The ObjectWeb Consortium

,_x,‘

ObjectWeb [)\("ig\

Open Source Middiewars

L A=t

Specification

The Fractal Component Model

o

l:TFlL b T L.
18 T
I:I:Fll:

-

Authors:
E. Bruneton
T. Coupaye
J.B. Stefani

(France Telecom R&D)
(France Telecom R&D)
(INRIA)

Released February 5, 2004
Status Draft
Version 2.0-3

The Fractal Component Model Specification

General Information

e Authors are given in alphabetical order.
e Background of front-page image appears courtesy of Giuseppe Zito.

e Please send technical comments on this specification to fractal@objectweb.org. Authors
would be glad to hear from people using, implementing or extending Fractal.

Copyright 2002-2003 France Télécom S.A.
28, chemin du vieux chéne, 38243, Meylan Cedex, France.

Copyright 2002-2003 INRIA.
655 avenue de ’Europe, ZIRST, Montbonnot St Martin, 38334 Saint-Ismier Cedex, France.

All rights reserved.

Trademarks
All product names mentioned herein are trademarks of their respective owners.
Disclaimer of warranties

The specification is provided “as is”. The specification could include technical inaccuracies or
typographical errors. Changes are periodically added to the information therein; these changes
will be incorporated into new versions of the specification, if any. France Telecom and INRIA
make no representations or warranties, either erpress or implied, including but not limited to,
warranties of merchantability, fitness for a particular purpose, or non-infringement that the
contents of the specification are suitable for any purpose or that any practice or implementation
of such contents will not infringe any third party patents, copyrights, trade secrets or other
rights.

The ObjectWeb Consortium i Draft 2.0-2

The Fractal Component Model

Specification

Contents

1. Introduction

1.1. Rationale
1.2. Overview e

2. Foundations

2.1. Interface Definition Language
2.2. Naming and binding

3. Introspection

3.1. External component structure
3.2. Component introspection
3.3. Interface introspection

4. Configuration (introspection & intercession)

4.1. Internal component structure
4.2. Attribute control
4.3. Binding controlo
4.4. Content control L.
4.5. Life cycle control

5. Instantiation

5.1. Factories
5.2, Templates oL
53. Bootstrap

6. Typing

6.1. Contingency and cardinality
6.2. Typesystem.,
6.3. Sub typing relationo

7. Options

7.1. Conformancelevels
7.2. Extensionso

8. Example

8.1. Imstantiation
8.2. Reconfiguration

A. Fractal APIs
B. Glossary

C. Change History

11

.............. 11
.............. 13
.............. 14
.............. 15
.............. 17

19

.............. 19
.............. 20
.............. 21

23

.............. 23
.............. 24
.............. 25

27

.............. 27
.............. 29

31

.............. 31
.............. 34

35

41

45

The ObjectWeb Consortium ii

Draft 2.0-2

The Fractal Component Model Specification

List of Figures

O ~J O O I W N =

Naming API. e 4
External view of a Fractal component 7
Component introspection APT 8
Interface introspection APT L. 9
Internal view of a Fractal component 11
Attribute control APT L 13
Binding control API 14
Content control APT 15
Advantages of shared components L. 16
Name control APT 17
Life cycle control APT L 17
Instantiation APT L 19
A sample template component and a component created from it 20
Typing APIL o o e 24
Conformance levels to the Fractal component model 29
A sample component based applicationo 31
Result of the instantiation of the application depicted in Figure 16 33

The ObjectWeb Consortium iii Draft 2.0-2

The Fractal Component Model Specification

1. Introduction

1.1. Rationale

By enforcing a strict separation between interface and implementation and by making soft-
ware architecture explicit, component-based programming can facilitate the implementation
and maintenance of complex software systems. Coupled with the use of meta-programming
techniques, component-based programming can hide to application programmers some of the
complexities inherent in the handling of non-functional aspects in a software system, such as
distribution and fault-tolerance, as exemplified e.g. by the container concept in Enterprise
Java Beans (EJB), CORBA Component Model (CCM), or Microsoft .Net.

Existing component-based frameworks and architecture description languages, however, pro-
vide only limited support for extension and adaptation. This limitation has several important
drawbacks: it prevents the easy and possibly dynamic introduction of different control facilities
for components such as non-functional aspects; it prevents application designers and program-
mers from making important trade-offs such as degree of configurability vs performance and
space consumption; and it can make difficult the use of these frameworks and languages in
different environments, including embedded systems.

The Fractal component model alleviates the above problems by introducing a notion of compo-
nent endowed with an open set of control capabilities. In other terms, components in Fractal
are reflective, and their reflective capabilities are not fixed in the model but can be extended
and adapted to fit the programmer’s constraints and objectives.

1.2. Overview

Main goals of the Fractal component model are to implement, deploy and manage (i.e. monitor
and dynamically reconfigure) complex software systems. These goals motivate the main fea-
tures of the Fractal model: composite components (to have a uniform view of applications at
various abstraction levels), shared components (to model resources), introspection capabilities
(to monitor a running system), and configuration and reconfiguration capabilities (to deploy
and dynamically reconfigure an application). But another goal of the Fractal model is to be
applicable to many software, from embedded software to application servers and information
systems. Unfortunately, the advanced features of the Fractal model have a cost that is not
always compatible with the limited resources of constrained environments.

In order to achieve these contradictory goals, the Fractal component model is not defined as
a big, fixed specification that all Fractal components must follow, but rather as an extensible
system of relations between well defined concepts and corresponding APIs that Fractal com-
ponents may or may not implement, depending on what they can or want to offer to other
components. This set of specifications can be organized, and is presented in this document
as increasing “levels of control”, i.e. in increasing order of reflective capabilities (introspection
and intercession).

At the lowest level of control, a Fractal component is a runtime entity that does not provide
any control capability to other components, and is therefore like an object (such a component
can be used in only one way, namely by calling methods on it). In fact, an object is a Fractal

The ObjectWeb Consortium 1 Draft 2.0-2

The Fractal Component Model Specification

component without any control capability (see section 2). This feature is useful to handle
cases where components have to be connected to legacy software.

At the next level of control capability, which can be called the external “introspection” level
(see section 3), a Fractal component can provide a standard interface, similar to the lUnknown
interface in COM, that allows one to discover all its external interfaces or, in other words, its
boundary (like an object, a Fractal component can provide several interfaces).

At the next level of control capability, which can be called the “configuration” level (see
section 4), a Fractal component can provide control interfaces to introspect and modify its
content, i.e. what is inside its boundary. In the Fractal model, this content is made of other
Fractal components, called its sub components, bound together through bindings. A Fractal
component can therefore choose to provide or not an interface to control the set of its sub
components, the set of bindings between these sub components, and so on.

In addition to these control capabilities, the Fractal model also specifies a framework for the
instantiation of components (see section 5), and a simple type system for Fractal components
(see section 6). Like the above control capabilities, the instantiation framework and the
simple type system are optional. In fact, in the Fractal model, everything is optional. This
has advantages and drawbacks, which are discussed in section 7.

As a result of this modular and extensible organization (anyone is free to define its own
control interfaces, in order to provide new introspection and intercession capabilities), and
given the fact that the Fractal component model is not tied to a specific language, Fractal
components can be used in very different situations, from operating systems to middleware
platforms, from graphical user interfaces to information systems, and from highly optimized
but unreconfigurable configurations, to less optimized but highly dynamic and reconfigurable
systems or applications.

