
A Component Model for
Architectural Programming

Hubert Baumeister1,6 Florian Hacklinger2,6 Rolf Hennicker3,6

Alexander Knapp4,6 Martin Wirsing5,6

Institut für Informatik
Ludwig-Maximilians-Universität München

Germany

Abstract

Software architectures and modular composition help in constructing large-scale software systems. Cur-
rent programming languages provide only insufficient support for software architecture. “Architectural
programming” overcomes the problem of architectural erosion in implementations by integrating concepts
of software architecture into programming languages. We present the new programming language Java/A
as an instance for Java-based architectural programming and show how Java/A integrates architectural
notions such as components, connectors, and assemblies into Java. A main asset of Java/A is its under-
lying abstract component model which provides the basis for reasoning about software components and
assemblies. We give a formalisation of the abstract component model in terms of transition systems and
states as algebras, and prove a consistency result for assemblies.

Keywords: Architectural programming, software architecture, semantics of components

1 Introduction

According to the ANSI/IEEE 1471 2000-standard, software architecture is: “The
fundamental organization of a system embodied in its components, their relation-
ships to each other and to the environment and the principles guiding its design and
evolution.” [9] (cf. also, e.g., [5,17]). Therefore, components are modelled “through-

1 Email: baumeister@ifi.lmu.de
2 Email: hacklinger@ifi.lmu.de
3 Email: hennicker@ifi.lmu.de
4 Email: knapp@ifi.lmu.de
5 Email: wirsing@ifi.lmu.de
6 This research has been partially supported by the EC 6th Framework project SENSORIA “Software
Engineering for Service-Oriented Overlay Computers” (IST 016004) and the GLOWA-Danube project
(01LW0303A) sponsored by the German Federal Ministry of Education and Research.

Electronic Notes in Theoretical Computer Science 160 (2006) 75–96

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.05.015

maito:baumeister@ifi.lmu.de
maito:hacklinger@ifi.lmu.de
mailto:hennicker@ifi.lmu.de
mailto:knapp@ifi.lmu.de
mailto:wirsing@ifi.lmu.de
http://www.elsevier.com/locate/entcs

out the development life cycle and successively refined into deployment and run-
time” [12].

Architecture description languages (ADLs), like Wright, Darwin, or Rapide,
provide means to model and analyse both the static and dynamic properties of
software architectures. ADL models, however, are mainly employed in the analysis
and design steps of the classical software development phases. The implementation
step is, at best, only supported by code generation facilities (for an ADL com-
parison and overview, see, e.g., [11]). Common implementation environments are
not capable of representing architectural notions properly. Thus, a hand-coded im-
plementation from an ADL model inevitably tends to loose its connection to the
intended architectural structure during the maintenance steps; the same issue will
hold for generated code tampered with by hand when not strictly adhering to the
model-driven development discipline. The result is “architectural erosion” [14].

In order to counter architectural erosion in the implementation and mainten-
ance phases, we propose the inclusion of architectural notions, like components,
ports with provided and required interfaces as well as protocols, connectors, and as-
semblies, into a programming language and we call such a language an architectural
programming language.

We present the new programming language Java/A [7] as an instance for a
Java-based architectural programming language, show how Java/A integrates ar-
chitectural notions into Java, and present the abstract component model which
forms the semantical basis underlying Java/A. In Java/A components are strongly
encapsulated behaviours of which only the exchange of messages with their envir-
onment according to well-defined provided and required operation interfaces can be
observed. Hence, component reuse and replaceability is fostered. The component
interfaces are bound to ports which regulate message exchange by protocols and
ports can be linked by connectors establishing a communication channel between
their owning components. Thus, safe communication can be specified and verified.
A set of components whose ports are linked by connectors forms an assembly. The
number of ports a component offers, the linkage of ports between components, and
the number of components in an assembly can vary dynamically, providing basic
means for dynamic reconfiguration. Java/A is supported by a compiler which
translates Java/A programs to Java classes and includes the possibility to check
port protocols for compatibilty, i.e., that two connected ports will only exchange
messages the communication partner understands, and the trace of messages will
not lead to a deadlock.

It may be noted that traditional component frameworks like EJB, JavaBeans,
COM+, CORBA, &c. do not qualify as architectural programming languages, since
these techniques do not properly support the concepts of (required) interfaces, con-
nectors, and assemblies. However, the inclusion of interface protocols into program-
ming languages has been discussed for quite a long time [20,13]. On the other
hand, ArchJava [1], an architectural extension of Java, introduces the structural
features of architectural programming languages, such as components and ports,
into a programming language, but does not give any support for controlling the

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9676

dynamic behaviour of ports by e.g. port protocols.
A main asset of Java/A is its underlying abstract component model which has

strongly influenced the design of Java/A and which provides the basis for reasoning
on assemblies and port compatibility. The abstract component model is formalised
using the interface automata approach [2] to I/O-transition systems for describing
the observable behaviour and the “states-as-algebras” approach [4] for representing
the internals of components and assemblies. In particular, component and port
types are modelled as sorts in order to ease dynamic reconfiguration and dynamic
creation and deletion.

The paper is structured as follows: In Sect. 2, we introduce architectural pro-
gramming with Java/A, present the component metamodel of Java/A, illustrate
the architectural concepts by an example and show how dynamic reconfiguration at
runtime is supported by Java/A. In Sect. 3 we present the semantic basis for the
main constituents of our component model and give mathematical formalisations
of components, ports, and assemblies. As an example of a consistency result, we
prove in Sect. 4 that model checking deadlock-freedom of port protocols induces
deadlock-freedom of the corresponding assembly, provided that its components cor-
rectly refine the respective port protocol state machines. In the remaining sections 5
and 6 we compare our approach with related work and discuss ongoing and future
work.

2 Architectural Programming

The basic idea of architectural programming is to preserve a software architecture
throughout the software development process in a decent way. For instance, in
the analysis phase the components of an architecture are implied by the system
boundaries of a use case model. In the design, architectures may be represented with
UML component diagrams or by a model in an architecture description language.
In the implementation, an architecture should be implemented in an architectural
programming language, like Java/A.

After giving a brief introduction to Java/A and its features, we illustrate the
language by means of a (simplified) Bank–ATM example. Moreover, we discuss the
reconfiguration possibilities offered by Java/A.

2.1 Java/A

Figure 1 summarises the component metamodel of Java/A. A component has ports,
and each port has a provided and required interface and may have a protocol as-
sociated with it to describe the sequence of messages allowed for that port. A
component is either a simple component or a composite component. A composite
component consists of an assembly which contains components and connectors. A
connector links two components by connecting ports they own. In order to sup-
port strong encapsulation of components, a composite component is not directly
composed out of subcomponents and connectors, instead a composite component
is built from an assembly by hiding the internal structure of how the composite

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 77

**

CompositeComponent

*

0..1

1 provided

Component

SimpleComponent

Protocol

Interface

required 1

PortConnector

1

2

Assembly *

Figure 1. The component metamodel of the architectural programming approach.

component is constructed.
Java/A extends Java by providing support for these architectural concepts, in-

troducing keywords port, required, provided, simple and composite component,
and assembly, and including port protocol descriptions as UML state machines.
The Java/A compiler transforms Java/A components into pure Java code which
can be compiled to byte code using the Java compiler. The generated Java classes
are integrated into the Java/A component framework, which provides general op-
erations that are common to all Java/A components, serving, for instance, for
reconfiguration support. Each component can be compiled and deployed on its
own, since the component’s dependencies on the environment are encapsulated in
ports. The correctness of an assembly, i.e., that for every connected port the re-
quired interface is satisfied by the provided interface of the connected counterpart
and their protocols are compatible, can be assured using the UML state machine
model checker Hugo [10], which is integrated with the Java/A compiler.

