
17 CoCoME Jury Evaluation and Conclusion

Manfred Broy1, Johannes Siedersleben2, and Clemens Szyperski3

1 Technische Universität München, Germany
2 T-Systems International, Germany

3 Microsoft, USA

Abstract. The CoCoME Jury attended the two-day seminar with pre-
sentations from all participating teams. The jury provided individual
feedback to each of the teams. This chapter is an attempt at both orga-
nizing the contributions into groups of related themes and summarizing
some of the more salient feedback. The jury concludes with a few obser-
vations about the CoCoME contest as such and its overall outcome.

17.1 Introduction and Overview

As already described in Chapter 2, the main goal of the CoCoME contest is to
evaluate and compare the practical appliance of the existing component models
and the corresponding specification techniques. Based on a UML-based descrip-
tion of CoCoME, a provided sample implementation, and test cases, the partic-
ipating teams elaborated their own modeling of CoCoME, applying their own
component model and description techniques. After an internal peer review each
team presented their results in a joint GI-Dagstuhl Research Seminar, where an
international jury–the authors of this chapter–was present.

The jury’s task was to evaluate and compare the different modeling approaches
based on the respective team’s presentation at the seminar as well as the team
chapter, which was provided to the jury ahead of the seminar. It became clear
that it is not possible to come up with a unified ranking of the presented ap-
proaches, based on how well each modeled CoCoME. This is because the ap-
proaches varied widely with respect to each approach’s target objectives, used
component model, applied description technique, modeled part of CoCoME, and
the resulting benefits and outcomes of the modeling effort.

Rather, it turned out that each approach has its individual strengths and
drawbacks. For that reason, the jury and the organizers decided during the GI-
Dagstuhl Research Seminar not to come up with a ranking, but instead to provide
for each approach an individual non-comparing evaluation and assessment that
could be one starting point to further improve the specific approach.

In the following sections these individual jury evaluations will be presented.
To enable some comparative reading, the jury organized the various approaches
into a number of groups. The first group covers semi-formal modeling approaches.
Instead of an own underlying formal semantic model, these approaches are UML-
extensions and use the semi-formal model and informal and more or less intuitive
semantics of UML.

A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 449–458, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

450 M. Broy, J. Siedersleben, and C. Szyperski

The next group, also the largest, comprises formal models focused on func-
tional correctness. This group can be subdivided into three subgroups with re-
spect to the underlying formal semantics: The first subgroup has formal state
semantics, the second has formal algebraic semantics, and the third subgroup
has an formal object semantics. All approaches in this subgroup share the same
overall goal: The resulting models are used to verify and validate the functional
correctness of the resulting models. Therefore, these approaches provide to vary-
ing extend forms of consistency checking, refinement calculus, simulation sup-
port, and code generation.

The third group is about formal models focused on behavior and quality prop-
erties. The main goal of these models is to enable the modeler to analyze, simu-
late, and predict the capabilities of the modeled solution with respect to specific
behavior or quality properties, such as performance or reliability.

The last group contains models tailored for a specific application domain,
such as grid computing. Hence, the used component model and the applied
description techniques are domain specific and not general purpose. The main
goal of these approaches is it to come up with a more specific and restricted model
and description technique with respect to the target domain and thus provide
results on higher semantic level, such as functional correctness or prediction of
quality properties.

17.2 Semi-formal Modeling

KobrA. KobrA is a UML-based method for describing components and
component-based systems. The acronym (derived from German) stands for
“Component-based Application Development”. The approach makes use of UML
as a specification and realization language, but other languages can be used. The
basic goal of KobrA is to allow the design of a complex system to be split into sep-
arate parts (i.e., components), which can be tackled separately. KobrA focuses
on describing the architecture of components and component-based systems at
the design level. Therefore, the benefits of applying KobrA include the ability
to experiment with potential designs before committing to concrete implemen-
tations, the availability of easy-to-read descriptions (e.g. system specification)
that can be understood by (and discussed with) customers and users, and the
creation of a platform-independent record of the system structure and project
design decisions.

The recognized biggest obstacle to practical adoption of KobrA at the present
time is the lack of a dedicated tool that understands KobrA and is able to
ensure that UML is applied in a KobrA-compliant way. Other aspects to be
considered/improved are: the specification of the non-functional properties of
components and the provision of clear guidelines on how to use KobrA in a
more formal style. The jury was quite perplexed about the actual usefulness of
KobrA because of its strong resemblance to standard UML.

