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Abstract. Distributed Java applications use remote method invocation
as a communication means between distributed objects. The ProActive
library provides high level primitives and strong semantic guarantees for
programming Java applications with distributed, mobile, secured com-
ponents. We present a method for building finite, parameterized models
capturing the behavioural semantics of ProActive objects. Our models
are symbolic networks of labelled transition systems, whose labels repre-
sent (abstractions of) remote method calls. In contrast to the usual finite
models, they encode naturally and finitely a large class of distributed
object-oriented applications. Their finite instantiations can be used in
classical model-checkers and equivalence-checkers for checking temporal
logic properties in a compositional manner. We are building a software
tool set for the analysis of ProActive applications using these methods.

1 Introduction

We aim at developing methods for the analysis and verification of behavioural
properties of distributed applications, that would be applicable in automatic
tools, on a real language. At the heart of such tools lie sophisticated static
analysis techniques, and abstraction principles, that enable the generation of
finitary models of the behaviour from the source code of the application. A good
candidate as a behavioural model would be a process algebra with at least value-
passing features, or even encoding dynamic process and channel creation and
reconfiguration. Still, despite the very important development in the last 20
years of value-passing and high-order process theories, most of them are just too
expressive to be subject to decision procedures, and would not give us models
and algorithms usable in practical tools.

At the same time, a number of analysis tools, model-checkers, equivalence
checkers have been developed, using input formats, in their respective areas;
that have some of the desired features for our work. For example the Promela
language, input of the SPIN model-checker, can describe value-passing processes
and channels with data values of simple types or the NTIF format [1] that en-
codes the sophisticated communication between E-LOTOS processes. However,
few of them include compositional structures that would allow to take advantage
of the congruence properties of process algebra models. Outside the value-passing
area, it is worth citing the seminal work by Arnold [2], and the MEC language
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and analysis tool, that permits a direct and finite representation of the synchro-
nisation constraint between processes.

Our approach aims at combining the value-passing and the synchronisation
product approaches. We define a model featuring parameterized processes, value-
passing communication, behaviours expressed as symbolic labelled transition sys-
tems, and data-values of simple countable types. We have developed a graphical
language close to this model, that is powerful and natural enough to serve as
a specification language for distributed applications [3]. We argue that the same
model is adequate as the target for automatic model generation for distributed
applications. As an illustration of the approach, we define the generation proce-
dure [4] for the Java/ProActive framework. One key feature is that the design
of the model ensures that it can be automatically and finitely produced from an
”abstract” version of the application code, in which data have been abstracted
to simple types. Then, given a finite instantiation of the variables in the model,
we have an automatic procedure producing a (hierarchical) finite instantiation
of the model, suitable for use e.g. in a standard model-checker.

Our method can be applied in the following way: starting with the source
code of a real application, the developer would specify an abstraction of its
data-types, and transform his code accordingly. The work in the Bandera tool
set [5] shows how this step can be largely assisted by the tool. At this level,
the design of the abstraction can be tuned specifically to the properties one
wishes to verify, in order to reduce the size of the generated models. From this
abstract code, static analysis techniques, plus our model generation procedure,
produces automatically a parameterized network. Then the developer, for each
property he wants to prove, will produce a finite network, using a notion of
instantiation that is again an abstract interpretation in the style of [6], before
checking the property (or its corresponding instantiation) with a model-checker.
The instantiation could even be performed on-the-fly, if the checker offers this
possibility. The properties can be themselves specified as parameterized scenarios
in our graphical language, or as parameterized formulas in a temporal logics.

In section 2, we define parameterized labelled transition systems and syn-
chronisation networks, their instantiations to pure LTS and networks, and the
corresponding synchronisation product. Then we sketch a generic way of defin-
ing finite instantiations as abstract interpretations of the parameterized models.
In section 3, we specialise this model for representing the behaviours of Java
distributed applications built using the ProActive framework, and give an algo-
rithm for computing the models from static analysis of the code. In section 4, we
give an example of model generated for a small ProActive application. Finally,
we conclude about our work and future research directions.

2 Parameterized Models

We give the behavioural semantics of programs in terms of labelled transition
systems. We specify the composition of LTSs by synchronisation networks [2],
and give their semantics in term of a synchronisation product.