2.2 Example: Bank–ATM

We will illustrate our approach to architectural programming and the programming
language Java/A by a simplified Bank–ATM example. In this example, a varying
number of ATMs may be connected to a bank. An ATM can send an IBAN and
a PIN to the bank in order to withdraw money. Then the bank asks a clearing
company whether the IBAN together with the PIN is valid. If this is the case the
ATM can withdraw an amount of money.

The design of the Bank–ATM system is shown in the component diagram in
Fig. 2(a) where the composite component BankATM contains an assembly of three
components ClearingCompany, Bank, and ATM whose ports are wired by appropriate
connectors. The stacked boxes depicting port BA of component Bank indicates that
it is a dynamic port which can have an arbitrary number of port instances. In
contrast, static ports (like CB, BC and AB) must have a single instance at any time.
Fig. 2(b) shows an admissible system configuration with two ATM instances whose

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9678

Company
Clearing− Bank ATM

BC ABCB

BankATM

BA

(a) UML 2.0 component diagram.

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

:BA

atm0:ATM

atm1:ATM

(b) An admissible system configuration.

Figure 2. Design model of the Bank–ATM example.

ports (of type AB) are linked to different port instances of type BA.
Port protocols are specified with UML state machines. A protocol describes the

order and dependencies of messages which are sent and received by a port. Figure 3
displays the protocol of the port BC which specifies that each time the bank sends
a message verifyPIN via BC it will wait for either a response pinOK or pinNotOk at the
port BC before it can send another message verifyPIN.

2.3 Implementation of the Bank–ATM example using Java/A

The following code shows parts of the Java/A-declaration of the component Bank:
simple component Bank {
Map balance = new HashMap();
Queue pending = new LinkedList();
BA current = null;

5 Set verifieds = new HashSet();

dynamic port BA {
provided {

signal verifyPIN(IBAN iban, int pin);
10 signal withdraw(IBAN iban, Money amount);

}
required {

void pinOk();

Idle Verifying

/ verifyPIN(iban, pin)

pinOk() /

pinNotOk() /

Figure 3. UML state machine describing the protocol of port BC.

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 79

void pinNotOk();
15 void withdrawOk();

void withdrawNotOk();
}
<! // protocol of BA ... !>

}
20

port BC {
provided {

void pinOk();
void pinNotOk();

25 }
required {

void verifyPIN(IBAN iban, int pin);
}

30 <! // protocol of BC
states {
initial Initial;
simple Idle;
simple Verifying;

35 }

transitions {
Initial -> Idle;
Idle -> Verifying { effect verifyPIN(); }

40 Verifying -> Idle { trigger pinOk(); }
Verifying -> Idle { trigger pinNotOk(); }

}
!>

}
45 ...

}

In lines 2–5 component attributes are declared and initialised. The attributes of
the component hold account balances (balance), a queue of verifyPIN requests
(pending), the port instance of the currently processed request (current), and
a set of port instances with already verified IBANs and PINs (verifieds). In
lines 6–44, the ports BA and BC are defined. Each port declaration contains a set of
provided operations (forming the provided interface) and a set of required operations
(forming the required interface). Provided operations with the keyword signal are
asynchronous, all other operations are synchronous. Port protocols are specified by
UML state machines which are textually represented using the notation UTE [8].
For instance, lines 30–43 show the UTE represention of the UML state machine of
port BC (see Fig. 3).

Every operation which is declared in a provided interface of a port must be im-
plemented in the body of the port’s owning component. For instance, the operation
verifyPIN provided by the port BA is implemented as follows:

void verifyPIN(BA incoming, IBAN iban, int pin)
implements BA.verifyPIN(IBAN, int) {

pending.offer(new Object[]{incoming, iban, pin});
synchronized (pending) {

5 while (current != null) {
try { pending.wait(); }
catch (InterruptedException e) {
e.printStackTrace();

}
10 }

Object[] request = (Object[])pending.poll();
current = (BA)request[0];
IBAN iban = (IBAN)request[1];
int pin = ((Integer)request[2]).intValue();

15 try {
BC.verifyPIN(iban, pin);

}
catch (javaa.exception.ConnectionException e) {
e.printStackTrace();

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9680

20 }
}

}

The parameter list of the implementing method is extended by a parameter
incoming of the port type BA in order to allow the implementer to distinguish
the source of a message in case of a dynamic port with multiple instances. To val-
idate a PIN to an IBAN, the bank uses the clearing company which is connected
to the bank at the port BC. Requests to verify a PIN on port BC (l. 16) must be se-
quentialised to comply with the protocol of BC (Fig. 3), hence the queue pending is
used to keep requests that cannot be processed immediately. In case the port is not
connected, the invocation of an operation declared in the port’s required interface
results in throwing a ConnectionException.

The implementation of the operation pinOk provided by the port BC reads as
follows.

void pinOk() implements BC.pinOk() {
verifieds.add(current);
current.pinOk();
current = null;

5 synchronized (pending) {
pending.notify();

}
}

As the component Bank will always have exactly one port instance of the type
BC it is not necessary to extend the parameter list of pinOk by a parameter of type
BC. First, the port instance of type BA of the currently processed request which is
held in the field current is added to the set of already verified port instances. Next,
a message pinOk is sent out via the port instance current. Finally, waiting threads
are notified of the termination of the current verification request.

The Java/A realisation of the component BankATM is shown in the following
code fragment:

composite component BankATM {
assembly {
component types { ATM, Bank, ClearingCompany }
connector types {

5 Bank.BA, ATM.AB;
ClearingCompany.CB, Bank.BC;

}

initial configuration {
10 ATM atm0 = new ATM();

ATM atm1 = new ATM();
Bank bank = new Bank();
ClearingCompany cc = new ClearingCompany();
Connector cn0 = new Connector();

15 cn0.connect(atm0.AB, bank.BA);
Connector cn1 = new Connector();
cn1.connect(atm1.AB, bank.BA);
Connector cn2 = new Connector();
cn2.connect(bank.BC, cc.CC);

20 }
}

}

The component BankATM contains an assembly and therefore in l. 3–7 all com-
ponent and connector types which will be used in the initial configuration and in
future reconfigurations are declared (according to the component diagram given
in Fig. 2(a)). The initial configuration (see Fig. 2(b)) is built up in lines 9–20.
The connector type Connector is provided by the Java/A framework and realises

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 81

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

atm0:ATM

atm1:ATM

Figure 4. A configuration with a disconnected ATM.

message transportation with local procedure calls. The framework provides also a
SOAP-based RPC connector.

2.4 Reconfiguration with Java/A

The term dynamic reconfiguration summarises changes to a component-based sys-
tem at runtime, concerning creation and destruction of components and building
up and removing connections between ports. Java/A supports each of these recon-
figuration variants.

A possible reconfiguration in the Bank–ATM example is the connection and
disconnection of ATMs. An idle ATM disconnects from the Bank and reconnects
whenever a customer enters his bank card. Figure 4 shows a configuration where
one ATM (atm1) is disconnected from the bank. When a customer enters his bank
card the ATM executes the following code which realises the (re)connection of an
ATM to the bank.

try {
Component bank = componentLookUp(this, "Bank");
Port ba = bank.getPort("BA");
ConnectionRequest cr =

5 new ConnectionRequest(this, this, AB,
bank, ba, new Connector());

reconfigurationRequest(cr);
}
catch (ReconfigurationException e) { ... }

The Java/A framework provides the operations componentLookUp, getPort, and
reconfigurationRequest. The first retrieves a component using its identifier,
getPort fetches a port instance from a component, and the last operation sends
the reconfiguration request to the containing assembly, which performs the recon-
figuration if it approves the request. The class ConnectionRequest is also provided
by the Java/A framework; its constructor has parameters which indicate the ori-
ginating component of the request, both affected components and their ports, and
the connector to use. If the request is not approved by the containing assembly, a
reconfiguration exception is thrown. The other reconfiguration variants are realised
in Java/A following a similar scheme.

