described in the following.

Structural Behaviour. A system may change its structure dynamically. Some
instances may be created or deleted (ALIVE). New attributes resp. interfaces
may be assigned to interfaces resp. components (ALLOCATION resp. ASSIGN-
MENT). Interfaces and components may have a directed connection to interfaces
(CONNECTS). Note, the target of a connection can only be an interface.:

ALIVE =def INSTANCE → BOOLEAN

ASSIGNMENT =def INTERFACE → COMPONENT

ALLOCATION =def ATTRIBUTE → INTERFACE

CONNECTS =def CONNECTION → {{ from, to } | from ∈ COMPONENT ∪
INTERFACE, to ∈ INTERFACE}

Valuation Behaviour. A system’s state space is not only determined by its
current structure but also by the values of the component’s attributes. Mappings
of attributes or parameters to values of appropriate type are covered by the fol-
lowing definition:

VALUATION =def ATTRIBUTE → VALUE

270 A. Appel et al.

())),(()(2 mix
e
sexecution =

)()(1 ai
e
sevaluation =

3,2,1{},)(
1

==

+

ji
e
sevaluation j

())),(()),,(()(32
1

fooimix
e
sexecution =

+

)),(()(1
1

aiy
e
sexecution =

+

Fig. 1. Instance level of concurrent components

Communication Behaviour. Sequences of asynchronous messages represent
the fundamental units of asynchronous communication. Therefore we distinguish
the set MESSAGE in two non disjoint subsets: MESSAGE =def ASYNC MESSAGE

∪ CALL MESSAGE In order to model message-based asynchronous communica-
tion, we denote the set of arbitrary finite asynchronous message sequences with
ASYNC MESSAGE∗. Within each observation point components process message
sequences arriving at their interfaces and send message sequences to other
interfaces:

EVALUATION =def INTERFACE → ASYNC MESSAGE∗

Execution Behaviour. Besides asynchronous communication, synchronous
method calls (CALL MESSAGE) performed by concurrent executed threads is
the predominant execution mechanism in contemporary software systems. Each
method is called at a certain interface (INTERFACE). Hence, to model a thread’s
call stack, we denote the set of arbitrary finite method call sequences with
(INTERFACE × CALL MESSAGE)∗ . Each thread has its own method call history
- its call stack (EXECUTION). Note that threads may change the hosting com-
ponent in case of a method call at an interface belonging to another component:

EXECUTION =def THREAD → (INTERFACE × CALL MESSAGE)∗

Modelling the CoCoME with DisCComp 271

System Snapshot. Based on the former definitions, we are now able to char-
acterize a snapshot of a software system. Such a snapshot captures the current
structure, variable valuation, actual received messages, and current method calls.
Let SNAPSHOT denote the type of all possible system snapshots:

SNAPSHOT =def ALIVE×ASSIGNMENT×ALLOCATION×CONNECTS

×VALUATION×EVALUATION×EXECUTION

System Behaviour. In contrast to related approaches like [5], we do not focus
on timed streams but on execution streams. We regard observation points as
an infinite chain of execution intervals of various lengths. Whenever a thread’s
call stack changes - in case of a new method call or a method return - a new
observation point is reached. We use the set of natural numbers N as an abstract
axis of those observation points, and denote it by E for clarity.

Furthermore, we assume an observation synchronous model because of the
resulting simplicity and generality. This means that there is a global order of all
observation points and thereby of all method calls and returns. Note that this
is not a critical constraint. Existing distributed component environments like
CORBA, J2EE, and .NET control and manage all method calls and returns.
Such a component environment may transparently force a global order of all
method calls and returns.

We use execution streams, i.e. finite or infinite sequences of elements from
a given domain, to represent histories of conceptual entities that change over
observation points. An execution stream - more precisely, a stream with discrete
execution interval - of elements from the set X is an element of the type

XE =def N+ → X , where N+ =def N \ {0}

Thus, an execution stream maps each observation point to an element of X .
The notation xe is used to denote the element of the valuation x ∈ XE at the
observation point e ∈ E with xe = x(e).

Execution streams may be used to model the behaviour of software systems.
Accordingly, SNAPSHOTE is the type of all system snapshot histories or simply
the type of the behaviour relation of all possible software systems:

SNAPSHOTE=def ALIVEE×ASSIGNMENTE×ALLOCATIONE×CONNECTSE

×VALUATIONE×EVALUATIONE×EXECUTIONE

Let SnapshotEs ⊆ SNAPSHOTE be the behaviour relation of an arbitrary
system s ∈ SYSTEM1. A given snapshot history snapshots ∈ SnapshotEs is an
execution stream of tuples that capture the changing snapshots snapshotes over
observation points e ∈ E.

Obviously, a couple of consistency conditions can be defined on a formal be-
haviour SnapshotEs ⊆ SNAPSHOTE . For instance, it may be required that all

1 In the remainder of this paper we will use this shortcut. Whenever we want to assign
a relation X (element x) to a system s ∈ SYSTEM we say Xs(xs).

272 A. Appel et al.

attributes obtain the same activation state as the interface they belong to: ∀a ∈
Attributes, i ∈ Interfaces, e ∈ E.allocatione

s(a) = i ⇒ alivee
s(a) =alivee

s(i) Or fur-
thermore, instances that are deleted are not allowed to be reactivated: ∀i ∈
Instances, e, n, m ∈ E. e < n < m∧ alivee

s(i) ∧ ¬aliven
s (i) ⇒ ¬alivem

s (i)
We can imagine plenty of those consistency conditions. A full treatment is

beyond the scope of this paper, as the resulting formulae are rather lengthy. A
deeper discussion of this issue can be found in [6,7].

Thread Behaviour. A system’s observable behaviour is a result of the com-
position of all thread behaviours. These threads are executed concurrently and
are potentially distributed. To compute the system behaviour from the parallel
executed threads, the thread’s execution results have to be integrated taking
possible inconsistencies due to parallelism into account.

To compose the system behaviour out of the results of the parallel executed
threads DisCComp provides a simple but powerful abstraction. Therefore we
introduce the notion of an atomic unit of execution of threads. In DisCComp this
atomic unit of execution is given by the execution of method calls and returns.
Whenever a thread executes a method call or a method return the current atomic
unit of execution is finished and the next one starts. Hence the execution of
method calls resp. method returns define the atomic execution results of threads,
which have to be integrate by the run-time environment into the system-wide
snapshot and thus composing the system’s observable behaviour.