Parameterized Models for Distributed Java Objects 45

2.1 Theoretical Model

We start with an unspecified set of communications Actions Act, that will be
refined later.

We model the behaviour of a process as a Labelled Transition System (LTS)
in a classical way [7]. The LTS transitions encode the actions that a process can
perform in a given state.

Definition 1 LTS. A labelled transition system is a tuple (S, s0, L,→) where S
is the set of states, s0 ∈ S is the initial state, L ⊆ Act is the set of labels, → is
the set of transitions: →⊆ S × L × S. We write s

α−→ s′ for (s, α, s′) ∈ →.

Then we define Nets in a form inspired by [2], that are used to synchronise
a finite number of processes. A Net is a form of generalised parallel operator,
and each of its arguments are typed by a Sort that is the set of its possible
observable actions.

Definition 2 Sort. A Sort is a set I ⊆ Act of actions.

A LTS (S, s0, L,→) can be used as an argument in a Net only if it agrees with
the corresponding Sort (L ⊆ Ii). In this respect, a Sort characterises a family of
LTSs which satisfy this inclusion condition.

Nets describe dynamic configurations of processes, in which the possible syn-
chronisations change with the state of the Net. They are Transducers, in a sense
similar to the open Lotos expressions of [8]. They are encoded as LTSs which la-
bels are synchronisation vectors, each describing one particular synchronisation
of the process actions:

Definition 3 Net. A Net is a tuple < AG, I, T > where AG is a set of global
actions, I is a finite set of Sorts I = {Ii}i=1,...,n, and T (the transducer) is a LTS
(TT , s0t , LT ,→T ), such that ∀−→v ∈ LT ,−→v =< lt, α1, . . . , αn > where lt ∈ AG and
∀i ∈ [1, n], αi ∈ Ii ∪ {idle}.

We say that a Net is static when its transducer vector contains only one state.
Note that a synchronisation vector can define a synchronisation between one, two
or more actions from different arguments of the Net. When the synchronisation
vector involves only one argument, its action can occur freely.

The semantics of the Net construct is given by the synchronisation product:

Definition 4 Synchronisation Product. Given a set of LTS {LTSi =
(Si, s0i , Li,→i)}i=1...n and a Net < AG, {Ii}i=1...n, (ST , s0T , LT ,→T ) >, such
that ∀i ∈ [1, n], Li ⊆ Ii, we construct the product LTS (S, s0, L, →) where
S = ST ×

∏n
i=1(Si), s0 = s0T ×

∏n
i=1(s0i), L = AG, and the transition relation

is defined as:
→def= {s lt−→ s′| s =< st, s1, . . . , sn >, s′ =< s′t, s

′
1, . . . , s

′
n >,

∃ st

−→v−→ s′t ∈→T ,−→v =< lt, α1, . . . , αn >, ∀i ∈ [1, n], (αi �= idle ∧ si
αi−→ s′i ∈→i

) ∨ (αi = idle ∧ si = s′i)



46 Tomás Barros et al.

Note that the result of the product is a LTS, which in turn can be synchro-
nised with other LTSs in a Net. This property enables us to have different levels
of synchronisations, i.e. a hierarchical definition for a system.

Next, we introduce our parameterized systems which are an extension from
the above definitions to include parameters. These definitions are connected to
the semantics of Symbolic Transition Graph with Assignment (STGA) [9].

Parameterized Actions have a rich structure, for they take care of value
passing in the communication actions, of assignment of state variables, and of
process parameters. In order to be able to define variable instantiation as an
abstraction of the data domains (in the style of [6]), we restrict these domains
to be simple (countable) types, namely: booleans, enumerated sets, integers
or intervals over integers and finite records, arrays of simple types.

Definition 5 Parameterized Actions are: τ the non-observable action, M
encoding an observable local sequential program (with assignment of variables),
?m(P, x) encoding the reception of a call to the method m from the process P (x
will be affected by the arguments of the call) and !P.m(e) encoding a call to the
method m of a remote process P with arguments e.