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9682

3 A Semantical Model for Architectural Programming

We present a semantical model for the main constituents of our component metamodel
of Java/A (see Fig. 1). The semantical model uses a states-as-algebras approach [4]
for representing the internals of components and assemblies, and the interface auto-
mata approach [2] to I/O-transition systems for describing the observable behaviour.
Algebraic operation interfaces specify which operations are provided and required
by a port. Port protocols are given by I/O-transition systems with input and output
labels over the operations the port provides and requires. Note that the semantics
does not distinguish between simple components and composite components. The
semantics of both, a simple component and a composite component, is a component
which is defined through its internal, algebraic state space and the declaration of
the ports it offers; I/O-transition systems with input and output labels over the
port operations describe the possible component behaviours. The semantics of a
composite component is given by first taking the semantics of its assembly and
then by hiding the internal structure of how that assembly is built. Assemblies are
given by an internal, algebraic state space and a declaration of the components and
connectors between component ports which may occur; the assembly behaviour is
again described by an I/O-transition system whose labels reflect the observations
on component ports that are not connected and the synchronisation of connected
component ports. The internal state of a component stores which ports it currently
offers thus providing means for changing ports dynamically; similarly, the internal
state of an assembly records the current components and connectors, which may
vary over time.

3.1 Preliminaries

We first summarise some basic definitions on algebras and I/O-transition systems.
In particular, we recall the notion of algebraic signatures, algebras, and reducts,
see [19]. For I/O-transition systems [2], we define relabellings and products.

Algebras
A signature Σ = (S, F) consists of a set S of sorts and a set F of function

symbols f : s1, . . . , sn → s. A signature Σ = (S, F) is a subsignature of a signature
Σ′ = (S′, F ′), denoted by Σ ⊆ Σ′, if S ⊆ S′ and F ⊆ F ′. A (total) Σ-algebra
A = ((sA)s∈S , (fA)f∈F) consists of a set sA for each sort s and interpretation
functions fA : sA

1 , . . . , sA
n → sA for each f : s1, . . . , sn → s ∈ F . For signatures

Σ = (S, F), Σ′ = (S′, F ′) with Σ ⊆ Σ′, the Σ-reduct of a Σ′-algebra A is given by
A�Σ = ((sA)s∈S , (fA)f∈F). If A is a Σ-algebra and X = (xi : si)i∈I is an S-sorted
set of variables, a valuation ρ : X → A assigns to each variable x of sort s ∈ S a
value in sA.

I/O-transition systems
An I/O-labelling (I, O, T) consists of three mutually disjoint sets of input (or

provided) labels I, output (or required) labels O, and internal labels T . An I/O-

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 83

transition system A = (Q,B,Δ) over an I/O-labelling (I, O, T) is given by a set of
states Q, a set of initial states B ⊆ Q and a transition relation Δ ⊆ Q × (I ∪ O ∪
T) × Q.

An I/O-relabelling λ : L1 → L2 from an I/O-labelling L1 = (I1, O1, T1) to an
I/O-labelling L2 = (I2, O2, T2) consists of three functions λI : I1 → I2, λO : O1 →
O2, and λT : T1 → T2. For a label l ∈ I1 ∪O1 ∪ T1, we write λ(l) for λI(l), if l ∈ I1;
λO(l), if l ∈ O1; and λT (l), if l ∈ T1. Let A = (Q,B,Δ) be an I/O-transition system
over L and let λ : L → L′ be an I/O-relabelling. Then A′ = (Q′, B′,Δ′) defined by
Q′ = Q, B′ = B, Δ′ = {(q, λ(l), q′) | (q, l, q′) ∈ Δ} is the relabelled I/O-transition
system over L′ with respect to λ, written as Aλ.

Two I/O-labellings L1 = (I1, O1, T1) and L2 = (I2, O2, T2) are composable if
T1 ∩ (I2 ∪ O2 ∪ T2) = ∅, I1 ∩ I2 = ∅, O1 ∩ O2 = ∅, T2 ∩ (I1 ∪ O1 ∪ T1) = ∅. The
shared labels of L1 and L2, written L1 ∩ L2, are given by (I1 ∪ O1 ∪ T1) ∩ (I2 ∪
O2 ∪ T2). The product I/O-labelling of L1 and L2, written as L1 ⊗ L2 is given by
((I1∪I2)\(L1∩L2), (O1∪O2)\(L1∩L2), T1∪T2∪(L1∩L2)). Let A1 = (Q1, B1, Δ1)
and A2 = (Q2, B2, Δ2) be I/O-transition systems over composable I/O-labellings
L1 L2, respectively. The product of A1 and A2, written as A1 ⊗A2, is given by the
I/O-transition system (Q,B,Δ) over the product I/O-labelling L1 ⊗ L2 defined as
follows:

(i) Q = Q1 × Q2;

(ii) B = B1 × B2;

(iii) Δ = {((q1, q2), l, (q′1, q2)) | (q1, l, q
′
1) ∈ Δ1 ∧ l /∈ L1 ∩ L2 ∧ q2 ∈ Q2} ∪

{((q1, q2), l, (q1, q
′
2)) | (q2, l, q

′
2) ∈ Δ1 ∧ l /∈ L1 ∩ L2 ∧ q1 ∈ Q1} ∪

{((q1, q2), l, (q′1, q′2)) | (q1, l, q
′
1) ∈ Δ1 ∧ (q2, l, q

′
2) ∈ Δ2 ∧ l ∈ L1 ∩ L2}.

3.2 Interfaces and ports

Interfaces describe a set of accepted messages by declaring operations over a data
signature. Formally, an interface is given by a pair (Σ,Op) of a signature Σ and a
set of operations Op over Σ, where an operation op ∈ Op takes the form nm(x1 :
s1, . . . , xk : sk) with nm the operation name and var(op) = x1 : s1, . . . , xk : sk

the typed formal parameters with sorts in Σ. A message for an operation op over
Σ is a pair (op, ρ) with ρ : var(op) → σ a valuation from the operation’s formal
parameters to a Σ-algebra σ. The class of messages for a set of operations Op over
a signature Σ is denoted by MsgΣ(Op).

For instance, the provided interface of port BA of component Bank in our running
example has the signature (SBA, FBA) with sorts SBA = {int, IBAN, Money} and FBA

comprising basic functions on integers, amounts of money, &c.; the declared opera-
tions are verifyPIN(iban : IBAN, pin : int) and withdraw(iban : IBAN, amount : Money).

Ports represent the windows of a component, prescribing which messages are
accepted at a port by specifying a provided interface and which messages must be
understood from a port by specifying a required interface. Thus we define a port
signature ΣP to be a pair (I, O) consisting of a provided interface I = (Σpro

P ,Oppro
P)

and a required interface O = (Σreq
P ,Opreq

P).

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9684

Idle Verifying

pinOk() /

pinNotOk() /

/ verifyPIN(MO17, 25)

/ verifyPIN(. . . , . . .)

. . .

Figure 5. I/O-transition system for port BC.