To describe these atomic units of execution of each thread we define a rela-
tion between a system-wide snapshot and the thread’s wished changes on the
system-wide snapshot after performing a method call or return. The run-time
environment integrates these wished changes into the syste-wide snapshot and
thereby it calculates the the system-wide successor snapshot:

BEHAVIOUR =def SNAPSHOT → SNAPSHOT

Let behaviourt ⊆ BEHAVIOUR be the behaviour of a thread t ∈ THREADs

in the system s ∈ SYSTEM. The informal meaning of the thread behaviour is
as follows: A thread executes the program code (and therefore has a program
counter, which is given by its call stack EXECUTION). Each transition relation
transition ∈ behaviourt represents an atomic unit of execution. Intuitively it can
be be seen as the execution result (second part of the transition relation) of the
atomic unit of execution. Whereas the atomic unit of execution has started with
the system-wide snapshot given by the first part of the transition relation.

Each thread performs a sequence of those atomic units of execution repre-
sented by transition relations. Each atomic unit of execution resp. transition
relation transition ∈ behaviourt can intuitively be seen as the interpretation of
an atomic piece of program code by the thread, which has the following schema:

1. The thread evaluates the system-wide snapshot given by the first snapshot
of the tuple transition. If the relevant parts of the system-wide snapshot fits
to the conditions contained in the atomic piece of program code to execute
(e.g. conditions in if statements).

Modelling the CoCoME with DisCComp 273

2. The thread requests the corresponding set of changes on the system-wide
snapshot described in the atomic piece of program code like for instance
changing the value of an attribute. These changes on the system-wide snap-
shot are described by the second snapshot of the tuple transition.

3. Finally, the thread – following the atomic piece of program code to execute
– has to perform a new method call or return. Again this is given by a call-
stack change described in the function executiont ⊆ EXECUTION, which is
part of the second snapshot in the tuple transition.

Note that the behaviour relation of threads neither left-unique nor right-
unique. Moreover the relation has not to be total. Hence, thread behaviour is
not non-deterministic as it describes a concrete execution trace of a thread.
However the thread behaviour is partial as a thread may not terminate. This is
not a general restriction of the proposed approach it just reflects reality.

Behaviour Composition. Consequently, we need some specialized run-time
system that asks all threads - one by one - if one wants to perform a new method
call or return from a method call. Whenever a thread wants to perform a new
method call or return, which means that its behaviour relation fires, the run-
time system composes a new well-defined system-wide successor snapshot based
on the thread’s requested changes and the current system-wide snapshot.

Hence, such a run-time system is similar to a virtual machine. It observes and
manages the execution of all threads. Again, this is not a critical constraint even
in a concurrent and distributed environment. Existing distributed component
environments like CORBA, J2EE, and .NET control and manage all executed
components within the environment.

To sum up, the main task of such a run-time system is to determine the next
system snapshot snapshote+1

s from the current snapshot snapshotes ∈ SnapshotEs .
In essence, we can provide formulae to calculate the system behaviour from
the initial configuration snapshot0s, the behaviour relations {behaviourt1 , ..., be-
haviourtn} of all threads t1, ..., tn ∈ THREADs, n ∈ N , and external stimulations
via asynchronous messages and synchronous method calls at free interfaces. Note
that free interfaces are interfaces that are not connected with other interfaces
and thus can be stimulated from the environment.

Before we can come up with the final formulae to specify the run-time sys-
tem, we need a new operator on relations. This operator takes a relation X and
replaces all tuples of X with tuples of Y if the first element of both tuples is
equal2:
X � Y =def {a|a ∈ Y ∨ (a ∈ X ∧ π1({a}) ∩ π1(Y) = ∅)}

We are now able to provide the complete formulae to determine the next
system snapshot snapshote+1

s :

2 Note that the “standard” notation πi1,...,in(R) denotes the set of n-tuples with
n ∈ N ∧n ≤ r as a result of the projection on the relation R. Whereas in each tuple
in πi1,...,in(R) contains the elements at the position i1, ..., in of the corresponding
tuple from R with 1 ≤ ik ≤ r, with k ∈ {1, ..., n} ⊆ N .

274 A. Appel et al.

next-snapshot: SNAPSHOT → SNAPSHOT

next-snapshot(snapshotes) =def snapshot
e+1
s =

= (alivee+1
s , assignment

e+1
s , allocation

e+1
s , connects

e+1
s , valuation

e+1
s , evaluation

e+1
s , execution

e+1
s) :

alive
e+1
s =alivees�π1(behaviour

next thread
(snapshote

s)) � π1(message execution(snapshote
s)) ∧

assignment
e+1
s =assignmentes�π2(behaviour

next thread
(snapshote

s)) ∧

allocation
e+1
s =allocatione

s�π3(behaviournext thread (snapshote
s)) ∧

connects
e+1
s =connectses�π4(behaviour

next thread
(snapshote

s)) ∧

valuation
e+1
s =valuatione

s�π5(behaviournext thread (snapshote
s)) ∧

evaluation
e+1
s =π6(behaviour

next thread
(snapshote

s)) ∧

execution
e+1
s =executione

s�π7(behaviour
next thread

(snapshote
s)) � π7(message execution(snapshote

s))

Intuitively spoken, the next system snapshot snapshote+1
s is a tuple. Each

element of this tuple, for instance assignmente+1
s , is a function that is determined

simply by merging the former function assignmentes and the ‘delta-function’ of
π2(behaviournext thread (snapshotes)). This ‘delta-function’ includes all ‘wishes’ of
the next relevant thread determined by the function next thread.

This intuitive understanding does not completely hold for alivee+1
s ,

evaluatione+1
s and executione+1

s . In alivee+1
s and executione+1

s , not only the wishes
of thread next thread have to be included. These wishes must contain the thread’s
actual method call or return. Additionally they may contain new parallel threads
created by the current thread.

Moreover, alivee+1
s and executione+1

s also contain the result of the application
of the function message execution(snapshotes). This function includes new threads
created to process the asynchronous messages. Thereby, for each asynchronous
message - given by evaluatione

s which is included in snapshotes - a new thread is
created in alivee+1

s to execute the corresponding request in executione+1
s . mes-

sage execution is defined as follows:

message execution: SNAPSHOT → SNAPSHOT
message execution(snapshotes) =def snapshot’ = (alive’, ∅, ∅, ∅, ∅, ∅, execution’).
∀i ∈ Interfaces, m ∈ Messages.m ∈ evaluatione

s(i) ⇔
⇔ ∃t′ ∈ Threads.¬alivee

s(t′)∧ alive’(t′)∧ execution’(t′) = {(i, m)}
Intuitively spoken for each asynchronous message a new thread is activated

and the corresponding call stack is initialized. As all asynchronous messages are
with each observation point transformed to corresponding concurrently executed
threads, the new system snapshot has only to contain the new asynchronous
messages, as denoted by evaluatione+1

s = π6(behaviourt(snapshotes)).
Note that thereby, the delivery of asynchronous message takes some time,

exactly one observation point. To model network latency or network failure one
would have to provide a more sophisticated function message execution. Thus,
not only delay and loss of asynchronous messages could be integrated but also
network related failures in executing method calls.