A parameterized LTS is a LTS with parameterized actions, with a set of pa-
rameters (defining a family of similar LTSs) and variables attached to each state.
Parameters and variables types are simple. Additionally, the transitions can be
guarded and have a resulting expression which assigns the variables associated
to the target state:

Definition 6 pLTS. A parameterized labelled transition system is a tuple
pLTS = (K, S, s0, L,→) where:

K = {ki} is a finite set of parameters,
S is the set of states, and each state s ∈ S is associated with a finite set of

variables −→vs ,
s0 ∈ S is the initial state,
L = (b, α(−→x ),−→e ) is the set of labels (parameterized actions), where b is

a boolean expression, α(−→x ) is a parameterized action, and −→e is a finite set of
expressions.

→ ⊆ S × L × S is the set of transitions:

Definition 7 Parameterized Sort. A Parameterized Sort is a set pI of pa-
rameterized actions.

Definition 8 A pNet is a tuple < pAG, H, T > where : pAG is the set of global
parameterized actions, H = {pIi, Ki}i=1..n is a finite set of holes (arguments).
The transducer T is a pLTS (KG, ST , s0T , LT ,→T ), such that ∀−→v ∈ LT ,−→v =<
lt, α

k1
1 , . . . , αkn

n > where lt ∈ pAG , αi ∈ pIi ∪ {idle} and ki ∈ Ki.

The KG of the transducer is the set of global parameters of the pNet. Each
hole in the pNet has a sort constraint pIi and a parameter set Ki, expressing that
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Q_get(c)

?Q_get(C(c):Consumer)
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?R_get(B)
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  PUT(p,x)
!C(c).R_get(B)

?R_get(B)

!B.Q_get(C(c))

!B.Q_get(C(c))

!C(c).R_get(B);

!B.Q_put(P(p),x:int)

!B.Q_put(P(p),x)

N:[0,Max]

p:[1,maxProd]
c:[1,maxCons]

Producers−Consumers

Fig. 1. Graphical representation of parameterized networks

this ”parameterized hole” corresponds to as many actual arguments as necessary
in a given instantiation. In a synchronisation vector −→v =< lt, α

k1
1 , . . . , αkn

n >,
each αki

i corresponds to the αi action of the ki-nth corresponding argument LTS.
In the framework of this paper, we do not want to give a more precise def-

inition of the language of parameterized actions, and we shall not try to give
a direct definition of the synchronisation product of pNets/pLTSs. Instead, we
shall instantiate separately a pNet and its argument pLTSs (abstracting the do-
mains of their parameters and variables to finite domains, before instantiating for
all possible values of those abstract domains), then use the non-parameterized
synchronisation product (Definition 4). This is known as the early approach to
value-passing systems [7, 10].

2.2 Graphical Language

We provide a graphical syntax for representing static Parameterized Networks,
that is a compromise between expressiveness and user-friendliness. We use
a graphical syntax similar to the Autograph editor [11], augmented by elements
for parameters and variables : a pLTS is drawn as a set of circles representing
states and edges representing transitions, where the states are labelled with their
set of variables (−→vs) and the edges are labelled by [b] α(−→x ) → −→e (see Defini-
tion 6).

An static pNet is represented by a set of boxes, each one encoding a particular
Sort of the pNet. These boxes can be filled with a pLTS satisfying the Sort
inclusion condition. Each box has ports on the border, represented by bullets,
each one encoding a particular parameterized action of the Sort.

Fig. 1 shows an example of such a parameterized system. It is a simple
consumer-producer system with a single buffer and an arbitrary number of con-
sumers and producers. In Fig. 1, the right-most link is a communication name
Q put from process Producer(p) to the buffer B, carrying a value x:int that
the developer has chosen to observe as the event PUT(p,x).
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The edges between ports in Figure 1 are called links. Links express syn-
chronisation between internal boxes or to external processes. Each link encodes
a transition in the Transducer LTS of the pNet.

The sequential code encoding the control and data-flow

if  x=0 then

else ...
 goto s1;

x:int

s3s2s1

within a process is carried by macro-transitions, with multi-
ple output states. We restrict them to sequential programs
without communication events. This way, we avoid dupli-
cating code in sequential transitions and at the same time
avoid the extra interleaving that would be created by macro-
transitions containing visible events.

We have used this language extensively in [3] to specify and verify a large
distributed system from a realistic case study.