The ObjectWeb Consortium 2 Draft 2.0-2

The Fractal Component Model Specification

2. Foundations

At the lowest control capability level, a Fractal component does not provide any introspection
or intercession function to other components. Such a component, called a base component,
can be used in only one way, namely by invoking operations on its component interfaces. A
component interface is an access point to a component that implements a language interface.
Component interfaces and language interfaces should not be mized up: a component interface
is an access point that implements a language interface; a language interface is a type. Despite
of this risk, sentences such as “a component has an interface that implements the language
interface X” will often be abbreviated, in the rest of this document, into “a component has an
interface X”, in order to improve readability.

This section defines the pseudo Interface Definition Language used in the rest of this document
to define the language interfaces implemented by Fractal component interfaces. It also defines
a framework to get access to component interfaces.

2.1. Interface Definition Language

In order to allow Fractal components implemented in potentially distinct programming lan-
guages to interoperate, some standard protocols for local and remote operation invocations
are necessary. One way to ensure this is to use an Interface Definition Language (IDL), and
mappings from the IDL to existing programming languages. The IDL compiler can then gen-
erate stubs and skeletons to make the conversion from language specific protocols to standard
protocols, and vice versa.

Despite of this, in the Fractal component model, IDLs and mappings are optional, as every-
thing else. This means that Fractal component interfaces can be defined either directly in any
programming language, or indirectly via any IDL. As a consequence, the constraints and costs
associated to the use of an IDL do not have to be paid for, if interoperability is not needed.

In this document the component interfaces are specified in a pseudo IDL language (see below),
in order to show that the Fractal component model does not enforce the use of any existing
programming or interface definition language. A possible definition of these interfaces is also
given in Java, C and OMG IDL (see Appendix A). These definitions can be used as “standard”
definitions to provide interoperability between Java components only, between C components
only, and between any components (respectively).

The non normative, pseudo IDL language used in this document for illustration purposes is a
modified subset of Java, so as to be immediately understandable by Java programmers. In this
language, an interface definition is a Java interface definition with the following restrictions:
e modifiers (public, final, ...) are not allowed;
e field (i.e. constant) declarations are allowed only with literal expressions;

e inner interface and class definitions are not allowed;

e class types are not allowed in array types, formal parameter types and return types.

The ObjectWeb Consortium 3 Draft 2.0-2

The Fractal Component Model Specification

and with the following extensions:

e a new any type, meaning any interface type, is available to replace java.lang.Object;
e a new string primitive type is available to replace java.lang.String.

Exceptions are allowed in operation declarations, but are not considered as classes, as in Java:
they are instead considered as abstract names, denoting categories of errors.

2.2. Naming and binding

In order to invoke operations on a component interface, one must first identify the interface to
be called, and then get an access to this interface. This section defines a framework for doing
s0, based on names, naming contexts and binders (see Figure 1). This framework is mainly
designed to access remote interfaces, but can also be used in a single address space.

package org.objectweb.naming;

interface Name {
NamingContext getNamingContext ();
byte[] encode () throws NamingException;

}

interface NamingContext {
Name export (any o, any hints) throws NamingException;
Name decode (byte[] b) throws NamingException;

}

interface Binder extends NamingContext {
any bind (Name n, any hints) throws NamingException;
}

Figure 1: Naming API

A name designates a component interface. Names can take many forms, such as Java references
or Interoperable Object References (IORs). A name does not necessarily give direct access
to the interface it designates (a CORBA IOR does not give direct access to the designated
remote interface; on the contrary, a Java reference can be used directly to call methods on the
designated interface). A name is represented by the Name interface.

A name is always associated to a naming context, and is generally invalid outside this context.
For example the naming context of a Java reference is the Java Virtual Machine (JVM) in
which the designated object resides. This name is meaningless outside this context and, in
particular, in another JVM. The naming context of an IOR is the CORBA IOR “name space”.
An IOR is meaningless outside this context and, in particular, in the Java RMI over JRMP
context. The Name interface specifies a getNamingContext operation, which returns the naming
context of the name on which this operation is invoked.

The ObjectWeb Consortium 4 Draft 2.0-2

The Fractal Component Model Specification

A name can be serialized in many forms, such as a string or a byte array. For example a
Java reference can be serialized as a string representing the memory address of the object, in
decimal or hexadecimal form. An IOR can be serialized as a string containing a host name
or IP address, a TCP port number, and an object key. In serialized form, a name can be
sent over a network, or stored in a file or a database. The Name interface specifies an encode
operation, which returns an encoded form of the name on which this operation is invoked, as
a byte array.

A naming context is represented by the NamingContext interface. A naming context creates
and manages names in its context. In particular, a naming context can create a name for
a given component interface. The NamingContext interface specifies an export operation for
doing that: this operation takes as argument a component interface and optional hints, and
returns a name for this interface. A naming context can also deserialize names in serialized
form. The NamingContext interface specifies a decode operation for doing that: this operation
takes as argument a serialized name, as a byte array, and returns the corresponding name.

In order to access the interface designated by a name, a binding must be established to this
interface. For example, in order to access a remote interface designated by an IOR, a socket
must be opened to send an invocation message to the remote interface. These bindings are
created by binders. A binder is represented by the Binder interface, which extends the Nam-
ingContext interface. This interface specifies a bind operation that takes a name as parameter,
creates a binding to the interface designated by this name, and returns a delegate (or proxy)
of this interface, or the interface itself, to invoke operations on it.

The org.objectweb.naming.NamingException exception must be thrown when an error occurs in
the operations of the Name, NamingContext and Binder interfaces.

The ObjectWeb Consortium 5 Draft 2.0-2

The Fractal Component Model Specification

The ObjectWeb Consortium 6 Draft 2.0-2

The Fractal Component Model Specification

3. Introspection

At the next control capability level, beyond the base level where components do not provide
any control function, a Fractal component can provide introspection functions to introspect its
external features, i.e. its boundary. This section defines more precisely the external features of
Fractal components, and specifies the interfaces related to the introspection of these features.
The interfaces related to the introspection (and reconfiguration) of the internal features of
Fractal components are specified in the next section.

3.1. External component structure

Depending on the level of observation, or scale, a Fractal component can be seen as a black box
or as a white box. When seen as black box, i.e. when its internal organization is not visible,
the only visible details of a Fractal component are some access points to this black box, called
its external interfaces (see Figure 2). Each interface has a name, in order to distinguish it from
the other interfaces of the component (a component can have several interfaces implementing
the same language interface). All the external interfaces of a component must have distinct
names, but two interfaces in two distinct components may have the same name. One may
distinguish two kinds of interfaces: a client (or required) interface emits operation invocations,
while a server (or provided) interface receives them.

component

client interface || p j

a,1 [server interface
(name, language interface)

Figure 2: External view of a Fractal component

The interfaces of a component can be introspected with two language interfaces, specified in
the next two sections: one to get the list of interfaces of a component, and one to introspect
the interfaces themselves. These two interfaces are of course optional, as everything in the
Fractal model: a component can provide both interfaces, only the first one, or none of them.