Moreover note, the function next-snapshot currently does not include the case
that a thread terminates as the last return statement has been executed by the

Modelling the CoCoME with DisCComp 275

thread (empty call stack). This trivial case could be straight forward added. As
it would enlarge the formulae we have omitted this case in the paper.

To complete the formal model, the function next thread has to be defined:
next thread : → THREAD

This function returns the next thread to be visited by the run-time system. To
provide a simple but general model we propose a round-robin model. Therefore,
a given strict order of all active system’s threads is required. next thread follows
this given order and provides the next relevant thread to be visited and integrated
into the system-wide snapshot by the run-time system.

Note that one can integrate additional features into the model providing other
implementations of the function next thread, like for instance non-determinism
and priority-based thread scheduling. Non-determinism could be used to model
an unsure execution order or to support under-specification.

Whenever concurrent threads or components are executed, inconsistency or
deadlocks may occur. A deadlock concerning elements explicitly modeled in the
semantics - like for instance two threads each locking an attribute and waiting
to get the lock on the other’s thread attribute - cannot occur in this model as
all threads are visited one by one and each thread has to release all blocked
resources after it has been visited. However, deadlocks on a higher level, like
for instance one thread waits for a given condition to become true and another
thread waits for this thread to make another condition true, can not be detected
in advance.

The model does not suppress inconsistent situations but it helps to detect
them. In order to ensure that the next system snapshot snapshote+1

s is well-
defined, a single basic condition must be satisfied: all elements in the wished
successor snapshot given by behaviournext thread (snapshotes) that cause a change
in the resulting next system snapshot must not be changed after the thread
next thread has made his last method call or method return.

For instance, assume that a thread performs a method call. The value of an at-
tribute is 5 as the thread has started the method call execution and the thread
wants to change the value to 7 as it returns from this method call. At the observa-
tion point where the thread returns from the method call the value of the attribute
is already 6, as another thread has changed the value in the meantime. Hence, a
possible inconsistency caused by concurrent thread execution occurs.

A run-time system implementing the function next snapshot has to calculate
the next system snapshot. Thereby it can observe this consistency predicate and
verify whether such a possible inconsistency situation occurs or not. If the run-
time system detects such a possible inconsistent situation it may stop the system
execution for reliability reasons. Note that this formal consistency concept for
concurrent threads is similar to optimistic locking techniques in databases.

11.2.2 The DisCComp Description Technique

In the previous section the instance level has been introduced. These instances
are the semantic domain of the description level. In other words, the description

276 A. Appel et al.

level provides the notations and description techniques to describe the run-time
instances in an uniform and precise manner.

Along with the initial DisCComp system model from [7], a description tech-
nique for components was developed which consists of a graphical, UML-based
notation for the statical structure of systems and a textual description of their
behaviours. Further extensions aimed at extending this description technique
by specifying behavioural aspects by UML activity diagrams (s. [8]). The spec-
ification technique proposed here is essentially based upon that approach and
extends it by following features:

– Consideration of system model extensions: The possibility of synchronous
communication, which has been added on the system model in [9], has mas-
sive impact on the modularity of a component’s specification. If a method
of an interface which is assigned to a component A calls a method of an
interface assigned to a component B, the behaviour of component A can
only be fully specified if B’s behaviour is known as well. The original DisC-
Comp system model allows only asynchronous communication [7]. So called
”island specifications” with explicit specifications for required interfaces are
necessary to obtain modularity.

– Usability: The explicit specification of required interfaces as shown in [7] in-
creases the effort of specifying the behaviour of interfaces because behaviour
is additionally specified along with the component which assures that inter-
face. In our approach, the behaviour of required interfaces is described in
form of contracts [10], whereas an operational language is used to describe
methods provided by assured interfaces. These descriptions can be analysed
to check whether wiring two components is possible, meaning whether the
provided interface is a refinement of the required interface.

– Application of UML 2.0 features: Since version 2.0 [11], UML as a broadly
accepted modelling language provides some additional concepts for com-
posite structures, which were not yet available for the original description
technique. In contrast, we will focus on a textual specification language for
behavioural aspects due to the maturity of graphical approach in the context
of DisCComp.

Fig. 2 shows the structure of a component’s specification which can be con-
ceptually split into three parts.

The static structure part of a component’s specification is described by a UML
component diagram and an arbitrary number of class diagrams. The UML terms
(components, interfaces, attributes, etc.) used in this context can be mapped
one-to-one to the elements of the DisCComp system model. The component
diagram gives an overview of the interfaces provided (or assured) and required by
a component, whereas the class diagrams visualize the attributes and methods of
interfaces as well as relationships between interfaces. These specify the structure
and permitted connections between interface instances. The set of instances of a
required interface that are assigned to a component is modelled as a port of the
component. Since a port is a specialisation of the meta-model element Feature,
it is a quantifiable part of a Classifier (see [11] and [12]). By this means, we

Modelling the CoCoME with DisCComp 277

comp <<assures>>
cd
cd
cd

component diagram
static component structure

<<requires>>

<<assures>>

OCL specifications of contracts of required interfaces

textual specification of component behaviour (assured
interfaces)

Fig. 2. Conceptual Structure of Component Specifications

are able to reflect the assignment of interface instances to components from
the DisCComp system model. We also specify the set of instances of required
interfaces by ports to refer to the set of provided interface instances of serving
components.

The second part specifies the required interfaces’ behaviours by terms of
contracts ([10], [13]). We make use of OCL’s means to specify pre- and post-
conditions of methods and invariants that have to hold for required interfaces.
When wiring components and building larger, more complex components, we
map the required interfaces of a client component to provided interfaces of serv-
ing components, whereas the behaviour of provided interfaces has to ”match”
the required interfaces of the client component.

The third part consists of a set of textual behaviour specifications which
describe the behaviour of interfaces assured by the component. Syntax and se-
mantics are similar to the original approach in [7]. When wiring components, it
will be checked by program analysis techniques whether the provided interface
fulfills the contract specified by the client interface.

Static specification. The static specification of a component basically consists
of an ordinary UML component diagram and additional class diagrams. The
component diagram gives an overview of the interfaces that are provided by the
component3. There are two levels which have to be considered when specifying
3 We additionally define new stereotypes ”requires” and ”assures” to be conform to

the usual DisCComp terms.