Rich Services. Rich Services is an approach leveraging the SOA (Service-
Oriented Architectures) principles. It models an application as a set of services

CoCoME Jury Evaluation and Conclusion 451

communicating via a bus. Services may be hierarchically decomposed–a service is
recursively modeled as a set of services connected to a bus. In addition to func-
tional decomposition, Rich Services allows for capturing cross-cutting concerns
(security, policies, failure management, QoS, etc.) using dedicated services that
intercept and route messages flowing through a bus. From the deployment point
of view, Rich Services may be mapped to the existing ESB middleware (e.g. Mule).

Rich Services utilizes Message Sequence Charts (MSCs) to define interactions
(including temporal properties). The existing tool support is then able to syn-
thesize executable code from MSCs. Verification is possible by translating MSCs
to Promela.

Another important aspect of Rich Services is that they come with a service-
oriented development process, which clearly separates a system’s logical model
from its implementation. This allows, for example, to introduce performance
optimizations at deployment time by flattening the system’s architecture.

In modeling CoCoME, the authors followed the Rich Services development
process from requirements to actual deployment. It has to be noted, that this
resulted in an architecture quite different from the original CoCoME architecture
to be modeled. Where the other approaches tried to model the orginal architec-
ture as intended, the Rich Services approach is hard to compare to the other
approaches, as it remains unclear which benefits the other approaches would
have had, if they had also changed the architecture of CoCoME to optimize
for their methods. However, the Rich Services approach proved to be usable in
capturing service contracts and different cross-cutting concerns.

17.3 Formal Modeling, Focused on Functional
Correctness

Formal State Models

rCOS. rCOS is a relational calculus for object and component systems based on
Hoares and Hes Unifying Theories of Programming (UTP) for object-oriented
and component-based programming. It allows to model the system at different
level of abstraction. Between these levels a clear refinement relation is provided.
At each level, the model can be described by a set of different views–the static
structural view, the interaction view, the dynamic view– as well as their timing
apspects.

Thereby the rCOS approach claims to support a formal development process
starting out with analysis and in an stepwise refinement approach finally ending
up with a component model ready for an object-oriented implementation. The
main promised benefits are: consistency rules between the various views in a
modeling step, guided refinement rules from one modeling step to the next one,
and finally a formally founded specification technique to support verification and
analysis on the model level.

The rCOS team has modeled two use cases on the analysis model level. This
cutout has been refined to an object-oriented model. Finally, the object-oriented
model has been encapsulated in a set of components.

452 M. Broy, J. Siedersleben, and C. Szyperski

The main strength of the rCOS approach lies in its clear and straight-forward
object-oriented analysis model. The relationship to the component model should
be further improved as it is not clear at all how the component model will
be derived from the object-oriented analysis model and what the relationship
between these two models formally is. Finally, the authors could not show which
properties were actually proved resp. proveable by their model. Hence it is not
determinable whether one main goal of rCOS–to verfiy and analyze properties
of the system–can be reached or not.

CoIn. The CoIn approach to modeling the CoCoME application is based on
the concept of component-interaction automata, which are used to capture the
behavior of components in the system using a labeled transition system. For each
primitive component, a distinct automaton is created that models the compo-
nent behavior. In the case of composite components, the automaton is obtained
through composition of automata associated with primitive components. The
composition operator is parametrized, which allows different kinds of composi-
tion to be performed in different scenarios. Through composition, this approach
allows for the constructing of complex, whole-picture models, based on much
simpler behavioral models of primitive components. Using the model of an en-
tire system, various properties specified in linear temporal logic, modified for the
use with component-interaction automata (CI-LTL), can be verified.

The main strength of the presented approach lies in its expressive power and
flexibility. The authors of the CoIn approach chose to create a model of the Co-
CoME application based mainly on its prototype implementation as the most
precise specification, using the UML models mainly to extract structural infor-
mation concerning system architecture. By using different kinds of composition
(cube-like, star-like, and handshake-like) depending on the context of composi-
tion of primitive components, they were able to create a very detailed model of
the whole system. Using the UML use cases and test scenarios for the prototype
implementation, they were able to formulate a set for properties, the validity of
which has been verified using the DiVinE model checker.

The level of detail, completeness of the model, and the model checking tool
support are noteworthy and it is evident that the CoIn approach is very suitable,
thanks to its powerful composition operator, for construction of models in a
bottom-up manner. Alternatively, the CoIn approach could be used to model the
CoCoME application in a top-down manner, which is often more suitable in the
initial phases of system design. However, in top-down approach to construction
of a system model, the power of the composition operator would play a minor
role, leaving the designers alone with the task of creating the model. It can be
argued though, that a model created in a top-down manner would not need to
be nearly as complex as the one obtained in bottom-up manner. The authors
did not model/verify any extra-functional properties because the CoIn approach
does not support that. However, this cannot be considered a serious drawback,
mainly because the CI automata were designed for the different goal of the
verification of functional properties.