A port protocol regulates the order and dependencies of messages from and to a
port. Such a port protocol for a port signature ΣP is given by a port I/O-transition
system (Q,B,Δ) over the I/O-labelling (Labelpro

P ,Label reqP ,Label int
P) where the labels

are either

(i) an input label i/ ∈ Labelpro
P with i = (op, ρ) ∈ Msg(Oppro

P); or

(ii) an output label /o ∈ Label reqP with o = (op, ρ) ∈ Msg(Opreq
P); or

(iii) the internal label / ∈ Label int
P .

A port declaration P : ΣP consists of a name P and a port signature ΣP .
Figure 5 shows an excerpt of a possible I/O-transition system for port BC of

component Bank which reflects the UML state machine specifying the port protocol
in Fig. 3.

3.3 Components

A component has an internal data state and declares ports. Formally, a component
signature ΣC is a pair (Σ, (P : ΣP)P∈P) where Σ is the state signature of ΣC

and (P : ΣP)P∈P the family of port declarations of ΣC satisfying the following
requirements:

(i) all P ∈ P are sorts of Σ;

(ii) Σpro
P , Σreq

P ⊆ Σ for all P ∈ P.

Note that the port names used in the port declarations are required to be sorts in
the state signatures. This allows for dynamic ports, where each port is represented
by an element of appropriate sort given by the port declarations. We write Σstate

C

for the state signature of the component signature ΣC ; and PortsC for the names
of the port declarations P of ΣC . A component declaration C : ΣC consists of a
name C and a component signature ΣC .

The behaviour of a component is given by an I/O-transition system. The states
of the transition system have the function of control states (cf. [6]) as they determine
the behaviour of the component. A state operator maps each control state to a data
state which is an algebra over the state signature of the component. The labels of the
transitions are either the internal label or I/O-labels corresponding to the messages
sent and received via ports.

The state space StateC of a component signature ΣC is given by Alg(Σstate
C). A

label for a component signature ΣC and a state pair (σ, σ′) ∈ StateC × StateC is
either

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 85

bc.pinOk() /

q0
int = Z, . . .

q2

pending = {}
current = ba0

q7

verifieds = {}
balance(MO17) = 40MOP
. . .

/ bc.verifyPIN(MO17, 25) / ba0.pinOk()

pending = {(ba0,MO17,25)}
. . .

q1

pending = {}
current = ba0

q3

q6

. . .

/ ba0.withdrawOk()

ba0.withdraw(MO17, 10MOP) /

. . .

q5

/ ba0.withdrawNotOk()

current = null

q4

b
a
0
.w

it
h
d
ra

w
(M

O
1
7
,
1
0
0
M

O
P
)

/

verifieds = {ba0}
. . .

.

balance(MO17) = 50MOP
verifieds = {}
current = null

BA = {ba0}, BC = {bc}, . . .
pending = {}

ba0.verifyPIN(MO17, 25) /

Figure 6. A model for the component Bank.

(i) an input label p.i/ ∈ Labelpro
C (σ, σ′) with p ∈ P σ for some P ∈ PortsC and

i = (op, ρ) ∈ Msg(Oppro
P) where ρ : var(op) → σ′�Σpro

P ; or

(ii) an output label /p.o ∈ Label reqC (σ, σ′) with p ∈ P σ for some P ∈ PortsC and
o = (op, ρ) ∈ Msg(Opreq

P) where ρ : var(op) → σ�Σreq
P ; or

(iii) the internal label / ∈ Label int
C (σ, σ′) .

We define LabelC(σ, σ′) as Labelpro
C (σ, σ′) ∪ Label reqC (σ, σ′) ∪ Label int

C (σ, σ′); and we
abbreviate

⋃{Labelpro
C (σ, σ′) | (σ, σ′) ∈ StateC × StateC} by Labelpro

C , and similarly
for Label reqC and Label int

C .
An I/O-transition system for a component signature ΣC is given by an I/O-

transition system (Q,B,Δ) over the I/O-labelling (Labelpro
C ,Label reqC ,Label int

C). A
state operator for a component signature ΣC and an I/O-transition system (Q,B,Δ)
for ΣC is a function ς : Q → StateC such that l ∈ LabelC(ς(q), ς(q′)), if (q, l, q′) ∈ Δ.
A model of a component signature ΣC is given by a pair (H, ς) such that H is an
I/O-transition system for ΣC and ς is state operator for ΣC and H. The class of
models of ΣC is denoted by Mod(ΣC).

An example of a model for the component Bank is given in Fig. 6. The control
states, q0, q1, . . . , are shown in the upper part of the state boxes and the associated
data states in the lower part.

From an I/O-transition system H = (Q,B,Δ) of a component it is possible
to generate the behaviour of the component observable at a given port p of sort
P ∈ PortsC as an I/O-transition system over the signature of that port. The states
of this reduct of H to p are given by all states of the component in which the
port lives. The transitions of the reduct are the transitions from the component
where the prefix p. in the labels involving port p is removed and all other labels are
converted to internal transitions. The start states include all the start states of the

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9686

component H if port p exists in these states, as well as the states where p starts to
exist.

(i) Q�ςp = {q | q ∈ Q ∧ p ∈ P ς(q)};
(ii) B�ςp = {q ∈ Q | (q ∈ B ∩ Q�ςp) ∨ (∃(q′, l, q) ∈ Δ . p /∈ P ς(q′) ∧ p ∈ P ς(q))};
(iii) Δ�ςp = {(q, l�p, q′) | (q, l, q′) ∈ Δ∩ (Q�ςp)×LabelC × (Q�ςp)} where (p.i/)�p =

i/, (/p.o)�p = /o, and l�p = / otherwise.

The reduct of H to p via ς, denoted by H�ςp, is the I/O-transition system (Q�ςp,

B�ςp, Δ�ςp) over the I/O-labelling (Labelpro
P ,Label reqP ,Label int

P). For a model M =
((Q,B,Δ), ς) ∈ Mod(ΣC), a P ∈ PortsC , a p ∈ ⋃{P ς(q) | q ∈ Q} we write M�p for
(Q,B,Δ)�ςp.

3.4 Connectors

A connector connects two ports. The signatures of the ports connected by a con-
nector are given by the connector’s signature. These port signatures need to be
compatible, i.e., the provided interface of each port needs to subsume the required
interface of the other port.

A connector signature ΣA is a pair (P1 : ΣP1 , P2 : ΣP2), where ΣP1 = (I1, O1) and
ΣP2 = (I2, O2) are the left and right port signatures of ΣA such that I2 subsumes
O1 and I1 subsumes O2 where an interface I ′ = (Σ′, Op′) subsumes an interface
I = (Σ, Op), written as I � I ′, if Σ ⊆ Σ′ and Op ⊆ Op′. A connector declaration
A : ΣA consists of a name A and a connector signature ΣA. We write PortsA for
the set {P1, P2} with the port names used in the connector declaration.

3.5 Assemblies

Additional to comprising component and connector declarations, an assembly has an
algebraic state signature such that the names of components used in the component
declarations and the names of the connectors used in the connector declarations
correspond to sorts in the state signature. Then components and connectors are
represented by elements of these sorts. Similarly to ports, this allows for adding
and removing components and connectors to the assembly at runtime.

An assembly signature ΣΓ is a triple (Σ, (C : ΣC)C∈C , (A : ΣA)A∈A) where Σ
is the state signature of ΣΓ, (C : ΣC)C∈C is the family of component declarations
of ΣΓ and (A : ΣA)A∈A is the family of connector declarations of ΣΓ satisfying the
following requirements:

(i) All C ∈ C are sorts of Σ;

(ii) for all C ∈ C all port names P ∈ PortsC are sorts in Σ;

(iii) all A ∈ A are sorts of Σ;

(iv) for all A ∈ A with ΣA = (P1 : ΣP1 , P2 : ΣP2) there are C1, C2 ∈ C such that
P1 ∈ PortsC1 and P2 ∈ PortsC2 .