2.3 Instantiations as Abstractions

From a parameterized network, we want to construct abstract models, with
parameters in abstract domains simpler than the original (concrete) domains.
Ultimately the parameter domains should be finite, allowing us to use standard
model-checking tools on the abstract model. And we want this abstraction to be
consistent, in the sense that some families of properties (typically reachability)
are preserved by the abstraction. Thus from the reachability of some abstract
event in the abstract domain, we can conclude to the reachability of some con-
crete representative of this event in the original model.

In a slightly different settings, [6] have shown how to define abstractions on
value domains, in such a way that they induce safe abstractions on value-passing
processes (preserving safety and liveness properties). We shall use a similar con-
struction to define instantiations as safe abstractions of our simple data types:
an instantiation is a partition (a total subjection) from a simple data type onto
an abstract domain; lifting the instantiation to sets of values yields a Galois
connection.

3 Application: Models for Distributed Active Objects

We now specialise our parameterized models, for representing the behaviour of
distributed applications. We choose a specific framework providing high-level
distribution and communication primitives for distributed objects, namely the
ProActive library. ProActive is also endowed with a formal semantics, and the
library services provide strong guarantees on the communication mechanism,
that helps a lot in defining our model generation method.

It should be clear that our parameterized models could also be used for other
languages or other frameworks. However, providing a similar work for languages
with weaker semantical properties (like Java with standard RMI, or C with basic
sockets) would definitely be more difficult, and the various properties of our
approach (finiteness, abstraction, compositionality) would not be guaranteed.
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3.1 Java and ProActive

ProActive [12] is a pure Java implementation of distributed active objects with
asynchronous remote method calls and replies by means of future references.
A distributed application built using ProActive is composed of a quantity of
active objects (or activities), each one having a distinguished entry point, the
root, accessible from anywhere. All the other members of an active object (they
are called passive objects) can not be referenced directly from outside. Each
active object owns its own and unique thread of control and the programmer
decides the order to serve (or not) incoming calls to its methods. Each active
object has a pending queue where are dropped the incoming requests to be
served by the control thread. The requests are done via a rendez-vous phase so
there is a guaranty of delivery and a conservation of the order of incoming calls.
The responses (when relevant) are always asynchronous with replies by means
of future references; their synchronisation is done by a mechanism of wait-by-
necessity.

ProActive provides primitives to dynamically create and migrate active ob-
jects. Dynamic creation is naturally represented in our parameterized models.
Migration is not treated in this work: the semantics of ProActive ensures trans-
parent active object migration and remote creation.

3.2 Data Abstraction

The aim in this work is to generate parameterized models encoding the be-
haviour of ProActive distributed objects. The events that we want to observe in
these models are naturally the communication between activities, plus eventually
specific local events that the user will specify.

Being interested in automatic procedure for generating finitely representa-
tions of the behaviours, and working with a real language, we have a prob-
lem with the representation of potentially infinite data objects (including user-
defined classes). So we require that the source code be first transformed by
abstraction of the data-types of the application into the ”simple types” of our
model.

This transformation cannot be fully automatic, and it will require some in-
put from the user to specify the abstraction of all types in the code (Fig. 2).
Furthermore, it will be interesting at this step to abstract away from any data
information that would not be significant for the properties that the user wants
to prove. It has been shown, e.g. in the Bandera tool [5], how such data ab-
straction can be implemented as code transformation, either at source code or
intermediate code level.

3.3 Code Analysis

The generation of our behavioural models from the source code requires sophis-
ticated analysis, starting with usual static analysis functions. Class analysis de-
termines the possible class(es) of each variable in the program, and the possible
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Abstracted
ProActive
code

Behavioural rules

Static analysis

Static analysis

Data Abstra
ctio

n

Code MCG
eXtended

parameterized model

ProActive

pNets
− boxes
− links

pLTS:
− behaviours
− queues
− proxies

Fig. 2. Building models of distributed active objects

identiti(es) of the method called at each invocation point. Then we use Control
Flow analysis to compute the Method Call Graph, and Data Flow analysis to
track the values of parameters. The adaptation of these methods to ProActive
code are not trivial, in particular because the proxy mechanism of the library
include a lot of dynamic code generation, and we must emulate its effects during
static analysis.

Language restrictions : For the sake of this paper, we shall not consider the treat-
ment of exceptions and arrays. Other aspects, such as Java concurrency features
(threads, monitors), reflection and dynamic class loading, will not be allowed.
These features are important indeed in the implementation of the library, but
are not needed for the library user.