CoCoME Jury Evaluation and Conclusion 453

Formal Algebraic Models

Focus/AutoFocus. The Focus/AutoFocus approach provides a top-down de-
velopment process based upon the formally founded mathematical model Focus
(timed infinite streams) as the semantic model for component behaviour. The
development process (and the formal model) is designed for distributed reactive
systems and starts out with informal requirements and ends up–over various
refinement steps–with an implementation model.

The main goal of the approach is to provide a development processes that
guides the software engineer from given informal requirements via well defined
refinement steps to an implementation model, which can be used to simulate the
system and finally generate an implementation of the system. As the model is
based on a formally founded mathematical system model, the varification of the
correctness of the refinement steps from one abstraction level to the the next
more detailed level is guaranteed. Moreover analysis, simulation, verification
and code generation can be supported by additional tool support or external
tool integration.

The modeling of the Focus/AutoFocus team focused on the cash desk part of
CoCoME. As Focus/AutoFocus is an approach tailored for reactive systems, the
information system part of CoCoME was not modeled by the team. Moreover, the
non-functional and extra quality properties of CoCoME were also not modeled
by the Focus/AutoFocus approach.

Hence, as Focus/AutoFocus claim to have a rigid and formally founded de-
velopment process supporting correct refinement steps from requirements to an
implementaion model, the results of applying Focus/AutoFocus are mainly fo-
cused on the cash-desk part of CoCoME. Therefore, the Focus/AutoFocus team
showed a convincing approach following a clear and rigid development process.
Moreover, the underlying formal system model enabled the team to generate
an executing system out of their model, showing an online simulation of the
system. The main deficit of the approach is that Focus/AutoFocus is not be-
ing able to model instantiation and thus the dynamic structure of a system–the
running system is modeled as having fixed structure. Especially, when modeling
the information-system part of CoCoME such a capability to model at instance
level would be required. Moreover, the concept of blocking method calls as a
basic communication primitive would also be required. Nevertheless, for the re-
active part of the system, the Focus/AutoFocus approach is a well tailored and
formalized approach providing convincing results to its users.

Java/A. Java/A is a component model based mostly on several concepts of
UML 2.0 which it extends by analysis and verification techniques. Development
of applications using the Java/A component model is encouraged through its
support of a Java-like programming language, which allows embedding struc-
tural and behavioral information concerning application architecture directly in
the application source code. This tight coupling of architectural description and
implementation allows programmers and maintainers of Java/A applications to
avoid architectural erosion, which typically plagues approaches where architec-
tural and behavioral description is kept separately and sometimes without direct

454 M. Broy, J. Siedersleben, and C. Szyperski

association with implementation. This level of integration in Java/A allows for
more natural and direct mapping of UML 2.0 component concepts into program
code.

Behavioral description of Java/A components is split between a component
and its ports containing pairs of required/provided interfaces. The description
comes in the form of UML state machines, which are then translated into I/O
transition system, on which formal verification is performed.

Concerning modeling the CoCoME application, the authors of the Java/A
approach used mainly the UML use-case descriptions and sequence diagrams to
create the model of the system. The resulting model captures the architecture
of the whole system, but since the authors focused mainly on the embedded
part of CoCoME, behavioral model and analysis have only been done for the
CashDeskLine component.

The main strength of the Java/A functional analysis lies in the ability to sup-
port modular analysis and verification techniques through derivation of global
properties (composite components) from local ones (primitive components). The
functional analysis supports checking for correctness of primitive components
with respect to their port protocol and checking for deadlock-freedom of a com-
posite. However, the notion of observational equivalence, required to support the
analysis, may be considered too strong.

The authors have also performed quantitative analysis of the system, using
the specification of extra-functional properties. They had explicitly modeled Use
Case 1, using a stochastic process algebra (PEPA), and have shown that the ben-
efit of the express-checkout cash desk does not really match intuitive expectation.
Since neither the Java/A component model nor the programming language sup-
ports capturing quantitative aspects of an architecture, it may be beneficial to
consider integrating description of quantitative aspects into Java/A, similar to
integration of the structural and behavioral aspects.