(v) for all A ∈ A with ΣA = (P1 : ΣP1 , P2 : ΣP2) there are function symbols
π1,A : A → P1 and π2,A : A → P2 in Σ;

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 87

We write Σstate
Γ for the state signature of the assembly signature ΣΓ; CompΓ for

the names of the component declarations C of ΣΓ; and ConnΓ for the names of the
connector declarations A of ΣΓ.

As with ports and components, the behaviour of an assembly is again an I/O-
transition system (Q,B,Δ). As with components, there is a state operator mapping
each state in Q to an algebra over the state signature of the assembly. In addition,
there is a component reduct functor which, given a component c, maps an algebra
over the state signature of the assembly to an algebra over the state signature
of the component c. The labels of the transition system have the form /, c.p.i/,
/c.p.o, and (c1.p1, c2.p2).m, corresponding to the internal label, to messages i sent
by component c via port p, to messages o received by component c via port p,
and to messages m, where the sending of message m by component c1 via port p1

and the reception of that message by component c2 via port p2 are synchronised,
respectively. Synchronisation labels can only occur, and are bound to occur, if
compatible ports of components are linked by a connector.

Let ΣΓ be an assembly signature. The state space StateΓ for ΣΓ is given by
Alg(Σstate

Γ). An element of StateΓ is called a configuration. A component reduct
operator for ΣΓ is a function � ∈ Πσ ∈ StateΓ .ΠC ∈ CompΓ .Πc ∈ Cσ .StateC . A
label for an assembly signature ΣΓ, a component reduct operator �, and a state pair
(σ, σ′) ∈ StateΓ × StateΓ is either

(i) an input label c.p.i/ ∈ Labelpro
Γ,�(σ, σ′) with c ∈ Cσ for some C ∈ CompΓ,

p ∈ P σ for some P ∈ PortsC and i = (op, ρ) ∈ Msg(Oppro
P) with ρ : var(op) →

(�(σ′)(C)(c))�Σpro
P if there is no A ∈ ConnΓ such that there is an a ∈ Aσ with

p ∈ {πσ
1,A(a), πσ

2,A(a)}; or

(ii) an output label /c.p.o ∈ Label reqΓ,�(σ, σ′) with c ∈ Cσ for some C ∈ CompΓ,
p ∈ P σ for some P ∈ PortsC and o = (op, ρ) ∈ Msg(Opreq

P) with ρ : var(op) →
(�(σ)(C)(c))�Σreq

P if there is no A ∈ ConnΓ such that there is an a ∈ Aσ with
p ∈ {πσ

1,A(a), πσ
2,A(a)}; or

(iii) a synchronisation label (c1.p1, c2.p2).m ∈ Label int
Γ,�(σ, σ′) with c1 ∈ Cσ

1 for
some C1 ∈ CompΓ, p1 ∈ P σ

1 for some P1 ∈ PortsC1 , c2 ∈ Cσ
2 for some

C2 ∈ CompΓ, p2 ∈ P σ
2 for some P2 ∈ PortsC2 such that m = (op, ρ) ∈

Msg(Oppro
P1

) ∩ Msg(Opreq
P2

) with ρ : var(op) → (�(σ)(C1)(c1))�(Σpro
P1

∩ Σreq
P2

) =
(�(σ′)(C2)(c2))�(Σreq

P2
∩ Σpro

P1
) if there is an A ∈ ConnΓ and an a ∈ Aσ with

p1 = πσ
1,A(a) and p2 = πσ

2,A(a); or

(iv) the internal label / ∈ Label int
Γ,�(σ, σ′) .

We define LabelΓ,�(σ, σ′) as Labelpro
Γ,�(σ, σ′)∪Label reqΓ,�(σ, σ′)∪Label int

Γ,�(σ, σ′), and we
abbreviate

⋃{Labelpro
Γ,�(σ, σ′) | (σ, σ′) ∈ StateΓ × StateΓ} by Labelpro

Γ,�, and similarly
for Label reqΓ,� and Label int

Γ,�.
An I/O-transition system for an assembly signature ΣΓ and a component reduct

operator � for ΣΓ is given by an I/O-transition system (Q,B,Δ) over the I/O-
labelling (Labelpro

Γ,�,Label reqΓ,�,Label int
Γ,�). A state operator for a component signature

ΣC and an I/O-transition system (Q,B,Δ) for ΣΓ and a component reduct operator

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9688

� for ΣΓ is a function ς : Q → StateΓ such that l ∈ LabelΓ,�(ς(q), ς(q′)), if (q, l, q′) ∈
Δ.

Similarly to the reduct of components to ports in Sect. 3.3, we define the reduct
of a I/O-transition system H of an assembly to a I/O-transition system representing
a component c within the assembly. The states of the reduct are given by all states of
H where the component lives, and the transitions of the reduct are the transitions of
H where the prefix c. in the labels involving component c are removed. Furthermore,
a synchronisation label of the form (c1.p1, c2.p2).m is reduced to /p1.m if c1 = c and
to p2.m/ if c2 = c and to / if neither c1 = c nor c2 = c. All other labels are mapped
to the internal label /. The start states are all the start states of H together with
all the states in which the component c starts to exist.

Let H = (Q,B,Δ) be an I/O-transition system for an assembly signature ΣΓ

and a component reduct operator � and let ς be a state operator for ΣC , H, and
�. Let C ∈ CompΓ and c ∈ ⋃{Cς(q) | q ∈ Q}. The reduct of H to c via ς,
denoted by H�ςc, is the I/O-transition system (Q�ςc,B�ςc,Δ�ςc) over the I/O-
labelling (Labelpro

C ,Label reqC ,Label int
C) with

(i) Q�ςc = {q | q ∈ Q ∧ c ∈ Cς(q)};
(ii) B�ςc = {q ∈ Q | (q ∈ B ∩ Q�ςc) ∨ (∃(q′, l, q) ∈ Δ . c /∈ Cς(q′) ∧ c ∈ Cς(q))};
(iii) Δ�ςc = {(q, l�c, q′) | (q, l, q′) ∈ Δ∩(Q�ςc)×LabelΓ×(Q�ςc)} where (c.p.i/)�c =

p.i/, (/c.p.o)�c = /p.o, (c1.p1, c2.p2).m�c = p1.m/ if c = c1, (c1.p1, c2.p2).m�c =
/p2.m if c = c2, and l�c = / otherwise.

The reduct of � to c via ς, denoted by ��ςc, is given by λq . �(ς(q))(C)(c).
A model of an assembly signature is given by an I/O-transition system H plus a

state operator, mapping a state of the transition system to an algebra over the state
signature of the assembly, and a component reduct operator, extracting an algebra
over the state signature of a component from an algebra over the state signature of
the assembly. Each reduct of the assembly to a component is required to be a model
of the corresponding component signature. Furthermore, existing ports in a data
state of the assembly have to also exist in the data state of exactly one component
of the assembly.

A model for the assembly Bank–ATM is shown in Fig. 7. As with component
models, the control states, q0, q1, . . . , are shown in the upper part of the state boxes,
the associated data states in the lower part. The data states are parameterised over
the component instances, such that current(b) = null represents the valuation of the
attribute current of Bank instance b.