278 A. Appel et al.

OuterComponent

<<assures>>

<<requires>>

<<assures>>

roleB : InnerCompB

<<assures>>

<<requires>>

<<requires>>

roleA : InnerCompA <<assures>>

IFA1
IFA2

IFB1R

IFB1

ifa1[*]

ifa2[1]ifb1r[*]

ifb1[*]

ifc1r[*]

<<assures>>
IFB2

IFD1

ifd1[1]

ifb2[*]

ifb1[*] IFB2

<<delegate>>

IFC1R

ifc1r[*]

IFC1R

Fig. 3. Wiring and Building Complex Components

the interrelation between components and interfaces. First, on the type level,
we define by dependencies with stereotypes <<requires>> or <<assures>> to
specify interface types a component provides for use, and which interface types
it requires for operation. Secondly, by assigning ports to components we define
specifiers for the set of instances of an interface type which is assigned to the
component.

Complex, hierarchical components are specified as a white box (see Fig. 3).
Inner sub-components are used as black boxes which can only accessed by the
interface types and ports they define. Only these specifiers and specifiers which
are defined by the outer surrounding component itself can be used inside its
specification. Beside this, we use the same means of UML component diagrams
to specify hierarchical components as mentioned above.

The outer component can use assured interfaces of inner components to re-
alize its own functionality which is modelled as a dependency between the cor-
responding ports in the component diagram, as between the interface IFD1 in
Fig. 3 and the interfaces IFA1 and IFA2. This means semantically that interfaces
instances of IFD1 can connect to instances of IFA1 and IFA2 to call methods and
send messages. In contrast, dependencies with the stereotype <<delegate>>

Modelling the CoCoME with DisCComp 279

indicate interfaces of inner components which are accessible from and con-
nectable to clients of the specified hierarchical component (see IFB2 in Fig. 3).
The instances are assigned to the inner component.

Interfaces labeled as required by inner components can similarly be speci-
fied as being required by the surrounding component (IFC1R in Fig. 3). The
inner component, which requires such an interface, and interfaces assigned to it
can connect to instances of an interface type which is mapped to the required
interface.

After describing the specification of the static structure of components, we will
illustrate how their behaviours and initialization are specified. That includes an
abstract, contract-based specification of required interfaces and an operational
description language for assured interfaces.

Abstract behaviour specification. We call the description of required inter-
face behaviour abstract behaviour specification because it describes interfaces and
their behaviours as abstract as possible, resulting in a specification of what ”is
needed at least”. A component that provides an interface to another component
has to specify a behaviour that is a valid refinement of the required behaviour -
otherwise wiring the components would not be possible.

The textual description of abstract behaviours is formulated by contracts of
the methods an interface is required to have, and by interface invariants. We use
OCL [14] to specify such additional constraints which integrates seamlessly with
the UML component and class diagrams of the static view. OCL supports pre-
and post-conditions as well as invariants. By pre- and post-conditions, we specify
which condition for the component’s state is going to hold after the method’s
return if the pre-conditon holds before its invocation4.

For syntactical details on OCL, please refer to [14]. If necessary, constructs
will be introduced in the following component specifications.

Operational behaviour specification. The proposed behavioural specifica-
tion language is a textual language based on [7]. It is similar to imperative pro-
gramming languages but is syntactically and semantically designed to match the
DisCComp system model. In this section, we will focus on language constructs
that reflect the peculiarities of the system model and will omit syntax and se-
mantics for well known constructs like control structures, assignments, etc., for
the sake of brevity. The component specifications for the modelling example in
the following sections will be explained in more detail.

A behavioural component description consists of an initialization block and a
set of interface specifications which again consist of method specifications. The
initialization block is executed when a component instance is created. It contains
a specifier mapping to map the required interface types of sub-components to
assured interfaces of other components. Furthermore, the initial wiring is done,
specified by a set of instructions to create an initial set of interfaces and con-
nections. These instructions define the initial port assignment and connection
4 This is similar for asynchronous messages but the post-condition has to hold after

sending, not processing the message.

280 A. Appel et al.

among components and interfaces. We will see examples of initialization blocks
in the following sections.

The DisCComp system model is able to realize asynchronous as well as syn-
chronous communication. The signatures of messages, which can be processed
asynchronously by an interface, and synchronous methods, which can be invoked
at it, are specified in the UML class diagrams of the static specifications as men-
tioned above. Behavioural descriptions are described textually in MESSAGE or
METHOD blocks respectively5.

The most important possibility to change the structural state of the system
inside methods is to create instances of interfaces and connections (see Table 1).
Interfaces have to be connected to communicate with each other. For that reason,
the creation of an interface instance can optionally be coupled with creating a
connection to that instance for direct use.

Table 1. Creation of Instances

Syntax Informal Semantics

ifInst : IfType = NEW INTERFACE

IfType [CONNECT BY ConnType]

A new interface instance of type IfType

is created. The instance is assigned to the
same component as the calling interface. A
new connection is optionally established be-
tween the newly created and the existing,
calling interface. The connection type is a
valid association name. IfType must be as-
sured by the component.

connInst : ConnType = NEW CONNECTION

ConnType TO ifInst

A new connection is established between
the calling interface and the interface
ifInst. ifInst must be of a type that is
conform to the static specification of the
according association and its ends.

connInst : ConnType = NEW CONNECTION

ConnType BETWEEN ifInst1, ifInst2

Creates a connection of type ConnType be-
tween the interface instances ifInst1 and
ifInst2. Only available in initialization
blocks.

compInst : CompType = NEW COMPONENT

CompType

A new component of type CompType is cre-
ated.

However, this just allows us to create interface instances that are assigned to
the same component as the calling interface. To connect to interfaces that are
provided by different components, we have to call appropriate methods (or send
appropriate messages) of those components which create instances and connect
them to the calling or sending interfaces. This is comparable to passing return
values of methods to the requesting client. Table 2 shows the according language
constructs. The upper construct can be compared to returning a reference to an
object which someone else (the serving component) is responsible for. The second
5 For details regarding the execution of synchronous methods in DisCComp, please

refer to [9].

Modelling the CoCoME with DisCComp 281

Table 2. Returning Interface Instances

Syntax Informal Semantics

CONNECT ifInst TO CALLER ifInst is connected with the calling inter-
face. Assignment of ifInst is not changed.

CONNECT ifInst

TO CALLER AND REASSIGN

ifInst is connected with the calling inter-
face and assigned to the same component.

statement is comparable to returning a copy of an object, but instead of actually
copying the object, the object itself is separated from the creating component
and assigned to the calling component.

After processing a message or method call, locally created instances are dis-
posed.

The keywords and specification blocks will be used and explained in more
detail in the example component specification in the following sections.