The rest of this section describes the steps of the model construction. Start-
ing from the Abstract ProActive code, we build a (static and finite) network
description, an eXtended Method Call Graph (XMCG) for each active object
class, a local pNet for each activity, and finally a pLTS for each method.

3.4 Step 1: Topology and Communication, Extraction
of the Global Network

Static Topology: In general the topology of a distributed ProActive application is
dynamic and unbounded, because active objects can be created dynamically. We
compute a static approximation of this topology, in the form of a parameterized
network based on : the (finite) set of active object classes, the (finite) set of
active object creation points, and the (finite) set of program points where an
active object emits a remote request.

Boxes: Given a set of active object classes, a set of creation points, we obtain
a set of (parameterized) active objects {Oi}. For each active object creation
point, we build a Box B(Oi(params)).



Parameterized Models for Distributed Java Objects 51

Body

reQuest
M,so,args

Serve
M,co,fut,so,args,mode

Proxy

reQuest
M,co,fut,so,args

Proxy

M,co,fut,so,val
Response

Body

M,fut,so,valUse

Queue

Client role

Queue

Server Role

Fig. 3. Communication between two activities

Communication Protocol: Fig. 3 illustrates the communication corresponding
to a request addressed to a remote activity, its processing and the return of its
result. A method call to a remote activity goes through a proxy, that locally
creates a ”future” object, while the request goes to the remote request queue.
The request arguments include the references to the caller and callee objects,
but also to the future. It also contains a deep copy of the method’s arguments,
because there is no sharing between remote activities. Later, the request may
eventually be served, and its result value will be sent back and used to update
the future value.

Building the Communication Links: In the following we denote m a message
containing : the (fully qualified) method name, references to the caller, future,
callee (parameterized) objects, and either the parameters or the return value of
the message.

For each active object class, we analyse the relevant source code to compute
its ports and the corresponding links :

1. The set of public methods of the active object main class gives us the set
of ”receive request” ports ?Q m of its box, and their response ports (when
applicable) !o.R m.

2. We then identify in the code the variables carrying ”active objects” values,
using data flow analysis techniques, and taking into account their creation
parameters.

3. For each call to a method of a remote object, we add a ”send request” port
!o.Q m to the current box, linked to the corresponding port of the remote
object box, and if this method expects a result, a ”response” port ?R m.

4. For each local event that we want to observe (e.g. some local method call),
we add a ”local” port Call m to the current box.

5. For each pair of opposite actions such as ?Q m - !o.Q m, we build a link (in
this case labelled Q m).

Fig. 4 gives an example of such a pNet, computed from the ProActive code
presented in section 4.
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Fig. 4. Producers/Consumers: global network

3.5 Step 2: eXtended Call Graphs

For each active object class, we define an eXtended Method Call Graph (XMCG)
structure containing the results of usual class and control flow analysis (on all
classes used by this activity), sequential code encoding the data-flow, and spe-
cific constructs relative to the ProActive features namely: active objects, future
objects, remote requests and responses, mechanism for the selection of requests
in a request queue.

An Extended Method Call Graph is a tuple:
〈
M, m0, V,

calls−−−→C ,
succs−−−→T

〉

where M is a set of fully qualified methods names, m0 ∈ M is the initial method
name, V is a set of nodes, and the two transition relations are respectively the
inter-procedural (method calls) and intra-procedural (sequential control) trans-
fer relations.

The nodes in V are typed as:

– ent (c, m, args) the entry node of method m ∈ M , called by object c,
– call (calls) encoding method calls (local or remote),
– pp (lab) encoding an arbitrary program point with label lab,
– ret (val) encoding the return node of a method with result value val,
– serve (calls, mset, pred, mode) encoding the selection of the request m ∈

mset from the local request queue,
– use (fut, val) encoding the point of utilisation of a future value.

All nodes have at most one outgoing transfer edge < succs(n) = MT, N >,
with < n, MT, N > ∈ succs−−−→T in which the meta-transition MT is a sequential
program with a non-empty set of resulting states N .