3.2. Component introspection

In order to discover the external interfaces of a component, a component can provide an
interface that implements the Component interface (see Figure 3). This language interface
provides two operations named getFclnterfaces and getFclnterface, that can be used to retrieve
the interfaces of the component. The first operation takes no arguments, and returns an array
containing all the external interfaces, either client or server, of the component, including the

The ObjectWeb Consortium 7 Draft 2.0-2

The Fractal Component Model Specification

Component interface. The second operation takes the name of an interface as parameter, and
returns this interface, if it exists.

package org.objectweb.fractal.api;

interface Component {
any|[] getFclnterfaces ();
any getFcinterface (string itfName) throws NoSuchlnterfaceException;
Type getFcType ();

}

interface Type {
boolean isFcSubTypeOf (Type t);
}

Figure 3: Component introspection API

The getFclnterfaces and getFclnterface operations return references that give access to re-
quested interfaces. In other words, the references returned by these operations can be used
directly, after an appropriate cast, to invoke operations on the component’s server interfaces
(no explicit binding is needed). For example, if a component has a server interface named
account implementing the language interface Account, then the getBalance operation of this
interface can be invoked with a code like ((Account)c.getFcInterface("account")).getBalance(),
where c is a reference to the Component interface of the component.

The Component interface also provides a getFcType operation, which returns the type of the
component, as a Type reference. This interface defines a minimal notion of type, which actually
defines only one operation named isFcSubTypeOf, whose role is to test if a given type is a sub
type or not of another type. This interface can be extended to define more useful type systems
for components and component interfaces, such as the one defined in section 6.

The org.objectweb.fractal.api.NoSuchlInterfaceException exception must be thrown in the get-
Fcinterface operation when a requested component interface is not found.

A component interface implementing Component must be named component.

3.3. Interface introspection

By default the references returned by the getFclnterface and getFclnterfaces operations provide
access to the requested interfaces, and nothing more. In particular, it is impossible to find
the names of these interfaces. In order to provide such interface introspection functions, a
component can ensure that the references returned by the above operations are castable into
the Interface type (see Figure 4). This interface specifies four operations to get the name of a
component interface, to get its type (as a Type reference), to get the Component interface of the
component to which it belongs, and to test if the interface is internal or not (see section 4.1).

Note that the getFcltfOwner operation allows one to discover all the interfaces of a component
from any interface of this component, and not only from its Component interface. For example,
if a is a reference to the Account interface of a such component, the Component interface of this

The ObjectWeb Consortium 8 Draft 2.0-2

The Fractal Component Model Specification

package org.objectweb.fractal.api;

interface Interface {
string getFcltfName ();
Type getFcltfType ();
Component getFcltfOwner ();
boolean isFcinternalltf ();

}

Figure 4: Interface introspection API

component can be retrieved with a code like ((Interface)a).getFcltfOwner(), if the component
provides interface introspection functions. The result can then be used to get the reference of
any other interface of the component.

Notes

e Component and Interface have very distinct roles and should not be mixed up. On the
one hand, Component is a language interface that is provided by a component just like
any other language interface. On the other hand, in the case of a component providing
interface introspection, Interface is a language interface that is implemented by all the
component interfaces: any component interface of a such component implements both
a specific language interface, such as Account or Component, and Interface.

e A functional interface such as Account is likely to provide a getName or getOwner op-
eration, as the Interface interface. And since, in the case of components that provide
interface introspection, a reference of one type should be castable to the other, there is
a risk of name conflicts (at least in some languages, such as Java). In order to reduce
these risks, the Interface operations follow the pattern verbFcnoun, where Fc stands for
Fractal component. This pattern has then been generalized to all the Fractal APIs.

e Providing the Component interface is quite easy, but supporting the Interface interface
can imply some runtime time overheads. This is why this interface is optional.

The ObjectWeb Consortium 9 Draft 2.0-2

The Fractal Component Model Specification

The ObjectWeb Consortium 10 Draft 2.0-2

The Fractal Component Model Specification

4. Configuration (introspection & intercession)

At the next level of control capability, beyond the “introspection” level where components
provide interfaces to introspect their external features, a Fractal component can provide control
interfaces to introspect and reconfigure its internal features. This section defines these internal
features, and specifies some possible interfaces to introspect and reconfigure them.

4.1. Internal component structure

Internally, a Fractal component is formed out of two parts: a controller (also called membrane),
and a content (see Figure 5). The content of a component is composed of (a finite number of)
other components, called sub components, which are under the control of the controller of the
enclosing component. The Fractal model is thus recursive and allows components to be nested
(i.e. to appear in the content of enclosing components) at an arbitrary level. A component
that exposes its content is called a composite component. A component that does not expose
its content, but has at least one control interface (see below), is called a primitive component.
A component without any control interface is called a base component (see section 2).

-0 T T

—e
export
. . — — . . .
binding import binding
al il |——=] b0
v v
1 E
= AN !
N ~
5| |E ! bindi Hilek
= S sub component normai bmding
E E — —
SES I]
content
controller

Figure 5: Internal view of a Fractal component

The controller of a component can have external and internal interfaces. External interfaces
are accessible from outside the component, while internal interfaces are accessible only from
the component’s sub components. All the external interfaces of a component must have
distinct names, all its internal interfaces must have distinct names, but a component can
have an external and an internal interface of the same name. A functional interface is an
interface that corresponds to a provided or required functionality of a component, while a
control interface is a server interface that corresponds to a “non functional aspect”, such as

The ObjectWeb Consortium 11 Draft 2.0-2

The Fractal Component Model Specification

introspection, configuration or reconfiguration, and so on. By convention, an interface is
considered to be a control interface if its name is equal to component, or ends with -controller.
All other interfaces are considered to be functional interfaces.

The controller of a component embodies the control behavior associated with a particular
component. In particular, a component controller can:

e Provide an explicit and causally connected representation of the component’s sub com-
ponents;

e Intercept oncoming and outgoing operation invocations targeting or originating from the
component’s sub components;

e Superpose a control behavior to the behavior of the component’s sub components, in-
cluding suspending, check pointing and resuming activities of these sub components.

Each component controller can thus be seen as implementing a particular semantic of composi-
tion for the component’s sub components. The control capability of a controller is not limited
by the model. For instance, it can be mainly interception-based as in industrial component
frameworks containers for instance; or it can be void (i.e. no control is exercised - in this case,
the controller can still be useful for it can provide a representation of its content and manifest
a containment relationship).

A component may appear in the content of (be shared by) several distinct enclosing compo-
nents (see section 4.4 and Figure 9). A component that is shared among two or more distinct
components is subject to the control of their respective controllers. The exact semantics of the
resulting configuration (e.g. which control behavior is enacted) is in general determined by an
encompassing component that encloses all the relevant components in the configuration.

A binding is a communication path between component interfaces. The Fractal model distin-
guishes between primitive bindings and composite bindings. A primitive binding is a binding
between one client interface and one server interface, in the same address space, which means
that the operation invocations emitted by the client interface should be accepted by the spec-
ified server interface. A primitive binding between a client interface ¢ and a server interface s
of two components C and S must verify one of the following constraints (see Figure 5):

e c and s are external interfaces, and C and S have a direct common enclosing component.
Such bindings are called normal bindings.

e c is an internal interface, s is an external interface, and S is a sub component of C. Such
bindings are called export bindings.

e c is an external interface, s is an internal interface, and C is a sub component of S. Such
bindings are called import bindings.

In addition to these structural constraints, which ensure that primitive bindings cannot “cross”
component boundaries except through interfaces, a primitive binding can be established be-
tween a client and a server interface only if the server interface can accept at least all the
operation invocations that the client interface can emit. In other words, the (language) type

The ObjectWeb Consortium 12 Draft 2.0-2

The Fractal Component Model Specification

of the server interface must be a sub type of the type of the client interface (the two interfaces
can of course be of the same type since a sub typing relation must be reflexive). The last
constraint is that a client interface can be bound to at most one server interface, while several
client interfaces can be bound to the same server interface.