11.3 Modelling the CoCoME

In order to present our modelling techniques, we decided to take a certain cutout
of the Trading System. The following sections will describe our approach to
model the use case ChangePrice (UC 7). This use case requires us to specify
many components on different layers, reaching from the GUI to the application
layer and down to the data layer and is therefore representative for our modelling
approach.

11.3.1 Static View

We decided to model the use case ChangePrice. Therefore, we first of all will have
a look at the components which are relevant in order to implement the use case.
In Fig. 4, the component diagram of the component :TradingSystem::Inventory is
given. All components relevant for use case ChangePrice are subcomponents of
:TradingSystem::Inventory.

The purpose of the use case is to let the manager change the price of a
product. Therefore, the manager chooses a stock item from a list of available
stock items in his store. The component :TradingSystem::Inventory::GUI is re-
sponsible for showing the dialog and forward the information to the application
layer. The component therefore uses the interface StoreIf which defines among
others a method for changing a price of a stock item. The component :Trad-
ingSystem::Inventory::Application implements the application layer of the classical
three-layer-architecture (see [15], for example) and decouples the graphical user
interface from the data access layer. The application layer communicates with
the data layer, which is implemented by :TradingSystem::Inventory::Data, by us-
ing the interface StoreQueryIf.

282 A. Appel et al.

«component»

TradingSystem::Inventory

«component»

:Application

«component»

:GUI

ReportingIf

«component»

:Data

CashDesk
ConnectorIf

«component»

:Database

JDBC

EnterpriseQueryIf
StoreQueryIf

1

1

1

1

1

*
1

*

*

*

1

1

1

1

CashDesk
ConnectorIf

SaleRegistered
Event SaleRegistered

Event

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO
OrderTO
ProductTO
ProductWithStockItemTO
ProductWithSupplierAndStockItemTO
ProductWithSupplierTO
SaleTO
StockItemTO
StoreWithEnterpriseTO
SupplierTO StoreIf

1

StoreTO
EnterpriseTO
ReportTO

TradingEnterprise
ProductSupplier

OrderEntry
ProductOrder
StockItem
Store
Product

1

1

PersistenceIf

Fig. 4. Overview of the component :TradingSystem::Inventory

11.3.2 Behavioural View

To present the behavioural view on the use case we consider, we use a sequence
diagram to visualize how the components presented before interact. In Fig. 5
you can see the Sequence Diagram which depicts how the components interact
and how they are involved while realizing the use case.

After the manager has choosen a product item, a so called transfer ob-
ject of type StockItemTO is created and sent to the component :TradingSys-
tem::Inventory::Application::Store. After this component has established a new
transaction, the price of the product item is changed by first querying the cor-
responding persistent object in the database and, secondly, change the price by
calling setSalesPrice() at this object. The new price is then sent back to the GUI
component in form of a new transfer object of type ProductWithStockItemTO.
In the next sections we will show how we model these components and their
behaviours using our modelling approach and description technique.

11.3.3 Component Specifications

Taking a closer look at the sequence diagram, you can see that we need to
specify the components :GUI::Store, :Application::Store, :Data::Persistence and
:Data::Store. Furthermore we need to describe the operational behaviour of
interfaces like StockItemTO, StoreIf, etc. So we start with a static view of single
components and then switch over to complex, hierarchical components. All these
are described by ordinary UML component diagrams extended by ”assures” and

Modelling the CoCoME with DisCComp 283

:G
U

I::
S

to
re

:A
pp

lic
at

io
n:

:S
to

re
:D

at
a:

:P
er

si
st

an
ce

:D
at

a:
:S

to
re

ch
an

ge
P

ric
e(

s)
ge

tT
ra

ns
ac

tio
nC

on
te

xt
()

tx
:T

ra
ns

ac
tio

n

tx

be
gi

nT
ra

ns
ac

tio
n

ge
tI d

()

id

qu
er

yS
to

ck
Ite

m
B

yI
d(

id
)

si

ge
tS

al
es

P
ric

e(
)

sp
ric

e

se
tS

al
es

P
ric

e(
sp

ric
e)

co
m

m
it(

)

pr
od

uc
tW

ith
S

to
ck

Ite
m

TO

ne
w

re
qu

ire
s:

s.
ge

tId
()

==
si

.g
et

Id
()

O
bj

ec
t i

s
fil

le
d

by
:

re
su

lt
=

Fi
llT

ra
ns

fe
rO

bj
ec

ts
.fi

llP
ro

du
ct

W
ith

S
to

ck
Ite

m
TO

(s
i);

ne
w

re
su

lt:
pr

od
uc

tW
ith

S
to

ck
Ite

m
TO

<<
co

nn
ec

ts
>>

pe
rs

is
ta

nc
eI

f
st

or
eQ

ue
ry

If
si

:S
to

ck
Ite

m
s:

S
to

ck
Ite

m
TO

st
or

ei
f

F
ig

.
5
.
S
eq

u
en

ce
D

ia
g
ra

m
fo

r
U

se
C

a
se

7

284 A. Appel et al.

”requires” at the according interfaces. An ”assures” defines, that this component
can provide these interfaces for other components which require it. On the other
hand, ”requires” provides the counterpart to ”assures” and defines that this
component needs the ”required”interface from another component. The numbers
at the port names show whether the corresponding interface is required more
than once or whether it can be assured by the component more than once.
Afterwards the operational behaviour for the assured interfaces of the component
is specified by using a textual description according to the DisCComp system
model. The operational behaviour for the required interfaces is specified by OCL
code that is embedded into that textual description. It is structured into four
consecutive sections:

1. Specifier Mapping Section: It defines the mapping between required and
assured interfaces components inside the specified component.

2. Initialization Section: Here, the initial instantiation of interfaces is specified.
3. Assured Interfaces Section: This section contains the behavioural specifica-

tion of assured interfaces.
4. Required Interfaces Section: This section contains the contracts of required

interfaces.

We will illustrate this structure by the following components of the modelled
cutout of the CoCoME.

11.3.4 Specification of Component Inventory::Application::Store

According to Fig. 6 this component assures the interfaces ProductWithStock-
ItemTO and StoreIf. Furthermore it ”requires” several interfaces to work cor-
rectly, namely PersistenceIfR, StoreQueryIfR, StockItemR, TransactionContextR
and PersistenceContextR. Omitted multiplicities indicate single instances (multi-
plicity of one).

Since an atomic component is not wired in order to form some more complex
and surrounding component, a specifier mapping section in its textual specifica-
tion would be empty. As a consequence, we can omit the specifier mapping for
this component. Listings 11.1 and 11.2 describe the remaining sections.