Formal Object Models

Cowch. The Cowch approach is based on a hierarchical component model for
object-oriented programming, called the Box Model. A box is a runtime entity
with state and a semantics-based encapsulation boundary. The implementation
of a box consists of a number of classes and interfaces of the underlying pro-
gramming language. To structure communication between boxes directed ports
and channels are used. Ports are named interfaces and can be incoming or out-
going. All box boundary crossing references must be modeled by using ports. A
graphical UML-like description technique is provided for the Cowch approach.

The main goal of the Cowch approach is to fill the gap between high-level de-
scription techniques and architecture modeling on the level of component-based
architectures and object-oriented programming languages. Thus the functional
and strcutural features of the designed component architecture can be enforced
on the object level by verification as well as static and dynamic analysis.

The Cowch team has completely modeled the functional and structural prop-
erties of CoCoME, where the main focus was on the runtime structure. The

CoCoME Jury Evaluation and Conclusion 455

functional and behavioural part was not modeled; instead, relying on the Java
code for this purpose. The non-functional and qualitiy properties have not been
modeled.

The main strength of the approach is the clear semantic foundation on top
of an object-oriented programming language. Thus the Cowch team was able to
model the complete CoCoME. However, this benefit is also the main drawback
of the approach. Cowch cannot provide a high level of abstraction - all is more or
less treated at code level. And, as the approach is still under development, the
tool support and thereby the achievable verification and analysis support and
results are currently not clear at all.

DisCComp. DisCComp (Distributed Concurrent Components) is a formal
model based on set-theoretic formalizations of distributed concurrent systems.
It allows modeling of dynamically changing structures, a shared global state and
asynchronous message communication, as well as synchronous and concurrent
message calls. DisCComp provides a sound semantic model for concurrently ex-
ecuted components that is realistic enough to serve as a formal foundation for
component technologies currently in use. The approach is supported by tools for
code generation as well as simulation and execution of such specifications for
testing purposes. At present, the specification technique is adequate for func-
tional properties, while it is not able to deal with non-functional properties.
The jury was quite unclear on the actual CoCoME coverage achieved, since the
presentation was mainly focused on the formal model.

17.4 Formal Models, Focusing on Behavior and Quality
Properties

Palladio. Palladio is a complete component modeling approach including both
modeling and performance analysis facilities in an integrated and automated
framework. To this end, the Palladio approach includes a meta-model for struc-
tural views, component behavior specifications, resource environment, and the
modeling of system usage; and multiple analysis techniques ranging from process
algebra analysis to discrete event simulation.

Palladio supports hierarchical composite components and is able to model the
usage profile of a system, the component behavior, the composition/assembly
structure, the deployment context, and the resource environment. For each of
these models, the performance relevant aspects (delays, data abstractions, etc)
are modeled and analyzed. All analyses can be performed without an implemen-
tation, supporting early design time predictions. This way, Palladio enables soft-
ware architects to analyze different architectural design alternatives supporting
their design decisions with quantitative performance predictions. The CoCoME
modeling and analysis has been focused on the most complex use case number 8,
providing a nice exposure of the Palladio potential. The good discussion of the
approach and the extensive performance analysis carried out on the case study
have positively impressed the jury.

456 M. Broy, J. Siedersleben, and C. Szyperski

KLAPER. KLAPER plays a specific role in this context. It does not pro-
vide a model to design component-based systems, but it acts as an intermediate
language between design meta models and analysis meta models. While design
models support the design of a software systems in a notation and terminology
familiar with a software designer, analysis models enable the application of spe-
cific analysis techniques. As from both kinds of models (design and analysis)
several kinds with specific benefits and drawbacks exist, there are good reasons
to support the translation of each design meta model to as many as possible
analysis meta models. However, the definition and implementation of m × n
transformations (given m design meta models and n analysis meta models) is
not realistic. The solution to such a problem is known from compiler construc-
tion: an intermediate language defines a common format where the m design
meta models define transformations to, as well as transformations are defined
from the intermediate language to the n analysis models. By this, only m + n
transformations are required.

From a modeling perspective, KLAPER is defined by a MOF meta-model
which includes ways to specify components and software architectures as well
as resources. When modeling CoCoME with KLAPER, one started to translate
an UML model into KLAPER and than transformed an KLAPER model into a
layered queuing network (LQN). The prediction results on resource utilization
and response time were impressive, although no direct comparison to the im-
plementation was made, as the implementation deviates from the specification
in performance-relevant aspects. The jury was impressed by the elegance of the
modeling and the ability to perform analyses on response time and utilization.
Areas for future work include improvements of scalability as well as a systematic
way to feed back the analysis results into the original design model.