A composite binding is a communication path between an arbitrary number of component
interfaces, of arbitrary language types. These bindings are represented as a set of primitive
bindings and binding components (stubs, skeletons, adapters, ...). A binding component is a
normal Fractal component, whose role is dedicated to communication. Binding components
are also called connectors: hence Fractal does have connectors, although this concept is not
a core concept here, as component or interface - this is why there is no special API for them.
It should be noted that the binding concept defined here is exactly is the same as the binding
concept defined in section 2.2: in particular, primitive bindings correspond to local bindings,
i.e. to bindings inside a single address space.

4.2. Attribute control

An attribute is a configurable property of a component, such as the text or color of a button,
or the maximum size of a pool or cache component. Attributes are generally of primitive
type, and are used to configure the state of components without needing to use bindings (it is
possible to configure the text of a button, for example, by binding this button component to
a text component; but this is overly complex for what is needed). A component can provide
an AttributeController interface to read and write its attributes from outside the component
(see Figure 6).

package org.objectweb.fractal.api.control;

interface AttributeController { }

Figure 6: Attribute control API

In this case, the component must actually provide a sub interface of this interface, since the
AttributeController interface is in fact empty. This sub interface must contain one getter and/or
setter operation per configurable attribute. For example:

e a component that wants to provide an AttributeController interface for a read only string
attribute foo must provide a sub interface of this interface containing the following
operation: string getFoo();

e a component that wants to provide an AttributeController interface for a write only string
attribute foo must provide a sub interface of this interface containing the following
operation: void setFoo(string foo);

e a component that wants to provide an AttributeController interface to configure two
string attributes foo and bar must provide a sub interface of this interface containing
the following operations: string getFoo(), void setFoo(string foo), string getBar() and void
setBar(string bar);

The ObjectWeb Consortium 13 Draft 2.0-2

The Fractal Component Model Specification

It is a requirement of this specification that setters and getters must follow the lexicographic
and typing conventions introduced informally in the example above with respect to names and
signatures of setters and getters (these conventions are those of the Java Beans component
model).

A component interface implementing AttributeController must be named attribute-controller.
4.3. Binding control

A component can provide the BindingController interface to bind and unbind its client interfaces
to other components through primitive bindings (see Figure 7).

package org.objectweb.fractal.api.control;

interface BindingController {
string][] listFc ();
any lookupFc (string clientltfName)
throws NoSuchlnterfaceException;
void bindFc (string clientltfName, any serverltf)
throws NoSuchinterfaceException, lllegalBindingException, IllegalLifeCycleException;
void unbindFc (string clientltfName)
throws NoSuchinterfaceException, lllegalBindingException, IllegalLifeCycleException;

Figure 7: Binding control API

This interface defines the following operations:

e The listFc operation returns the names of the client interfaces of the component. These
names are the names that can be passed as first argument to the lookupFc operation.

e The lookupFc operation takes as parameter the name of a client interface of the com-
ponent, either external or internal, and returns the server interface that is bound to
this client interface, or null if there is no such interface. If the component to which
the server interface belongs supports the interface introspection (see section 3.3), the
reference returned by this operation can be cast to Interface.

e The bindFc operation takes as parameters the name of a client interface of the component,
either external or internal, and a server interface of another component, and binds these
two interfaces together. As above, the server interface can be cast or not to Interface,
depending on the introspection capabilities provided by the server component.

e The unbindFc operation takes as parameter the name of a client interface of the compo-

nent, either external or internal, and unbinds this interface.

These operations may throw a NoSuchlnterfaceException exception if a specified client interface
does not exist, an lllegalLifeCycleException exception when a component is not in an appropriate

The ObjectWeb Consortium 14 Draft 2.0-2

The Fractal Component Model Specification

state to perform an operation, and an org.objectweb.fractal.api.control.lllegalBindingException
exception in case of other errors related to bindings.

A component interface implementing BindingController must be named binding-controller.

Composite bindings are created with the general naming and binding framework (see sec-
tion 2.2). For example, in order to bind two component interfaces that are not in the same
address space, a binding component must first be created between the two interfaces, by using
the naming and binding framework (typically, the server interface will be exported in some
distributed NamingContext, the returned Name will be encoded, sent over the network, de-
coded, and finally a Binder will be used to create the binding component from this name; all
this can be done explicitly or implicitly, as the effect of passing an interface reference in a
remote operation invocation). The BindingController interface will then be used to create the
primitive bindings between the client interface and the binding component, and between the
binding component and the server interface.

4.4. Content control

A component can provide the ContentController interface to add and remove sub components
in this component (see Figure 8).

package org.objectweb.fractal.api.control;

interface ContentController {
any|[] getFclnternallnterfaces ();
any getFclnternallnterface (string itfName) throws NoSuchlInterfaceException;

Component[] getFcSubComponents ();
void addFcSubComponent (Component ¢)

throws lllegalContentException, lllegalLifeCycleException;
void removeFcSubComponent (Component c)

throws lllegalContentException, lllegalLifeCycleException;

}

interface SuperController {
Component|[] getFcSuperComponents ();
}

Figure 8: Content control API

This interface defines three operations to get the list of sub components of a component, and
to add and remove sub components in a component:

e the getFcSubComponents operation returns the list of sub components of the component,
as an array of Component references. The getFcSuperComponents operation, in the
SuperController interface (see Figure 8), provides the opposite function: it returns the
components that contain this component, and which are called its super components.

e the addFcSubComponent operation takes a component ¢ as parameter, as a Component
reference, and adds this component to the component’s content. If C' and C’ are the set

The ObjectWeb Consortium 15 Draft 2.0-2

The Fractal Component Model Specification

of sub components of the component before and after ¢ is added, then ¢ € C’ but C’ is
not necessarily equal to C'U {c}.

e the removeFcSubComponent operation takes a component as parameter, as a Component
reference, and removes this component from the component’s content. If C and C’ are
the set of sub components of the component before and after ¢ is removed, then ¢ ¢ C’
but C’ is not necessarily equal to C' — {c}.

A given component can be added to several other components. Such a component is said to be
shared between these components. Shared components are useful, paradoxically, to preserve
component encapsulation. Consider, for example, a menu and a toolbar components (see
Figure 9), with an “undo” toolbar button corresponding to an “undo” menu item. It is natural
to represent the menu items and toolbar buttons as sub components, encapsulated in the menu
and toolbar components, respectively. But, without sharing, this solution does not work for
the “undo” button and menu item, which must have the same state (enabled or disabled):
these components, or an associated state component, must be put outside the menu and
toolbar components. With component sharing, the state component can be shared between
the menu and toolbar components, in order to preserve component encapsulation. Shared
components are also useful to help separate “aspects” in component based applications. For
example, a shared logger component allows one to avoid adding a Logger client interface to
many components.

MENU MENU
ey i pe———
He H————H +9 he [~} UNDO |
il [——
= N\ - N
= N
)-‘ OPTIONS)-‘ OPTIONS
TOOLBAR TOOLBAR
H N N
he H—H NEW h Hl—H NEW
m I < H
8\ SN
: =
o oo
solution without shared components solution with shared components

Figure 9: Advantages of shared components

Because of shared components, the structure of a Fractal component, in terms of direct and
indirect sub components, is not necessarily a tree, but can be a directed acyclic graph (it
cannot be an arbitrary graph, because a component cannot be added inside itself or inside one
of its direct or indirect sub components). In terms of bindings, this structure can be arbitrary,
provided it follows the constraints of section 4.1. In particular, bindings can form cycles.