A model of an assembly signature ΣΓ is given by a triple (�,H, ς) where � is a
component reduct operator ΣΓ, H = (Q,B,Δ) is an I/O-transition system for ΣΓ

and �, and ς is a state operator for ΣΓ, H, and � such that

(i) for all C ∈ C and all c ∈ ⋃{Cς(q) | q ∈ QΓ ∧ C ∈ CompΓ} the following holds:
(H�ςc, ��ςc) ∈ Mod(ΣC);

(ii) if q ∈ Q with p ∈ P ς(q) for some P ∈ PortsC for some C ∈ CompΓ, then there
is a unique c ∈ Cς(q) such that p ∈ P �(ς(q))(C)(c);

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 89

(c.cb, b.bc)pinOk()

current(b) = ba1

pending(b) = {}
q9

. . .

(b.ba1, atm1.ab1)pinNotOk()

(c.cb, b.bc)pinNotOk()

current(b) = ba1

pending(b) = {}
q8q7

q1
pending(b) = {(ba0, MO17, 25)}
. . .

q2
pending(b) = {}
current(b) = ba0

pending(b) = {}
current(b) = ba0

q3

(b.ba0, atm0.ab0)pinOk()

. . .

. . .
pending(b) = {(ba1, MO17, 99)}

(b.bc, c.cb)verifyPIN(MO17,99)

(atm1.ab1, b.ba1)verifyPIN(MO17,99)

q0

(atm0.ab0, b.ba0)verifyPIN(MO17,25) (b.bc, c.cb)verifyPIN(MO17,25)

. . .

.

. . .

. . .
clearingData(c) = {(MO17, 25)}
balance(b, MO17) = 50MOP
verifieds(b) = {}
current(b) = null
pending(b) = {}
Bank = {b}, BA(b) = {ba0}, . . .

Figure 7. A model for the assembly Bank–ATM.

(iii) if q ∈ Q with p ∈ P �(ς(q))(C)(c) for some P ∈ PortsC for some C ∈ CompΓ and
some c ∈ Cς(q), then p ∈ P ς(q).

The class of models of ΣΓ is denoted by Mod(ΣΓ). For a model M = (�, (Q,B,Δ),
ς) ∈ Mod(ΣΓ), a C ∈ CompΓ and a c ∈ ⋃{Cς(q) | q ∈ Q} we write M�c for
((Q,B,Δ)�ςc, ��ςc).

3.6 From assemblies to components

As shown in Fig. 1, the semantics of a composite component is given by its assembly
by hiding the internal structure of the assembly, i.e., its subcomponents and con-
nectors. The state signature of the component is given by the state signature of the
assembly, and the ports of the component are all the ports of the assembly which are
not connected within that assembly. Let ΣΓ = (Σ, (C : ΣC)C∈C , (A : ΣA)A∈A) be an
assembly signature, then the corresponding component signature BuildComp(ΣΓ)
is (Σ, (P : ΣP)P∈P) where (P : ΣP) belongs to (P : ΣP)P∈P if (P : ΣP) is a
port declaration in the component signature ΣC for some component declaration
(C : ΣC) of ΣΓ such that P is not a port name in

⋃
A∈A PortsA.

The I/O-transition system of the component determined by an assembly is given
by the transition system for the assembly with labels properly renamed, i.e., the
component prefix c. is removed from I/O labels and all other labels (i.e., synchron-
isation labels and the internal label) are mapped to the internal label /.

Let (�,H, ς) be a model of an assembly signature ΣΓ and H an I/O-transition
system for ΣΓ. Then BuildComp((�,H, ς)) = (Hλ, ς) is a model of component
signature BuildComp(ΣΓ) where λ is an I/O-relabelling given by λ(c.p.i/) = p.i/,

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9690

/

current(b) = ba1
pending(b) = {}
q9

. . .

current(b) = ba1
pending(b) = {}
q8q7

q1
pending(b) = {(ba0, MO17, 25)}
. . .

q2
pending(b) = {}
current(b) = ba0

pending(b) = {}
current(b) = ba0

q3

. . .

. . .
pending(b) = {(ba1, MO17, 99)}

q0

. . .

.

. . .

/

/ /
/

/

/

/

clearingData(c) = {(MO17, 25)}
. . .

balance(b, MO17) = 50MOP
verifieds(b) = {}
current(b) = null
pending(b) = {}
Bank = {b}, BA(b) = {ba0}, . . .

Figure 8. A model for the component built from the assembly Bank–ATM of Fig. 7.

λ(/c.p.o) = /p.o, λ((c1.p1, c2.p2).m) = /, and λ(/) = /.
Figure 8 shows the component Bank–ATM based on the assembly Bank–ATM

from Fig. 7. Again the control states, q0, q1, . . . , are shown in the upper part of
the state boxes and the associated data states in the lower part. Since the assembly
Bank–ATM does not have any open ports, the model in Fig. 8 has only internal
labels and no I/O-labels. The synchronisation labels of the assembly Bank–ATM
(shown in Fig. 7) have been converted to the internal label in the component Bank–
ATM.

4 Deadlock-free components

Based on the semantical component model, we prove that model checking port
protocols, as described in Sect. 2.1, leads to correct results: If the protocols are
compatible, i.e., the provided interface of one port subsumes the required interface
of the other port and vice versa, and the product of the two port protocol ma-
chines is deadlock-free, then a component built from an assembly is deadlock-free
provided that the components of the assembly refine the respective port protocol
state machines.

4.1 Refinement

We first introduce a special notion of refinement of I/O-transition systems which
preserves deadlock-freedom and extends the definition of alternating simulation re-
finement [2].

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 91

Let A = (Q,B,Δ) be an I/O-transition system over (I,O, T) and q ∈ Q. The
internal closure of q, written closureA(q) is the smallest set E ⊆ Q such that
(1) q ∈ E and (2) if q′ ∈ E and (q′, l, q′′) ∈ Δ with l ∈ T then q′′ ∈ E. The enabled
labels of q are given by the set enabledA(q) = {l ∈ I ∪ O | ∃q′ ∈ closureA(q) .∃q′′ ∈
Q . (q′, l, q′′) ∈ Δ}. The states reachable by an enabled label l in q are given by the
set reachA(q, l) = {q′′ | ∃(q′, l, q′′) ∈ Δ . q′ ∈ closureA(q)}; the states reachable by
enabled transitions from q are given by the set reachA(q) =

⋃{reachA(q, l) | l ∈
enabledA(q)}. The dead states reachable by internal labels from q are given by the
set deadA(q) = {q′ ∈ closureA(q) | ¬∃(q′, l, q′′) ∈ Δ}.

Let A1 = (Q1, B1, Δ1) and A2 = (Q2, B2,Δ2) be I/O-transition systems. A
relation R ⊆ Q1 ×Q2 is a simulation from A2 to A1 if the following conditions hold
for all (q1, q2) ∈ R:

(i) enabledA2(q2) = enabledA1(q1);

(ii) for all l ∈ enabledA2(q2) and q′2 ∈ reachA2(q2, l), there is a q′1 ∈ reachA1(q1, l)
such that (q′1, q′2) ∈ R;

(iii) if deadA2(q2) = ∅ then deadA1(q1) = ∅.
An I/O-transition system A2 = (Q2, B2, Δ2) over I/O-labelling (I2, O2, T2) re-

fines an I/O-transition system A1 = (Q1, B1, Δ1) over I/O-labelling (I1, O1, T1),
written A1 � A2, if the following conditions hold:

(i) I1 ⊆ I2 and O2 ⊆ O1;

(ii) there is a simulation R from A2 to A1 such that for all q0,2 ∈ B2 there is a
q0,1 ∈ B1 with (q0,1, q0,2) ∈ R.