Call and Serve nodes have a set of nondeterministic outgoing method call
edges, calls(n), with ∀c in calls(n), ∃n′. < n, c, n′ > ∈ calls−−−→C , each call being
either:

– Remote (o.m, args, var, fut) for a call to method m of a remote object o
through the proxy fut,

– Local (o.m, args, var) for a call to method m of a local object o,
– Unknown (o.m, args, var, fut) when it cannot be decided statically whether

the call is local or remote.
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3.6 Step 3: A pNet for the Behaviour of Each Active Object Class

An activity is composed of a body (itself decomposed as we shall see later),
a model of its queue, and a model of the proxies (future objects) for each remote
method call in its code. The activity model is a pNet synchronising these 3 parts.

Methods structure The essential choice for modelling the behaviour of programs
is to get a finite, parameterized representation that take into account the pa-
rameters of recursive methods, and the representation of objects in the store.
We give the rational for these two points, before describing the procedure for
building the model of an activity behaviour.

We choose here to consider each method as a parameterized process, method
calls being local synchronisation between specific instantiations of the processes.
This simple scheme trivially ensures that we get a finite parameterized network.
For each method call and for each return from a call, we generate in the activity
pNet a synchronisation event between the 2 processes involved.

Objects and Stores There is one common store for each activity. Each object
creation point in the code corresponds to a number of objects in the store. If the
static analysis can determine precisely this number, we shall use it, otherwise,
we index the object by an integer denoting its creation rank.

Queues The request queue of an active object runs independently of its body,
and is always accepting arriving requests (of correct type) encoded by Q m
actions. It is synchronised with the object body through the services (S m)
actions produced by rule DO-SERVE.

There are several primitives for selecting requests from the queue. The most
frequent way to filter the requests is by the request name, but the programmer

can also build more complex selection filters,
?Q m(co, f, args)
q := put(q, < m, co, f, args >)

q

q := update(q, pred)
in !body.S m(co, f, args))

< m, co, f, args > = select(q, pred)

using the request arguments and/or the sender
identity. He can also decide to serve the requests
in various order or to do some global treat-
ment on the queue after selection e.g.: serve
Oldest (foo), serve Oldest (foo(i), i < 10),
serve Newest (foo, bar) or serve flushNewest
(Move(x, y)).

The various primitives used in a given ac-
tive object define statically a finite partition of
the requests domain. We also collect all selec-

tion/operation modes used in the active object code, within : Modes = {serve,
serveAndF lush} × {Oldest, Newest, Nth}.

The idea is that we can now model the queue as a product of independent
processes, each encoding one set in the partition, and implementing the relevant
operation modes. The model for each part is built in a generic way, as an in-
stantiation of the figure above, in which m, args, pred must be replaced by the
corresponding possible values.
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The most beneficial optimisation comes from the factorisation in separate
queues, and is computed from static analysis by collecting all service primitives
used in a specific active object.

Those queues will be coordinated by the automaton encoding the activity
behaviour. The benefits come from the fact that we avoid to compute this inter-
leaved product independently from its context.

3.7 Step 4: A Model for the Activity Behaviour

The procedure for building the model of a (parameterized) activity is:

1. Compute the set of required static object classes, the XMCG, and the set
of object instances in the store (static object creation points with their pa-
rameters).

2. Build the activity pNet, with one box for each method in the XMCG, and
one-to-one links for method calls. The activity behaviour is functional, be-
cause there is a single thread of execution in the activity; this means that
only one of those boxes has an initial transition that can be fired alone while
others will have to wait to be called.

3. For each method m in the activity, use the Procedure Method-Behav (m,
n, XMCG), where n is the entry node of m in the XMCG, to compute the
corresponding parameterized LTS.

1 Method-Behav (m, n, < M, V ,
calls−−−→C ,

succs−−−−→T >) :
2 Aut.init = {fresh s0}; Map = ∅; Caller = ∅; ToDo = {< n, s0 >}
3 while ToDo �= ∅
4 ToDo.choose < n, s >
5 if Map(n) then DO-LOOP-JOIN
6 else
7 select~n in
8 Ent(c,m,args) : DO-ENTRY
9 Call(calls(n)) : DO-CALL

10 PP(lab) : DO-PP
11 Serve(calls(n),mset,pred,mode): DO-SERVE
12 Use(fut,val) : DO-FUTURE
13 Ret(val) : DO-RETURN
14 unless~n=Ret
15 let MT, N = succs(n) in
16 foreach~ni in~N do
17 fresh~si; ToDo.Add < ni, si >