Fractal. Fractal is a hierarchical component model which provides means to
describe architectures by the definition of component bindings and resources.
Specifically, components have membranes (encapsulation of the inner), content
(either wired sub-components or an implementation) and controllers with specific
control interfaces. The behavioral view can be specified by traces in the Frac-
talBPC language (which originates from the SOFA component model). Model-
ing the deployment view is not specified in Fractal, but implementation specific.
Noteworthy are the various formal consistency checks, such as component inter-
action, compliance of inner components with outer component specification and
consistency between implementation and interfaces. In particular, it also sup-
ports the description of dynamically changing architectures. It was initiated by
researchers of the France Telekom where also larger case studies were modeled
in Fractal. By this, Fractal forms one of the stronger validated models of the
CoCoME contest.

CoCoME was modeled well in Fractal, however, the communication bus was
modeled as a separate component which was not present in the original specifi-
cation. This was motivated by the need to explicitly introduce interfaces which
were not present in the original CoCoME. Except for that, using Fractal for mod-
eling the CoCoME proved easy and beneficial due to the extensive compliance

CoCoME Jury Evaluation and Conclusion 457

checks. Modeling extra-functional properties is not yet possible in Fractal, al-
though in the specific model of the CoCoME also performance data was collected
by monitoring.

SOFA. SoFA (Software For Appliances) is a component model which allows to
define the structural view of software architectures as well as behavioral specifi-
cations of basic and composed components. Specific to it is the frame protocol
which specifies the behavior of a composed component and which can be checked
against the composition of inner component protocols. Protocols are modeled by
regular expressions. However, since sending and receiving a call as well as call
and return of an invocation are modeled explicitly, asynchronous behavior can
be specified also. Compliance checking (interoperability, substitutability, com-
pliancy between frame-protocol and inner protocols) is realized by a connection
to Promela which allows to use the SPIN model checker.

There is also the deployment view where the distribution of compoennts–
their mapping to computing resources–can be specified. Finally, SoFA includes a
performance view which is linked to the deployment and behavioural view. Inter-
esting is the comparison to the conceptually related Fractal model: while SoFA
allows similar checks also in comparable time, its specification is considerably
more compact (1500 LOC vs. 2700 LOC), which makes SoFA a well applicable
language with good verification possibilities.

17.5 Models Tailored for a Specific Application Domain

GCM/ProActive. GCM is a component model based on Fractal. It uses the
Fractal concept of hierarchical components with provided and required inter-
faces and explicit treatment of control interfaces. GCM focuses on grid com-
puting, thus in addition to standard Fractal features, it adds the possibility of
asynchronous method calls using futures and defines collective interfaces (multi-
cast and gathercast) to ease synchronization and work distribution. As an ADL,
GCM uses FractalADL enhanced by the concept of a virtual node–an abstraction
of the physical infrastructure to which an application is deployed.

From the behavior point of view, GCM uses a low-level model called pNets.
It is basically a network of parameterized LTSs tailored to suit the needs of
grid computing. GCM also offers a high-level language called JDC (Java Dis-
tributed Component Specification Language). It combines ADL specification
with a behavior specification written in a notation similar to Java. The aim of
JDC is providing a modeling language from which the pNets behavior models
and skeletons of implementation artifacts could be generated. In addition to
textual specification, graphical design is also supported via a UML editor called
CTTool.

Modeling of CoCoME was possible in GCM. Especially the distribution was
rather seamless thanks to the virtual node abstraction. The actual behavior
specification and analysis was done by employing the CTTool and eventually
verified by LOTOS/CADP as the whole toolchain spanning from JDC to pNets
has not been completely implemented yet.

458 M. Broy, J. Siedersleben, and C. Szyperski

17.6 Conclusions

Each of the modeling approaches, when applied to CoCoME, exhibited an in-
teresting set of strengths and weaknesses. While, pointwise, there is much to be
learned from each of the approaches, the jury concludes with a mixed message.
CoCoME’s top-level challenge was and is about all-of-system modeling and none
of the approaches enabled comprehensive modeling at that level. To be fair, the
approaches at hand are the results of ongoing research and it isn’t the purpose of
research efforts to deliver fully rounded “complete” solutions. However, the gap
between practical applicability and demonstrated modeling capability remains
significant, leaving much room for further work.

	CoCoME Jury Evaluation and Conclusion
	Introduction and Overview
	Semi-formal Modeling
	Formal Modeling, Focused on Functional Correctness
	Formal Models, Focusing on Behavior and Quality Properties
	Models Tailored for a Specific Application Domain
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