An I/O-transition system A = (Q,B,Δ) has a deadlock, written as A |= δ, if
there is a sequence q0, q1, . . . , qn ∈ Q such that q0 ∈ B and qi+1 ∈ reachA(qi) for all
0 ≤ i < n and deadA(qn) = ∅. A is deadlock-free, if A |= δ.

Lemma 4.1 Let A1 and A2 be I/O-transition systems. If A1 |= δ and A1 � A2,
then A2 |= δ.

Proof By contradiction, simulating a deadlocking run of A2 in A1 and using (iii).�

4.2 Deadlock-free assemblies

We now consider components which are correct in the sense that they refine their
respective port protocol state machines. We prove that correct components connec-
ted via compatible ports lead to deadlock-free assemblies for the special case that
the assembly has exactly two components and each of the components has one port
which is connected to the port of the other component.

Let ΣPl
and ΣPr be port signatures, let ΣCl

= (Σl, {Pl : ΣPl
}) and ΣCr =

(Σr, {Pr : ΣPr}) be component signatures, let ΣA = (ΣPl
,ΣPr) be a connector

signature, and let ΣΓ = (Σ, {Cl : ΣCl
, Cr : ΣCr}, {A : ΣA}) be an assembly signature.

Let MΓ = (�Γ,HΓ, ςΓ) ∈ Mod(ΣΓ) with HΓ = (QΓ, BΓ,ΔΓ) such that

(i) there are always exactly two components, i.e., there are cl, cr with {cl} = C
ςΓ(q)
l

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9692

and {cr} = C
ςΓ(q)
r for all q ∈ QΓ;

(ii) each existing component has always exactly one port, i.e., there are pl, pr with
{pl} = P

�Γ(ςΓ(q))(Cl)(cl)
l and {pr} = P

�Γ(ςΓ(q))(Cr)(cr)
r for all q ∈ QΓ;

(iii) the ports are always connected, i.e., there is an a with {a} = AςΓ(q) and
π

ςΓ(q)
1,A (a) = pl and π

ςΓ(q)
2,A (a) = pr for all q ∈ QΓ.

Let Ml = (Ql, Bl, Δl) and Mr = (Qr, Br, Δr) be I/O-transition systems for ΣPl
and

ΣPr , respectively. Let M ′
l = Mlλl where λl(/) = pl, λl(i/) = i, and λl(/o) = o; and

M ′
r = Mrλr where λr(/) = pr, λr(i/) = i, and λr(/o) = o.

Proposition 4.2 If M ′
l ⊗M ′

r |= δ and Ml � (MΓ�cl)�pl and Mr � (MΓ�cr)�pr, then
MΓ |= δ.

Proof Let (MΓ�cl)�pl and (MΓ�cr)�pr be given by M l
Γ = (Ql

Γ, Bl
Γ,Δl

Γ) and M r
Γ =

(Qr
Γ, Br

Γ,Δr
Γ), respectively. First of all, note that q ∈ Ql

Γ iff q ∈ QΓ, q ∈ Bl
Γ iff

q ∈ BΓ, and (q, (l�cl)�pl, q
′) ∈ Δl

Γ iff (q, l, q′) ∈ ΔΓ; and analogously for M r
Γ and MΓ.

Let Rl and Rr be simulations satisfying condition (ii) on refinements from (MΓ�cl)�pl

to Ml and (MΓ�cr)�pr to Mr, respectively. Define a relation R ⊆ (Ql × Qr) × QΓ

as follows: ((ql, qr), qΓ) ∈ R ⇐⇒ (ql, qΓ) ∈ Rl ∧ (qr, qΓ) ∈ Rr. If we can show that
R is a simulation from MΓ to M ′

l ⊗M ′
r satisfying condition (ii) on refinements, the

claim follows from Lemma 4.1.
For a proof that R is a simulation from MΓ to M ′

l ⊗ M ′
r, let ((ql, qr), qΓ) ∈ R.

Conditions (i–ii) for simulations hold for R, as A is a connector between ΣPl
and ΣPr

and thus all labels in M ′
l ⊗M ′

r are internal; and all labels in HΓ are internal labels,
as pl and pr always exist and are connected. For condition (iii), let deadHΓ

(qΓ) = ∅.
Let qΓ,0, . . . , qΓ,n be a sequence of states in QΓ such that qΓ,0 = qΓ, and for each
0 ≤ i < n there is a path from qΓ,i to qΓ,i+1 in HΓ using first only internal labels
/ and then exactly one synchronisation label si, and from qΓ,n there is a path to
a state dΓ with no successors in HΓ such that this path uses only internal labels
/. We inductively construct ql,i ∈ Ql and qr,i ∈ Qr such that ((ql,i, qr,i), qΓ,i) ∈ R

for all 0 ≤ i ≤ n and such that there is a path from (ql,i, qr,i) to (ql,i+1, qr,i+1)
in M ′

l ⊗ M ′
r for all 0 ≤ i < n. If n = 0, we can choose ql,0 = ql and qr,0 = qr.

Let n > 0 and let ql,i ∈ Ql and qr,i ∈ Qr be constructed for 0 ≤ i < n. Then
enabledM l

Γ
(qΓ,n−1) = ∅ and enabledMr

Γ
(qΓ,n−1) = ∅, as sn−1 is a synchronisation

label; say, m/ ∈ enabledM l
Γ
(qΓ,n−1) and /m ∈ enabledMr

Γ
(qΓ,n−1). By conditions (i–

ii) on simulations, there are ql,n ∈ reachMl
(ql,n−1,m/) with (ql,n, qΓ,n) ∈ Rl and

qr,n ∈ reachMr(qr,n−1, /m) with (qr,n, qΓ,n) ∈ Rr, hence ((ql,n, qr,n), qΓ,n) ∈ R; and
by the construction of M ′

l ⊗ M ′
r there is a path from (ql,n−1, qr,n−1) to (ql,n, qr,n)

in M ′
l ⊗ M ′

r. Using such a sequence of states (ql,i, qr,i)0≤i≤n in M ′
l ⊗ M ′

r we have
that deadMl

(ql,n) = ∅ and deadMr(qr,n) = ∅ and thus deadM ′
l⊗M ′

r
(ql,n, qr,n) = ∅ and

hence also deadM ′
l⊗M ′

r
(ql,0, qr,0) = ∅, as there is a path from (ql,0, qr,0) to (ql,n, qr,n)

in M ′
l ⊗ M ′

r using only internal labels.
Finally, for qΓ ∈ BΓ there are ql ∈ Bl and qr ∈ Br with (ql, qΓ) ∈ Rl and (qr, qΓ) ∈

Rr by condition (ii) on refinements. Hence, ((ql, qr), qΓ) ∈ R and (ql, qr) ∈ BM ′
l⊗M ′

r
.

Thus, M ′
l ⊗ M ′

r � MΓ. As, by Lemma 4.1, refinements preserve deadlock-freedom,

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 93

MΓ is deadlock-free. �

This result also means that if the parallel composition of the port protocol state
machines does not produce a deadlock then the only situation where the assembly
can deadlock is by violating the refinement relations. That is, one of the component
fails to react to an incoming message or fails to produce an output required by the
other component. This could, for example, be the case if the component waited on
a message of a different port.

The I/O-transition system of the component BuildComp(MΓ) has the same
states and transitions as the I/O-transition system for the assembly MΓ. Thus
Prop. 4.2 leads immediately to:

Corollary 4.3 Given the assumptions for Prop. 4.2. Then BuildComp(MΓ) |= δ

for the component BuildComp(MΓ) built from the assembly MΓ.