The ObjectWeb Consortium 16 Draft 2.0-2

The Fractal Component Model Specification

The ContentController interface also specifies two operations to get the internal interfaces of
the component, which are similar to the getFclnterface and getFclnterfaces operations. These
operations are useful to bind the internal interfaces to sub components.

The content controller operations may throw a NoSuchlnterfaceException exception if a spec-
ified client interface does not exist, an lllegalLifeCycleException exception when a component
is not in an appropriate state to perform an operation and, in case of other errors related to
content control, an org.objectweb.fractal.api.control.lllegalContentException exception.

A component interface implementing ContentController (resp. SuperController) must be named
content-controller (resp. super-controller).

Note

In order to associate local names to the sub components of a component, similar to the local
names of the interfaces of a component, a possibility is to ensure that all these sub components
provide the NameController interface defined in Figure 10.

interface NameController {
string getFcName ();
void setFcName (string name);

}

Figure 10: Name control API

A component interface implementing NameController must be named name-controller.

4.5. Life cycle control

Changing an attribute or a binding, or removing a sub component, with the above control
interfaces, and while components are executing, can be dangerous: messages can be lost, the
application’s state may become inconsistent, or the application may simply crash. In order
to provide a minimal support to help implement such dynamic reconfigurations, a component
can provide the LifeCycleController interface (see Figure 11).

package org.objectweb.fractal.api.control;

interface LifeCycleController {
string getFcState ();
void startFc () throws lllegalLifeCycleException;
void stopFc () throws lllegalLifeCycleException;

}

Figure 11: Life cycle control API

This interface provides two operations named startFc and stopFc, to start and stop a com-
ponent properly. As for the addFcSubComponent and removeFcSubComponent operations, the

The ObjectWeb Consortium 17 Draft 2.0-2

The Fractal Component Model Specification

semantics of these operations is voluntarily as weak as possible, so that many implementations
are possible: these operations may or may not be recursive, i.e. starting or stopping a compo-
nent may or may not automatically start or stop all its direct and indirect sub components.
Likewise, the effect of these operations on the component’s state is voluntarily not specified
(in fact it cannot be specified here, because the APIs defined in this document do not provide
access to this state). In particular, the stopFc operation can be seen as a clean up operation
invoked before the component is destroyed, or as a suspend operation. In the first case the
component’s state will be erased, while in the second case it will be left unchanged.

In addition to these operations, the LifeCycleController interface also provides a getFcState
operation. This operation returns the current state of the component (in a strict sense, i.e.
without taking into account its sub components, which can have a different execution state),
as a string. The STARTED and STOPPED strings mean that the component is started or
stopped, respectively.

In the STARTED state, i.e. just after successful completion of a call to startFc, a component
can emit or accept operation invocations, which are guaranteed to execute “normally”. Note
that this does not prevent the unbindFc and removeFcSubComponent operations to throw the
lllegalLifeCycleException if they are invoked while the component is in this state (in order to
prevent a component from being reconfigured while it is in an unstable state).

In the STOPPED state, i.e. just after successful completion of a call to stopFc, a component
cannot emit operation invocations, and can accept operation invocations only through control
interfaces. The result of operation invocations to the functional interfaces of a stopped com-
ponent is undefined. It may be a normal result, an exception, a suspension of the invocation
until the component is restarted, or anything else.

The LifeCycleController interface corresponds to a minimal life cycle automaton, whose tran-
sitions are represented in the following table:

STOPPED | STARTED
startFc | STARTED | STARTED
stopFc | STOPPED | STOPPED

However, some components may require very different life cycles. Of course, completely ar-
bitrary life cycles can be specified by providing completely new interfaces, distinct from the
LifeCycleController interface. More commonly, life cycles can be adapted from the basic one
by extending the LifeCycleController interface to introduce new states and transitions or even
to change the transitions of the basic life cycle. In this case, it is a requirement of this
specification that the semantics associated to the STARTED and STOPPED states should be
preserved.

The org.objectweb.fractal.api.control.lllegalLifeCycleException exception may be thrown when a
requested transition, in a life cycle automaton, is not valid.

A component interface implementing LifeCycleController must be named lifecycle-controller.

The ObjectWeb Consortium 18 Draft 2.0-2

The Fractal Component Model Specification

5. Instantiation

The frameworks presented in the previous sections allows one to use, introspect, configure
and reconfigure existing components. In order to be useful, they must be completed with
a framework to create new components. This section defines such a framework, based on
factories.

5.1. Factories

In the instantiation framework specified in this section, components are created by other
components called component factories. The Fractal model distinguishes between generic
component factories, which can create several kinds of components, and standard component
factories, which can create only one kind of components, all with the same component type.
Generic and standard component factories can provide the GenericFactory interface and the
Factory interfaces, respectively (see Figure 12 - note that, in accordance with the rule defined
in section 4.1, both interfaces are functional interfaces, and not control interfaces).

package org.objectweb.fractal.api.factory;

interface GenericFactory {
Component newFclnstance (Type t, any controllerDesc, any contentDesc)
throws InstantiationException;

}

interface Factory {
Type getFclnstanceType ();
any getFcControllerDesc ();
any getFcContentDesc ();
Component newFclnstance () throws InstantiationException;

Figure 12: Instantiation API

The GenericFactory interface provides only one operation named newFclnstance. This operation
takes as parameter the type of the component to be created, a descriptor of its controller part,
and a descriptor of its content part. This operation creates a component corresponding to the
given description, and returns its Component interface.

The Factory interface also provides a newFclnstance operation, but this operation does not
take any parameter, which reflects the fact that all the components created by this operation
have the same type, and the same controller and content descriptors. These information
can be retrieved with the three other operations of this interface, named getFclnstanceType,
getFcControllerDesc and getFcContentDesc.

In both interfaces, the component type must describe only the functional interfaces of the
components to be created. The control interfaces of the components to be created must
indeed be specified in the controller descriptors. The exact semantics of the controller and

The ObjectWeb Consortium 19 Draft 2.0-2

The Fractal Component Model Specification

content descriptors, in both interfaces, is however left unspecified in this version of the Fractal
component model specification.

Note that, in both interfaces, the newFclnstance operation does not necessarily create a new
component instance each time it is invoked. It can also, for example, always return the same
instance (this is the singleton pattern). The components created by a factory must be created
in the same address space as the factory component. But the exact location of the created
components, in this address space, is voluntarily not specified. In particular, it is not ensured
that the components created by a factory are automatically added to the parent component(s)
of the factory component.

The org.objectweb.fractal.api.factory.InstantiationException exception must be thrown when a
component cannot be created, in the newFclnstance operations of the Factory and GenericFac-
tory interfaces.

A component interface implementing GenericFactory must be named generic-factory. A com-
ponent interface implementing Factory must be named factory.

5.2. Templates

A template is a special kind of standard factory component that creates components that are
quasi “isomorphic” to itself. More precisely, the components created by a template compo-
nent must have the same functional client and server interfaces as the template component
(except for the Factory interface, which is provided by the template, but not necessarily by its
instances), but can have arbitrary control interfaces. The components created by a template
component also have the same attributes as the template. A template component may contain
several sub template components, bound together through bindings. The components created
by such a template component are components that contain as many sub components as sub
templates in the template, bound together as the sub templates are bound in the template
(see Figure 13). If some sub templates are shared, the corresponding sub components in the
components created by the template will also be shared.