1 COMPONENT Inventory::Application::Store
2
3 INITIALIZATION
4 storeIf := NEW INTERFACE StoreIf;
5
6 ASSURES
7 INTERFACE StockItemTO
8 METHOD getId():long
9 RETURN VALUE OF self.id TO CALLER;

10 END METHOD
11 //... further methods omitted here
12 END INTERFACE
13

Modelling the CoCoME with DisCComp 285

14 INTERFACE ProductWithStockItemTO
15 METHOD getId():long
16 RETURN VALUE OF self.id TO CALLER;
17 END METHOD
18
19 METHOD getSalesPrice(): double
20 RETURN VALUE OF self.salesPrice TO CALLER;
21 END METHOD
22 //... further methods omitted here
23 END INTERFACE
24
25 INTERFACE StoreIf
26 METHOD changePrice(StockItemTO stockItemTO):

ProductWithStockItemTO
27 result: ProductWithStockItemTO := NEW INTERFACE

ProductWithStockItemTO;
28 pctx: PersistenceContextR := persistenceIfR.

getPersistenceContext();
29 tx: TransactionContextR := pctx.

getTransactionContext();
30 tx.beginTransaction();
31 si: StockItemR := storequery.queryStockItemById(

stockItemTO.getId())
32 IF (si != NULL) THEN
33 si.setSalesPrice(stockItemTO.getSalesPrice());
34 //copy data to result transfer object
35 ELSE
36 result := NULL;
37 ENDIF
38 tx.commit();
39 pctx.close();
40 CONNECT result TO CALLER AND REASSIGN;
41 END METHOD
42 //... further methods omitted here
43 END INTERFACE
44
45 END ASSURES

Listing 11.1. Operational Behaviour of Assured Interfaces of Inventory::Application::
Store

The section of assured interfaces starts with ASSURES and contains the inter-
faces being assuredby the component. Single interface blocks startwith INTERFACE
ifName and end with END INTERFACEwhile each method provided by the interface
starts with METHOD methodname (PARAMETERS):RETURNTYPE and ends with END
METHOD. Then the ASSURES block is closed by END ASSURES (see Listing 11.1).

Identifiers from the component diagram can be used here as, for example, in
changePrice(...) of the interface StoreIf. The instance persistenceIfR is
used to get the persistence and transaction contexts.After that, themethodqueries

286 A. Appel et al.

<<component>>
Inventory::Application::Store

PersistenceIfR

StoreQueryIfR

StockItemR

ProductWithStockItemTO

productWithStockItemTO[*]

StoreIf

storeIf

TransactionContextR

PersistenceContextR

<<assures>>

<<requires>>

transactionContextR[*]
storeQueryIfR

persistenceContextR[*]stockItemR[*]
persistenceIfR

StockItemTO

stockItemTO[*]

productR[*]

ProductR

Fig. 6. Static View of Component Inventory::Application::Store

the data layer for the stock item and changes its price. The result is returned and
reassigned. Thus, the according instance of ProductWithStockItemTO, which was
created during the method call, will be passed to the calling component.

TheASSURESblockisfollowedbytheREQUIRESblockforthiscomponent(seeListing
11.2), which also encapsulates interface and method blocks. Instead of operational
method bodies, the method blocks contain pre- and/or postconditions in OCL. For
example, the postcondition for queryStockItemById(long) states that if there
is a stock item with the given id, it will be returned, otherwise the result is null6.

The initialization section specifies the creation of a single StoreIf instance
during the creation of a component instance.

The end of the component description is declared by END COMPONENT.
In the following, for the sake of brevity, we will show incomplete specifica-

tions of the modelled components, interfaces, and methods that are nevertheless
sufficient to cover UC 7.

47
48 REQUIRES
49
50 INTERFACE PersistenceIfR
51 METHOD getPersistenceContext():PersistenceContext
52 Post: result!=NULL
53 END METHOD
54 END INTERFACE
55
56 INTERFACE StockItemR
57 METHOD getId():long
58 Post: result = self.getId()@pre

6 The postcondition assumes an invariant which states that the ID of a stock item is
unique.

Modelling the CoCoME with DisCComp 287

59 END METHOD
60
61 METHOD setSalesPriceR(real salesPrice):void
62 Pre: salesPrice >0
63 Post: self.getSalesPrice()=salesPrice
64 END METHOD
65 END INTERFACE
66
67 INTERFACE StoreQueryIfR
68 METHOD queryStockItemById(long sId): StockItem
69 Pre: sId >= 0
70 Post: let queriedItems : Set(StockItemR) =

stockItemR−>select(s |s.getId()=sId) in
71 if queriedItems−>notEmpty then
72 result = queriedItems−>first();
73 else
74 result = NULL
75 endif
76 END METHOD
77 END INTERFACE
78
79 INTERFACE TransactionContextR
80 METHOD beginTransaction(): void
81 Post: // Transaction is started
82 END METHOD
83
84 METHOD commitTransaction(): void
85 Post: // Transaction is commited
86 END METHOD
87
88 METHOD rollback():void
89 Post: //Rollback executed
90 END METHOD
91 END INTERFACE
92
93 INTERFACE PersistenceContextR
94 METHOD getTransactionContext(): TransactionContext
95 Post: result != NULL
96 END METHOD
97
98 METHOD close():void
99 POST: //Close the Persistence context

100 END METHOD
101 END INTERFACE
102 END REQUIRES
103
104 END COMPONENT

Listing 11.2. Operational Behaviour of Required Interfaces of Inventory::Application::
Store

288 A. Appel et al.

11.3.5 Specification of Component Inventory::Data::Persistence

The component Inventory::Data::Persistence provides services that deal with per-
sisting and storing objects into a database as well as managing transactions.
It assures a single instance interface PersistenceIf which provides methods for
clients to get the persistence context. This interface again enables us to create
transaction contexts which contains methods to create and commit transactions.

Fig. 7. Static View of Component Inventory::Data::Persistence

Since this component is a rather technical one and externally provided in
larger parts, we were not able to model the behaviour properly by analyzing the
CoCoME code. We simplify its behaviour by only specifying those methods that
create instances of the corresponding context interface instances.