18 Aut.add~s1
MT )−−−→ S = {si}i

The ToDo set collects all pending MCG nodes, that need to be processed
later, with the corresponding LTS node. Map is the mapping between nodes
of the XMCG, and the corresponding nodes in the created LTS. For all nodes,
MT is a meta-transition encoding the sequential intra-procedural flow. It carries
a piece of sequential program (possibly empty) and has a number (≥ 1) of
target nodes N , from which we create an equal number of LTS nodes S. The s1

LTS node in line 18 is the terminal node created by each of the specific DO-*
procedures (joining all branches created by the procedure when necessary).

Each of the following node-specific procedures sets the s1 for branching the
subsequent transitions, and updates the mapping Map.
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Initialisation : The Caller object is memorised and will be used by the return
nodes.

DO-ENTRY (c, m, args) =
fresh s1; Caller =~c, Map = Map ∪ {n �→ s1}
Aut.add s

?Call m(c,args)−−−−−−−−−−−→ s1

Sequential nodes : PP nodes in the XMCG correspond to program points, e.g.
a label in the source code corresponding to a loop or a join in the program
structure, or a specific passage point that the user has designated. This event
can be made visible in the LTS if we need it for a given proof.

DO-PP (lab) =

if observable(lab) then Aut.add s
Obs(lab)−−−−−−→ (fresh s1), Map = Map ∪ {n �→ s1}

else~s1 =~s

Call nodes : A call node has one or more call transitions, each of them can be
remote or local, and each of them have an optional [Mix] guard, meaning that
its true (remote or local) nature will only be determined at instantiation time.

DO-CALL (calls(n)) =
fresh~s1, Map = Map ∪ {n �→ s1}
foreach call in calls(n)

match call with

"Remote(o.m,args,var,fut)": Aut.add s
!fut.Q m(o,args)−−−−−−−−−−−−→ s1

"Local(o.m,args,var)": Aut.add s
!o.Call m(args)−−−−−−−−−−−→ (fresh s2)

"Unknown(o.m,args,var,fut)": Aut.add s
[Mix]!fut.Q m(o,args)−−−−−−−−−−−−−−−−→ s1

Aut.add s
[Mix]!o.Call m(args)−−−−−−−−−−−−−−−→ (fresh s2)

if local-or-unknown ∩ non-void-result(m) then

Aut.add~s2
?Ret m(o,val)−−−−−−−−−−→ (fresh s3)

var:= val−−−−−−−→ s1

Return nodes : Return nodes are not marked in the node mapping: each return
node of a method is treated separately, and generates its own !Ret action. The
return value val is absent for void-result methods.

DO-RETURN (val) =

Aut.add s
!Caller.Ret m(val)−−−−−−−−−−−−−−→ (fresh s1)

Request Service nodes : Serving a request from the local queue is similar to calling
a method, but we have to encode the request selection mechanism. Call arcs from
a serve node are only of Local type, and for each request m in mset, we have such
one call arc, expressing one of the possible selection in the queue. The activity
model is synchronised with the queue model through the ?S m message (with
guard pred if needed); then the method m is started with the arguments gathered
from the queue, it waits for the computation to terminate and if necessary sends
back the return value to the caller (object o, proxy f , that were stored with the
request).
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Fig. 5. Automata for futures’ proxies (without or with recycling)

DO-SERVE (calls(n),mset,pred,mode) =
fresh~s1, Map = Map ∪ {n �→ s1}
foreach call in calls(n)

match call with "Local(o.m,args,var)"
if m ∈ mset do
fresh~s2, s3

Aut.add s
[pred]?S m(f,o,args,mode)−−−−−−−−−−−−−−−−−−−→ s2

!body.Call m(this,args)−−−−−−−−−−−−−−−−−→ s3

if null-result(m) then Aut.add~s3
?Ret m(val)−−−−−−−−−→ s1

else Aut.add~s3
?Ret m(val)−−−−−−−−−→ (fresh s4)

!o.R m(f,this,val)−−−−−−−−−−−−−→ s1

Loops : The (Loop-Join rule) applies to all types of nodes that already have
been visited. Then the corresponding LTS node is substituted to the current
LTS node, eventually creating loops or joins in the LTS.