== i——=h | R {i—=Hh i———=h |
I Factory 1 1
I Factory H = | H = |
I Factory
template instance

Figure 13: A sample template component and a component created from it

The ObjectWeb Consortium 20 Draft 2.0-2

The Fractal Component Model Specification

If a generic factory component is able to create template components, then it must be possible
to create a template component with a operation invocation, on this generic factory, of the
form newFclnstance(type, templateControllerDesc, {controllerDesc, contentDesc}), where type
describes the functional client and server interfaces of the components that the template will
create, templateControllerDesc is the descriptor of the controller part of the template compo-
nent to be created, and controllerDesc and contentDesc are the descriptors of the controller
and content parts of the components that the template will create (the brackets denote an
array).

Template components are useful in only one case, namely when several identical components
must be created from a textual representation, such as an Architecture Description Language
definition. In this case, instead of parsing the textual representation each time an instance
must be created, it can be more efficient to parse the text file(s) and to create a corresponding
template only once, and then to instantiate the template each time an instance is needed. In
all other cases, using templates is equivalent, but generally less efficient, than not using them.

5.3. Bootstrap

According to the above framework, components are created from component factories. But
how are created component factories? They can be created from other component factories,
but this leads to an infinite recursion. In order to stop it, a bootstrap component factory,
which does not need to be created explicitly, and which is accessible from a “well-known”
name, is necessary. This bootstrap component factory must be able to create several kinds of
components, including component factories. In other words, it must provide the GenericFactory
interface.

Note

In Java, this bootstrap component must be accessible from the getBootstrapComponent static
method, defined in the org.objectweb.fractal.api.Fractal class. This method must not take any
parameter, and must return the Component interface of the bootstrap component.

The ObjectWeb Consortium 21 Draft 2.0-2

The Fractal Component Model Specification

The ObjectWeb Consortium 22 Draft 2.0-2

The Fractal Component Model Specification

6. Typing

This section defines a simple type system for components and component interfaces. This
type system reflects the main characteristics of component interfaces, introduced in section 3,
i.e. their name, their language type, and their role (client or server). It also introduces two
new characteristics named contingency and cardinality.

6.1. Contingency and cardinality

The contingency of an interface indicates if the functionality corresponding to this interface
is guaranteed to be available or not, while the component is running;:

e the operations of a mandatory interface are guaranteed to be available when the com-
ponent is running. This semantic is obvious for a server interface. For a client interface,
which does not have a functionality of its own, it means that the interface must be
bound, and that it must be bound to a mandatory interface. As a consequence, a com-
ponent with mandatory client interfaces cannot be started until all these interfaces are
bound to other mandatory interfaces.

e the operations of an optional interface are mot guaranteed to be available. This can
happen, for a server interface, when the complementary internal interface is not bound
to a sub component. This can also happen, for a client interface, when this interface is
not bound.

The cardinality of an interface type 7T indicates how many interfaces of type T a given
component may have:

e the singleton cardinality means that a given component must have exactly one interface
of type T.

e the collection cardinality means that a given component may have an arbitrary number
of interfaces of type T. All these interfaces must have a name that begins with the
name specified in 7' (see next section). Since there is a priori an infinite number of such
interfaces, these interfaces cannot all be created at the same time: they must be created
lazily, during invocations of the getFclnterface and bindFc operations. For example, if
the name specified in 7' is listener, then an invocation to getFclnterface("listener1l") or
to bindFc("listener11", s) will create an interface named listenerll, if it does not already
exist. This interface may be removed automatically when it is no longer used by any
binding.

Mandatory and optional interfaces are useful for components that absolutely require other
components to work, and which may also use other components, if they are present. For
example, a parser component absolutely needs a lexer component, but can work with or
without a logger component. Collection interfaces are useful for components with a variable
number of required components of the same type, such as a menu component and its associated
menu item components, a model component and its listener components (in the MVC model),
and so on.

The ObjectWeb Consortium 23 Draft 2.0-2

The Fractal Component Model Specification

6.2. Type system

In the type system specified here, a component type is just a set of component interface types.
A component type is represented by the ComponentType interface (see Figure 14). This
interface defines a getFclnterfaceTypes operation, which returns the set of component interface
types in this component type, as an array. It also defines a getFclnterfaceType operation, which
returns the component interface type whose name is given as parameter (this operation must
throw the NoSuchlnterfaceException if the requested interface type does not exist).

A component interface type is represented by the InterfaceType interface. Such a type is made
of a name, a signature, a role, a contingency and a cardinality. The name is the name of
component interfaces of this type. The signature is the name of the language interface type
that is implemented by component interfaces of this type (for a client interface, an empty
signature means that this client interface can be connected to any server interface). The role
indicates if component interfaces of this type are client or server interfaces. The contingency
indicates if the functionality of interfaces of this type is guaranteed to be available or not.
Finally, the cardinality indicates how many interfaces of this type a component may have.

Component and component interface types can be created by using a type factory, represented
by the TypeFactory interface. Indeed this interface provides two operations to create compo-
nent interface types and component types. A component interface implementing TypeFactory
must be named type-factory.

package org.objectweb.fractal.api.type;

interface ComponentType extends Type {
InterfaceType[] getFclInterfaceTypes ();
InterfaceType getFclnterfaceType (string itfName) throws NoSuchinterfaceException;

}

interface InterfaceType extends Type {
string getFcltfName ();
string getFcltfSignature ();
boolean isFcClientltf ();
boolean isFcOptionalltf ();
boolean isFcCollectionltf ();

}

interface TypeFactory {
InterfaceType createFcltfType (string name, string signature, boolean isClient,
boolean isOptional, boolean isCollection) throws InstantiationException;
ComponentType createFcType (InterfaceType[] itfTypes) throws InstantiationException;

}

Figure 14: Typing API

A component of type 7' must have as many external interfaces as described in 7' (and, in
particular, in the interface cardinalities), and all these interfaces must have the name, lan-
guage type and role described in the corresponding component interface type. Likewise, if

The ObjectWeb Consortium 24 Draft 2.0-2

The Fractal Component Model Specification

this component also exposes its content, and in particular its internal interfaces, then it must
also have, at most, as many internal functional interfaces as described in 7', and each of these
interfaces must have the name, language type and role described in the corresponding compo-
nent interface type. This implies that each internal functional interface has a complementary
external interface of the same name, signature, contingency and cardinality, and of opposite
role (but the converse is not necessarily true). Note that this property is ensured by the type
system specified in this section: in the general case, nothing more than what is explicitely
stated in section 4.1 is ensured (and so an internal interface may not have a complementary
external interface).

Note that if, in general, the number of interfaces of a Fractal component may change dur-
ing its life time, the number of interfaces of a Fractal component that uses the type system
presented here cannot change during its lifetime (except for interface collections). Indeed the
ComponentType and InterfaceType interfaces do not offer any operations to modify an existing
type, and the other interfaces specified in this document do not offer a operation to change
the type of a component or of an interface. But a Fractal component may perfectly provide a
setFcType operation, if needed, since the Fractal model is extensible.

6.3. Sub typing relation

This section defines a sub typing relation for component and component interface types, based
on substitutability. This relation provides a sufficient (but not necessary) condition such that if
a component type T} is a sub type of T5, then a component of type T} can replace a component
of type T3 in any environment, this environment (other components and bindings) being left
unchanged, and both components being seen as black bozes.

An interface type I; is a sub type of a server interface type I5 if the following conditions are
satisfied: I; has the same name and the same role as I; the language interface corresponding
to I is a sub interface of the language interface corresponding to Is; if the contingency of I is
mandatory, then the contingency of I; is mandatory too; if the cardinality of I» is collection,
then the cardinality of I is collection too.