1
2 COMPONENT Inventory::Data::Persistence
3
4 INITIALIZATION
5 persistenceRole.persistenceIf := NEW INTERFACE

PersistenceIf;
6
7 ASSURES
8
9 INTERFACE TransactionContext

10 METHOD beginTransaction() : void
11 //external behaviour, no operational description here
12 END METHOD
13
14 METHOD commit() : void
15 //external behaviour, no operational description here
16 END METHOD
17
18 METHOD rollback() : void
19 //external behaviour, no operational description here
20 END METHOD
21
22 METHOD isActive() : Boolean
23 //external behaviour, no operational description here

Modelling the CoCoME with DisCComp 289

24 END METHOD
25 END INTERFACE
26
27
28 INTERFACE PersistenceIf
29 METHOD getPersistenceContext(): PersistenceContext
30 result : PersistenceContext := NEW INTERFACE

PersistenceContext;
31 CONNECT result TO CALLER AND REASSIGN;
32 END METHOD
33 END INTERFACE
34
35 INTERFACE PersistenceContext
36 METHOD getTransactionContext():TransactionContext
37 result : TransactionContext := NEW INTERFACE

TransactionContext;
38 CONNECT result TO CALLER AND REASSIGN;
39 END METHOD
40
41 //further methods omitted here
42 END INTERFACE
43 END ASSURES
44
45 END COMPONENT

Listing 11.3. Operational behaviour of assured Interfaces of Inventory::Data::
Persistence

11.3.6 Specification of Component Inventory::Data::Store

The component Inventory::Data::Store provides the interfaces StoreQueryIf and
StockItem (see fig. 8). The methods of StoreQueryIf encapsulate methods for
querying persistent objects represented by interfaces like StockItem, Product,
etc. These interfaces provide methods for retrieving and changing their attribute
values. For this reason, it requires technical services like PersistenceIfR, Transi-
tionContextR and PersistenceContextR.

1 COMPONENT Inventory::Data::Store
2
3 ASSURES
4
5 INTERFACE StoreQueryIf
6 METHOD queryStockItemById(long stockId): StockItem
7 StockItem result;
8 //calls to persistence framework which were not

modelled explicitly
9 //the StockItem instance is retrieved from the

database if it exists, otherwise result is set to
NULL

290 A. Appel et al.

10 CONNECT result to CALLER;
11 END METHOD
12 END INTERFACE
13
14
15 INTERFACE StockItem
16 METHOD setSalesPrice(SalesPrice salesPrice): void
17 self.salesPrice:=salesPrice;
18 END METHOD
19 END INTERFACE
20
21 END ASSURES
22
23
24
25 REQUIRES
26
27 INTERFACE PersistenceIfR
28 METHOD getPersistenceContextR(): PersistenceContext
29 Post: result != NULL
30 END METHOD
31 END INTERFACE
32
33 INTERFACE TransactionContextR
34 METHOD beginTransaction(): void
35 Post: //Transaction must be started!
36 END METHOD
37
38 METHOD commit(): void
39 Post: //Transaction committed
40 END METHOD
41 END INTERFACE
42
43 INTERFACE PersistenceContextR
44 METHOD getTransactionContext():TransactionContext
45 Post: result!=NULL
46 END METHOD
47 END INTERFACE
48
49 END REQUIRES
50 END COMPONENT

Listing 11.4. Operational behaviour of assured and required Interfaces of Inventory::
Data::Store

11.3.7 Specification View of Component Inventory::GUI::Store

We have not reconstructed the inner structure of the GUI from the code for
reasons of simplification, thus Inventory::Gui::Store is quite trivial. It only requires
a StoreIf to invoke the changePrice() method.

Modelling the CoCoME with DisCComp 291

Fig. 8. Static View of Component Inventory::Data::Store

11.3.8 Specification of Component Inventory::Data

Inventory::Data represents the data layer (ref. to Fig. 10) of the inventory system.
It consists of Inventory::Data::Persistence and Inventory::Data::Store. The required
interfaces of the inner component Inventory::Data::Store are provided by Inven-
tory::Data::Persistence. All assured interfaces are delegated to inner components
to allow access from the environment, for example from the application layer of
the inventory system.

The specifier mapping for this hierarchical component is described in
Listing 11.5.

1 COMPONENT Inventory::Data
2
3 SPECIFIER MAPPING
4 persistenceRole::PersistenceIfR <−> storeRole::

PersistenceIf
5 persistenceRole::TransactionContextR <−> storeRole::

TransactionContext
6 persistenceRole::PersistenceContextR <−> storeRole::

PersistenceContext

Listing 11.5. Operational behaviour of required Interfaces of Inventory::Data

The specifier mapping simply maps all required interfaces of one component to
its assured pendants at another component, namely the interfaces which assure
what the other one requires, e.g. Data::Persistence::PersistenceIfRwill be
assured by the interface PersistenceIf of the component Data::Store.

11.3.9 Specification of Component Inventory::Application

This hierarchical component (ref. to Fig. 11) consists of Inventory::Application::
Store and Inventory::Application::Reporting and thereby specifies the application

292 A. Appel et al.

<<component>>
Inventory::GUI::Store

<<requires>>

StoreIfR

storeIfR

Fig. 9. Static View of Component Inventory::GUI::Store

Fig. 10. Static View of Component Inventory::Data

layer. We have not modelled Application::Reporting since it is not required by
UC7, so everything it assures or requires is left out.

Once again all assured interfaces of the outer component are delegated to
interfaces of inner components, whereas the new required interfaces may not
contradict or tighten the existing requirements.

Modelling the CoCoME with DisCComp 293

11.3.10 Specification of Component Inventory

This is the hierarchical component which describes the whole system. We left
out Inventory::GUI for graphical reasons, so the diagram in Fig. 12 shows only
the two components Inventory::Application and Inventory::Data. The wiring be-
tween the layers basically reflects the wiring between the components of different

<<component>>
Inventory::Application

<<component>>
ReportingRole :
Inventory::Application::Reporting

ReportingIf

reportingIf

<<assures>>

<<requires>>

StoreQueryIfR

StoreTO

storeTO[*]

EnterpriseTO

enterpriseTO[*]

ReportTO

reportTO[*]

OrderEntryR

ProductOrderR

StockItemR

StoreR

ProductR

PersistenceIfR

EnterpriseQueryIfR

TradingEnterpriseR

ProductSupplierR

ReportingIf

StoreTO

EnterpriseTO

ReportTO

ProductWithStockItemTO

StoreIf

<<assures>>

OrderEntryR

ProductOrderR

StockItemR

StoreR

ProductR

PersistenceIfR

EnterpriseQueryIfR

TradingEnterpriseRStoreQueryIfR

<<requires>>

ProductSupplierR

<<component>>
StoreRole :
Inventory::Application::Store

StockItemR

ProductWithStockItemTO

productWithStockItemTO[*]

StoreIf

storeIf

PersistenceContextR

<<assures>>

<<requires>>

PersistenceIfR

StoreQueryIfR

TransactionContextR

<<delegates>>

<<delegates>>

<<assures>>

TransactionContextR

PersistenceContextR

ProductR

StockItemTOStockItemTO

stockItemTO[*]

Fig. 11. Static View of Component Inventory::Application

294 A. Appel et al.

<<component>>
ApplicationLayer :
Inventory::Application

ReportingIf

StoreItemTO

ProductWithStockItemTO

StoreIf

PersistenceIfR

StoreQueryIfR

ProductR

<<component>>
Inventory

<<component>>
DataLayer : Inventory::Data

StoreQueryIf

StockItem

PersistenceIf

<<assures>>

PersistenceContext

TransactionContext

PersistenceContextR

TransactionContextR

ReportingIf

StoreItemTO

ProductWithStockItemTO

StoreIf

<<delegates>>

<<assures>>

<<delegates>>

Product

StockItemR

<<requires>>

Fig. 12. Static View of Component Inventory

layers. For instance, the component Inventory::Application::Store requires inter-
faces of Inventory::Data::Store or Inventory::Data::Persistence (s. Fig. 6). Only the
interfaces of the application layer are delegated to the environment, since the
application layer will control access by different applications to the data layer.