DO-JOIN-LOOP () = s1 = Map(n)
Aut.replace(s, s1)

Future values and utilisation : We create a future object at each remote invoca-
tion point with a non-void result type. This future object provides the value to
its potential use points. Thereby, we have as many ”future objects” automatas as
invocation points, and we synchronise those with their use points in the future
rule. There are cases when static information garanties that a future value is
consumed at a particular point, in which case we can recycle the corresponding
future object (then a single automaton can be used, instead of a family indexed
by its occurence in the store, see Fig. 5).

DO-FUTURE (fut,val) =

Aut.add s
?U m(fut,val)−−−−−−−−−−→ (fresh s1)

Map = Map ∪ {n �→ s1}

4 Example

We use here a part of the Producer/Consumer example from section 1 to illus-
trate the model generation.
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Fig. 6. Resulting Consumer model

4.1 ProActive Code and Extended MCG

The consumer and corresponding XMCG:
public void runActivity(Body myBody) {

{ ...
while (true) {
Type data = Buffer.get();
System.out.println("The value is " + data);
}

}
}
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The buffer and corresponding XMCG:
public void runActivity(Body body) {

int bound;
Type [] tab;
{

while (true) {
if (bound==0)

service.serveOldest("put");
else

service.serveOldest();
}}}

void put (Type data) {
tab[bound]=data;
bound++;
}

Type get(){
return(tab[bound--]);}
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4.2 The Generated Nets

We illustrate the model construction with two examples : the Buffer pNet in
Fig. 7 illustrates the model of local method calls, and its interaction with the
queue, while the Consumer pNet in Fig. 6 illustrates the interaction with a proxy.
For each of the methods LTSs, we have applied a simple optimisation after
completion of the Method-Behav procedure, removing all empty transitions that
where not part of a non-deterministic choice (removal of tau-prefix).
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If (bound == 0)
then goto 1
else goto 2

Fig. 7. Resulting Buffer model

Fig. 6 shows the pNet modelling the Consumer behaviour. Note that the data
accessed by the Consumer is immediately consumed (the Use node in the MCG
follows immediately the Request node). This implies that there can be only one
”get” future active at any time, so we use a single future in the proxy instead of
an indexed family of futures.

An interesting feature is that the Q get synchronisation between the con-
sumer root and its proxy is directly visible as a message addressed to the buffer
process (thanks to the expressivity of synchronisation vectors); this technique
enables us to avoid an explicit encoding of a rendez-vous protocol, that would
introduce unnecessary interleavings.

5 Conclusion and Directions

We have introduced a language to describe the behaviour of communicating dis-
tributed systems using parameterized models. The parameters in our model are
variables that encode both: data value (such as in the theories of value-passing
systems), and process identifiers (such as in the theories of channel-passing sys-
tems). We argue that our models are suitable as a specification language for
distributed systems behaviour, and for models resulting from static analysis of
source code. We also gave a graphical representation of those models that aims
to be used by non-specialist in formal methods; we have shown in [3] how our
graphical models can be used to specify and verify large distributed applications.



Parameterized Models for Distributed Java Objects 59

Our models enable us to have a finite representation of infinite systems. They
naturally encode the semantics of languages for distributed applications. In fact,
we have sketched a method for constructing parameterized models for distributed
applications built with the ProActive library. This method has been described
in terms of algorithms, and use an extension of method call graphs obtained by
flow analysis. Our methodology was illustrated guided by a Producer-Consumer
system.

We have developed a tool that makes automatic instantiations of our param-
eterized models, we have developed a prototype of a graphical editor to design
parameterized systems and we will integrate, in a short-term, these parameter-
ized systems to on-the-fly model checking tools.

Having a specification and the models generated from the source code, we
want to check the correctness of the implementation. This check will need
a refinement pre-order, which allows the implementation to make some choices
amongst the possibilities left by the specification, and it should be compatible
with the composition by synchronisation networks.

We shall also extend the approach to take into account other features of
the middleware, and in particular the primitives for group communication, and
for specifying distributed security policies. Last but not least, ProActive active
objects are also viewed as distributed components in a component framework. In
the next version, it will be possible to assemble distributed objects to form more
complex components. This will increase the impact of the compositionality of
our model, and the importance of being able to prove that a component agrees
with its (behavioural) specification.
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