An interface type I is a sub type of a client interface type I if the following conditions are
satisfied: I; has the same name and the same role as Is; the language interface corresponding
to I is a super interface of the language interface corresponding to Is; if the contingency of
I is optional, then the contingency of I; is optional too; if the cardinality of I is collection,
then the cardinality of I; is collection too.

A component type 11 is a sub type of a component type T if and only if each client interface
type defined in T} is a sub type of an interface type defined in 75, and each server interface
type defined in 75 is a super type of an interface type defined in 7.

The ObjectWeb Consortium 25 Draft 2.0-2

The Fractal Component Model Specification

The ObjectWeb Consortium 26 Draft 2.0-2

The Fractal Component Model Specification

7. Options

As said in section 1.2, in the Fractal component model, everything is optional. For example,
a Fractal component may provide or not the Component interface, it may support or not the
Interface interface, it may provide or not the control interfaces defined in section 4, it may use
or not the type system defined in section 6, and so on.

In addition, a Fractal component may provide or use new or alternative control interfaces, type
systems, or even component semantics. For example, a Fractal component may provide a new
ConcurrencyController interface to control concurrent accesses to the component. It may also
provide an alternative BindingController interface, named for example InternalBindingController,
to control the bindings between sub components directly from the enclosing component. It can
also use an empty type system, with a unique type, sub type of itself, used for all components
and component interfaces. A Fractal component may even define a new semantic for the
communication between its sub components: instead of specifying that operation invocations
follow bindings, as defined in section 4.1, it can for example specify that operation invocations
are broadcasted to all the sub components, in order to model an asynchronous, reactive “space”.
Bindings are then useless (another possiblity is to define parallel components, where all the
sub components have the same type as the enclosing component, and where each operation
invocation received on this component is executed in parallel by all its sub components). A
Fractal component may also refine the internal component structure defined in section 4.1,
by specifying that the component’s controller can, like the component’s content, contain sub
components. Such a Fractal component can then provide new control interfaces to introspect
and reconfigure the sub components of its controller part.

The advantage of this extreme modularity and extensibility is that the Fractal component
model can be applied to many situations. The drawback is that two arbitrary Fractal compo-
nents will generally not be able to work together, because they will generally use very different,
and potentially incompatible, options or extensions of the Fractal model. In order to reduce
this problem, this section defines some set of options, and gives them a symbolic name called
a conformance level. The goal is to be able to say, or even certify, that a given Fractal appli-
cation or tool is conform to the Fractal model of level X. It will then be easy to know which
Fractal applications and tools can work together, by comparing their conformance level to the
Fractal model.

7.1. Conformance levels

This specification defines the following conformance levels (new conformance levels can of
course be defined as needed):

e level 0: at this level nothing is mandatory. Fractal components are like simple objects.
A Java object, a Java Bean, or an Enterprise Java Bean, for example, are conform to
the Fractal component model of level 0.

— level 0.1: same as level 0, with the additional requirements that all components with
configurable attributes must provide the AttributeController interface, that all com-
ponents with client interfaces must provide the BindingController interface, that all

The ObjectWeb Consortium 27 Draft 2.0-2

The Fractal Component Model Specification

components that expose their content must provide the ContentController interface,
and that all components that expose their life cycle must provide the LifeCycleCon-
troller interface. Of course, these requirements do not prevent components from
providing additional control interfaces, including extensions and alternatives of the
previous interfaces.

e level 1: same as level 0, with the additional requirement that all components must
provide, at least, the Component interface.

— level 1.1: same as level 1, with the same additional requirements as for level 0.1,
concerning the control interfaces.

e level 2: same as level 1, with the additional requirement that all component interface
references must be castable to Interface.

— level 2.1: same as level 2, with the same additional requirements as for levels 0.1
and 1.1, concerning the control interfaces.

e level 3: same as level 2, with the additional requirement that all the components must
use (an extension of) the type system defined in section 6.

— level 3.1: same as level 3, with the same additional requirements as for levels 0.1,
1.1 and 2.1, concerning the control interfaces.

— level 3.2: same as level 3.1, with the additional requirement that a bootstrap com-
ponent must be accessible from a “well-known” name. This bootstrap component
must provide a GenericFactory and a TypeFactory interface. Moreover, the Gener-
icFactory interface must be able to create components with any control interfaces
in the set of control interfaces defined in section 4 (and, in particular, primitive
and composite components). Finally, this interface must also be able to create (3.2
level) primitive components encapsulating 0.1 level components (see below for more
details).

— level 3.3: same as level 3.2, with the additional requirement that the GenericFac-
tory interface of the bootstrap component must be able to create primitive and
composite template components.

These conformance levels can summarized as shown in Figure 15, where C, I, CT, IT, AC,
BC, CC, LC, F and T represent the component, interface, component type, interface type,
attribute controller, binding controller, life cycle controller, factory and “template” interfaces,
respectively, and where an x denotes a mandatory feature.

Note that a level 3 component is also a level 2, 1 or 0 component, a level 2 component is also
a level 1 or 0 component, a level 3.3 component is also a level 3.2, 3.1 or 3 component, but
a level 3, 2 or 1 component is not a level 0.1, 1.1 or 2.1 component. More generally, if [; is
greater than [s in alphabetical order, a level lo component is not necessarily also a level [;
component (this desirable rule cannot always be respected, because the alphabetical order is
a total order, while the set inclusion order is only a partial order).

The ObjectWeb Consortium 28 Draft 2.0-2

The Fractal Component Model Specification

C|I1|CT,IT | AC,BC,CC,LC |F|T
0
0.1 X
1 X
1.1 | x X
2 X | x
21 | x | x X
3 X | x X
3.1 | x| x X X
32| x| X X X X
33| x| X X X X | X

Figure 15: Conformance levels to the Fractal component model

Encapsulated components

As specified above, at the 3.2 level, the bootstrap generic factory must be able to create
3.2 primitive components that encapsulate 0.1 level components. These encapsulating com-
ponents (which do not have a ContentController interface, and therefore are not composite
components) must “delegate” all the operation invocations they receive on their functional
and control interfaces to their encapsulated component, if the encapsulated component has
a corresponding interface. For example, if the bindFc or startFc operation is invoked on an
encapsulating component, this component must in turn invoke this operation on its encap-
sulated component, if it provides the BindingController or LifeCycleController interface. The
encapsulating component can of course do some pre and post computations before and after
calling its encapsulated component.

If the encapsulated component provides a BindingController interface, then the encapsulating
component must invoke, during its initialization, the bindFc operation of this interface with,
as arguments, the component name and the reference of its Component interface, so that the
encapsulated component can get a reference to the Component interface of its encapsulating
component.

7.2. Extensions

The above conformance levels may not be sufficient to fully compare two Fractal systems.
In particular, for Fractal systems dedicated to a specific language, such as C or Java, the
language is as important as the conformance level. And, even for Fractal systems based on
the same language, other “details” (such as, in Java, the class loading policy - one class loader
per component vs a single class loader for all the components), unspecified here, may cause
incompatibilities. However, if needed, these other features can be captured in new conformance
levels, such as C.z.y or J.z.y, for C and Java respectively.

The ObjectWeb Consortium 29 Draft 2.0-2

The Fractal Component Model Specification

The ObjectWeb Consortium 30 Draft 2.0-2

The Fractal Component Model Specification

8. Example

This section shows how a 3.3 level, Java Fractal platform can be used, in order to illustrate
how the APIs defined in this specification can be used to create, assemble and reconfigure
component configurations.