4.3 Model Checking

Deadlock-freedom of the parallel composition of two finite port protocols can be
checked using the UML state machine model checker Hugo [10]. Which additional
verification and abstraction techniques to apply to check infinite port protocols is
beyond the scope of this paper. For example, the semantics of the UML state
machine in Fig. 3 is the I/O-transition system in Fig. 5, which has infinitely many
transitions from Idle to Verifying given by all possible arguments to the operation
verifyPin. To apply Hugo to such a system, we may use as an appropriate abstraction
the finite state machine in Fig. 9 where all operations are parameter-free. It is easy
to see that since the transitions in the original I/O-transition system do not depend
on arguments, deadlock-freedom of the abstracted, finite system implies deadlock-
freedom of the original system.

Idle Verifying

pinOk() /

pinNotOk() /

/ verifyPIN()

Figure 9. An abstraction of the protocol state machine of the port BC from Fig. 3 used for model checking.

5 Related Work

Architectural programming languages, and thus Java/A, transfer long standing
ideas from architecture description languages into programming. ADLs [11] support
the modelling and, partially, the analysis of component-based systems; furthermore,
some ADLs also provide code generation facilities (see, e.g. [15]). Architectural
programming languages, however, aim directly at the implementation level and the
representation of a system architecture in the code preventing architectural erosion
in the implementation and maintenance phases. Therefore, APLs can be seen as a
complement to ADLs.

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9694

More recently, ArchJava [1] has been proposed as a programming language in-
tegrating architectural concepts into Java, similar to Java/A. However, ArchJava
lacks port protocols or other abstract means to specify component behaviour. Thus,
reasoning about communication integrity is limited to analysis on the interface level.
Furthermore, ArchJava does not provide a formal semantics.

A different approach to the implementation of software architectures is followed
by the component models SOFA [16] and Fractal [3] and the work by Pavel et
al. [13]: The structural definition of components, their ports, and assemblies is sep-
arated from the behaviour of these components and assemblies. The implementa-
tion of component-based software systems is based on frameworks and development
guidelines; SOFA also offers a code template generation tool. However, neither
approach integrates architectural concepts into a programming language.

There is a variety of technologies to support the implementation of components.
Unlike APLs, ADLs, or component models, these technologies—among them En-
terprise JavaBeans, COM+, CORBA [17]—leave the structural aspects of software
architectures mostly implicit. Moreover, they do not properly support the concepts
of (required) interfaces, connectors, and assemblies.

6 Conclusions

We have presented the principles of the architectural programming language
Java/A which supports component-based implementations of large-scale software
systems. The formal foundation of the semantics of Java/A given by an abstract
component model which uses algebras to denote states and I/O-transition systems
to model the behaviour of components. In addition to the Java/A implementation 7

a prototype 8 serving as a test bed for our semantic model has been implemented
in VisualWorks Smalltalk [18].

Our study provides the basis for challenging, future tasks concerning the consol-
idation of our component model, the development of a comprehensive specification
framework for components and the investigation of correctness notions for compon-
ent realisations and refinements. For the consolidation of the component model we
are particularly interested to integrate complex (n-ary) connectors and to model
global reconfigurations and shared objects. Concerning component specifications
our approach actually supports the definition of port protocols which focus on the
external (black box) views of components. While black-box views are important for
the user of a component, glass-box views are important for the implementor of a
component. An important issue is to extend our approach to the specification of
glass-box views describing the internal behaviour of a component. On this basis we
can then define a correctness notion for Java/A programs such that a Java/A pro-
gram is a correct realisation of a component specification if it satisfies the required
internal behaviour.

7 http://www.pst.ifi.lmu.de/projekte/javaa
8 http://www.pst.ifi.lmu.de/∼baumeist/components

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–96 95

http://www.pst.ifi.lmu.de/projekte/javaa
http://www.pst.ifi.lmu.de/~baumeist/components

Acknowledgements
We would like to thank Jeff Kramer and Jeff Magee for valuable hints and

discussions.

References

[1] ArchJava. http://www.archjava.org(12/12/05).

[2] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proc. 9th Ann. Symp. Foundations
of Software Engineering (FSE’01), pages 109–120, Wien, 2001. ACM Press.

[3] Fractal. http://fractal.objectweb.org(12/12/05).

[4] Harald Ganzinger. Programs as Transformations of Algebraic Theories (Extended Abstract).
Informatik Fachberichte, 50:22–41, 1981.

[5] David Garlan and Mary Shaw. ”Software Architecture, Perspectives of an Emerging Discipline”.
Prentice Hall, New York–&c., 1996.

[6] Martin Große-Rhode. ”Semantic Integration of Heterogeneous Software Specifications”. Springer-
Berlin, 2003.

[7] Florian Hacklinger. Java/A – Taking Components into Java. In Proc. 13th ISCA Int. Conf. Intelligent
and Adaptive Systems and Software Engineering (IASSE’04), pages 163–169. ISCA, Cary, NC, 2004.

[8] HUGO. http://www.pst.ifi.lmu.de/projekte/hugo(12/12/05).

[9] IEEE. ”IEEE Recommended Practice for Architectural Description of Software-intensive Systems”.
Standard 1471-2000, IEEE, 2000.

[10] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking Timed UML State Machines
and Collaborations. In Werner Damm and Ernst Rüdiger Olderog, editors, Proc. 7th Int. Symp. Formal
Techniques in Real-Time and Fault Tolerant Systems, volume 2469 of Lect. Notes Comp. Sci., pages
395–416. Springer, Berlin, 2002.

[11] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Trans. Software Eng., 26(1):70–93, 2000.

[12] Object Management Group. Unified Modeling Language: Superstructure, Version 2.0. Technical report,
OMG, 2004.

[13] Sebastian Pavel, Jacques Noyé, Pascal Poizat, and Jean-Claude Royer. A Java Implementation of a
Component Model with Explicit Symbolic Protocols. In Thomas Gschwind, Uwe Aßmann, and Oscar
Nierstrasz, editors, Proc. 4th Int. Wsh. Software Composition (SC’05). Rev. Sel. Papers, volume 3628
of Lect. Notes Comp. Sci., pages 115–124, 2005.

[14] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture. ACM
SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[15] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and Gregory Zelesnik.
Abstractions for Software Architecture and Tools to Support Them. IEEE Trans. Software Eng.,
21(4):314–335, 1995.

[16] SOFA. http://sofa.objectweb.org(12/12/05).

[17] Clemens Szyperski. ”Component Software”. Addison-Wesley, Harlow–&c., 2nd edition, 2002.

[18] VisualWorks Smalltalk. http://www.cincomsmalltalk.com(12/12/05).

[19] Martin Wirsing. Algebraic Specification. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B: Formal Models and Semantics, pages 675–788. Elsevier, Amsterdam, 1990.

[20] Daniel M. Yellin and Robert E. Strom. Protocol Specifications and Component Adaptors. ACM Trans.
Prog. Lang. Sys., 19(2):292–333, 1997.

H. Baumeister et al. / Electronic Notes in Theoretical Computer Science 160 (2006) 75–9696

http://www.archjava.org
http://fractal.objectweb.org
http://www.pst.ifi.lmu.de/projekte/hugo
http://sofa.objectweb.org
http://www.cincomsmalltalk.com

	Introduction
	Architectural Programming
	Java/A
	Example: Bank--ATM
	Implementation of the Bank--ATM example using Java/A
	Reconfiguration with Java/A

	A Semantical Model for Architectural Programming
	Preliminaries
	Interfaces and ports
	Components
	Connectors
	Assemblies
	From assemblies to components

	Deadlock-free components
	Refinement
	Deadlock-free assemblies
	Model Checking

	Related Work
	Conclusions
	References