1 COMPONENT Inventory
2
3 SPECIFIER MAPPING
4 Application::PersistenceIfR <−> Data::PersistenceIf

Modelling the CoCoME with DisCComp 295

5 Application::TransactionContextR <−> Data::
TransactionContext

6 Application::PersistenceContextR <−> Data::
PersistenceContext

7 Application::StoreQueryIfR <−> Data::StoreQuery
8 Application::StockItemR <−> Data::StockItem
9 Application::ProductR <−> Data::Product

Listing 11.6. Specifier Mapping and Initialization of Inventory

11.4 Transformations

During research work regarding the DisCComp approach, the tool DesignIt was
developed which includes a generator for generating executable code from XML-
based representations of specifications as described in [7]. It is controlled by
templates which enable it to generate code for different target languages. A
detailed description of the code generator is included in [16] and [17]. Model-to-
model transformations are not yet considered.

11.5 Analysis

As mentioned above, we aim at a modelling approach which allows us to spec-
ify components in a modular way. To compose components, we have to check
whether the wiring of components is correct, meaning whether the specified con-
tracts are fulfilled, at design time. For this purpose, the operational behaviour
specifications of assured interfaces are analyzed and used to generate some repre-
sentation which can be compared to the abstract behaviour specifications of the
corresponding required interfaces. By using a more intuitive operational descrip-
tion technique and automatic generation, we hope to avoid the disadvantage of
specifying the abstract contracts of the wired interfaces twice.

11.6 Tools

As mentioned above, the existing tool DesignIt is based upon the original spec-
ification technique of [7]. Tool support for that approach exists in the form of
modelling tools, consistency checking, code generation, and runtime and test-
ing environments. Most of this support has to be adapted to the specification
techniques we have proposed here.

11.7 Summary

In this chapter we presented the DisCComp model for modelling distributed
and concurrent component-based systems. It is separated into the system model
and a description techniques which enables us to specify such systems. The
proposed description technique differs greatly from the original proposals in the

296 A. Appel et al.

DisCComp context (s. [7]). Although it is still young, we can summarize some
lessons learned by applying it to the common modelling example.

First, the imperative specification of assured interfaces has reduced the ef-
fort of specifying both, assured and required interfaces. The imperative way of
specifying them seems to be more intuitive. But secondly, it still causes some
overhead in comparison to specifications without contracts which seems to be
unavoidable to get modular specifications.

The overall approach still lacks of tool support which is part of the future work.
Especially program analysis and the checking of component wirings will have to
be theoretically founded and embedded into the approach and realized by tools.

References

1. Aleksy, M., Korthaus, A., Schader, M.: Implementing Distributed Systems with
Java and CORBA. Springer, Heidelberg (2005)

2. Juric, M.B.: Professional J2EE EAI. Wrox Press (2002)
3. Beer, W., Birngruber, D., Mössenböck, H., Prähofer, H., Wöß, A.: Die .NET-

Technologie. dpunkt.verlag (2006)
4. Harel, D., Rumpe, B.: What’s the semantics of semantics. IEEE Computer 37(10),

64–72 (2004)
5. Broy, M., Len, K.S.: Specification and Development of Interactive Systems.

Springer, Heidelberg (2001)
6. Bergner, K., Broy, M., Rausch, A., Sihling, M., Vilbig, A.: A formal model for com-

ponentware. In: Foundations of Component-Based Systems. Cambridge University
Press, Cambridge (2000)

7. Rausch, A.: Componentware: Methodik des evolutionären Architekturentwurfs.
PhD thesis, Technische Universität München (2001)

8. Seiler, M.: UML-basierte Spezifikation und Simulation verteilter komponenten-
basierter Anwendungen. Master’s thesis, Technische Universität Kaiserslautern
(2005)

9. Rausch, A.: DisCComp - A Formal Model for Distributed Concurrent Components.
In: Workshop Formal Foundations of Embedded Software and Component-Based
Software Architectures (FESCA 2006) (2006)

10. Meyer, B.: Applying ’design by contract’. IEEE Computer 25(10) (1992)
11. Object Management Group (OMG): Unified Modeling Language (UML) 2.0 Super-

structure Specification (2005), http://www.omg.org/docs/formal/05-07-04.pdf
12. Object Management Group (OMG): Meta Object Facility Core Specification Ver-

sion 2.0 (2006), http://www.omg.org/docs/formal/06-01-01.pdf
13. Rausch, A.: Design by Contract + Componentware = Design by Signed Contract.

Journal of Object Technology 1(3) (2002)
14. Object Management Group (OMG): Object Constraint Language (OCL) Specifi-

cation (2006), http://www.omg.org/docs/formal/06-05-01.pdf
15. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Soft-

ware Architecture. A System of Patterns, vol. 1. John Wiley, Chichester (1996)
16. Kivlehan, D.: DesignIt: Code Generator based on XML and Code Templates. Mas-

ter’s thesis, The Queen’s University of Belfast (2000)
17. Rausch, A.: A Proposal for a Code Generator based on XML and Code Templates.

In: Proceedings of the Workshop of Generative Techniques for Product Lines, 23rd
International Conference on Software Engineering (2001)

http://www.omg.org/docs/formal/05-07-04.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf

	Modelling the CoCoME with DisCComp
	Introduction
	Goals and Scope of the Component Model
	Modeled Cutout of CoCoME
	Benefit of the Modeling
	Effort and Lessons Learned

	Component Model
	The DisCComp System Model
	The DisCComp Description Technique

	Modelling the CoCoME
	Static View
	Behavioural View
	Component Specifications
	Specification of Component Inventory::Application::Store
	Specification of Component Inventory::Data::Persistence
	Specification of Component Inventory::Data::Store
	Specification View of Component Inventory::GUI::Store
	Specification of Component Inventory::Data
	Specification of Component Inventory::Application
	Specification of Component Inventory

	Transformations
	Analysis
	Tools
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