The example used throughout this section is a very simple application made of two primitive
components inside a composite component (see Figure 16). The first primitive component is
a “server” component that provides an interface s of type S. The other primitive component
is a “client” component, bound to the previous server interface.

C C CC
C BC C
m, M m, M s, S
H H—=H H—=

s, S

Figure 16: A sample component based application

8.1. Instantiation

The above components can be instantiated as follows. The first step is to create the component
and component interface types. In order to do this, we get a reference to the bootstrap
component, and then to its TypeFactory interface:

Component boot = Fractal.getBootstrapComponent();
TypeFactory tf = (TypeFactory)boot.getFcInterface("type-factory");

We can now create the types of the root, client and server components as follows:

ComponentType rType = tf.createFcType(new InterfaceType[] {
tf.createFcltf Type("m", "M", false, false, false)

b

ComponentType cType = tf.createFcType(new InterfaceTypel[] {
tf.createFcltfType("m", "M", false, false, false),
tf.createFcltf Type("s", "S", true, false, false)

;i

ComponentType sType = tf.createFcType(new InterfaceType[] {
tf.createFcltfType("s", "S", false, false, false)

1

The ObjectWeb Consortium 31 Draft 2.0-2

The Fractal Component Model Specification

We could now create the components directly, but we will use intermediate template com-
ponents here, in order to show how they can be used. These component templates can be
created as follows:

GenericFactory gf = (GenericFactory)boot.getFcInterface("generic-factory");

Component rTmpl = gf.newFclInstance(
rType, "compositeTemplate", new Object[] {"composite", null});

Component cTmpl = gf.newFclnstance(
cType, "template", new Object[] {"primitive", "Clmpl"});

Component sTmpl = gf.newFclnstance(
sType, "template", new Object[] {"primitive", "SImpl"});

Here the template (resp. compositeTemplate) descriptor is supposed to describe components
with a BindingController interface (resp. with a BindingController and a ContentController inter-
faces). The primitive and composite descriptors are supposed to describe similar components,
but with an additional LifeCycleController interface. Finally, Clmpl and SImpl are the names of
the Java classes of the 0.1 level Fractal components that will be encapsulated in the client and
server components (see end of section 7.1). The Clmpl class, for example, has the following
form:

public class CImpl implements M, BindingController {
private S s;
public String[] listFc () { return new String[] { "s" }; }
public Object lookupFc (String name) {
if (name.equals("s")) return s;
return null;
}
public Object bindFc (String name, Object itf) {
if (name.equals("s")) s = (S)itf;
}
public Object unbindFc (String name) {
if (name.equals("s")) s = null;
}

We can then either instantiate each template one by one, put the resulting primitive compo-
nents inside the composite component, connect all these components, and finally start them.
But we can also put the primitive templates inside the composite template, connect these tem-
plates together, and then instantiate the whole application by just instantiating the composite
template component. This is what we do here.

The ObjectWeb Consortium 32 Draft 2.0-2

The Fractal Component Model Specification

We begin by putting the primitive template components inside the composite one (here we
assume a strong semantic for the addFcSubComponent method, i.e. we assume that C' =
C U{c} - see section 4.4):

ContentController cc = (ContentController)rTmpl.getFcInterface("content-controller");
cc.addFcSubComponent(cTmpl);
cc.addFcSubComponent(sTmpl);

We then bind the internal client interface m of the composite template to the server interface
m of the client template:

((BindingController)rTmpl.getFcInterface("binding-controller"))
.bindFc("m", cTmpl.getFcinterface("m"));

Finally, we bind the client interface s of the client template to the server interface s of the
server template:

((BindingController)cTmpl.getFclnterface("binding-controller"))
.bindFc("s", sTmpl.getFclnterface("s"));

At this stage the template components are like the components depicted in Figure 16, with
just an additional Factory interface. Now that the template components have been created and
bound to each other, the application components can be instantiated and bound to each other
automatically, by just calling the newFclnstance method on the root template component:

Component r = ((Factory)rTmpl.getFcInterface("factory")).newFclnstance();

The result is depicted in Figure 17. As can be seen, the 0.1 level components Clmpl and Slmpl
have been encapsulated in 3.2 level components, which provide them component and interface
introspection functions.

C C CC
C BC C
m, M m, M s, S
H H—=H HHKCImpl{{/H H—=H } HSImpl
s, S

Figure 17: Result of the instantiation of the application depicted in Figure 16

All the application components can now be started automatically by just calling the startFc
method on the root application component (here we assume a stronger semantic than the
default one for the startFc method, i.e. we assume it to be recursive - see section 4.5):

‘ ((LifeCycleController)r.getFclnterface("lifecycle-controller")).startFc(); ‘

The ObjectWeb Consortium 33 Draft 2.0-2

The Fractal Component Model Specification

8.2. Reconfiguration

Let us suppose we want to dynamically change the server component. In order to do this,
we need to unbind the client component, remove the server component, create a new server
component, add the server component in the composite component, and finally bind the client
component to the new server. But the binding and component removals cannot be done while
the client and the composite component, respectively, are not stopped. So we must first stop
these components (here again we assume this method to be recursive; we also assume that it
does not change the states of the components, and that method calls to functional interfaces
while the components are stopped are only suspended until the components are restarted):

‘ ((LifeCycleController)r.getFcInterface("lifecycle-controller")).stopFc(); ‘

We then retrieve the references of the client and server components (more precisely of the 3.2
level components that encapsulate the 0.1 level components Clmpl and Slmpl):

Component ¢ = ((Interface)((BindingController)r.
getFclnterface("binding-controller")).lookupFc("m")).getFcltfOwner();

Component s = ((Interface)((BindingController)c.
getFclnterface("binding-controller")).lookupFc("s")).getFcltfOwner();

We can now unbind the client and server components, and remove the server component from
the composite component (we assume a strong semantic for removeFcSubComponent):

((BindingController)c.getFcInterface("binding-controller")).unbindFc("s");
((ContentController)r.getFclnterface("content-controller")).removeFcSubComponent(s);

We can now create the new server component, i.e. a new 3.2 level component encapsulating
a new 0.1 level component. Instead of using a template component for doing that, as in the
previous section, we use here the bootstrap generic factory directly:

Component newS = gf.newFclnstance(sType, "primitive", "NewSImpl");
g

We can now add this new component in the composite component, bind it to the client compo-
nent, and finally resume the application’s execution (we make the same semantic hypotheses
as in the previous section for the addFcSubComponent and startFc methods):

((ContentController)r.getFcInterface("content-controller")).addFcSubComponent(newS);
((BindingController)c.getFcInterface("binding-controller")).bindFc("s", newS);
((LifeCycleController)r.getFclnterface("lifecycle-controller")).startFe();

The ObjectWeb Consortium 34 Draft 2.0-2

The Fractal Component Model

Specification

A. Fractal APIs

This section defines the Fractal API in Java, C and OMG IDL. These definitions can be used
as “standard” definitions to provide interoperability between Java components only, between
C components only, and between any components (respectively). They are the result of
straightforward transformations of the pseudo IDL interface definitions from section 2 to 6.

Java API

package org.objectweb.naming;

public interface Name {
NamingContext getNamingContext ();
byte|] encode () throws NamingException;

public interface NamingContext {
Name export (Object 0, Object hints) throws NamingException;
Name decode (byte[] b) throws NamingException,;

}

public interface Binder extends NamingContext {
Object bind (Name n, Object hints) throws NamingException;

public class NamingException extends Exception {
public NamingException (String msg) { super(msg); }
}
package org.objectweb.fractal.api;
import org.objectweb.fractal.api.factory.InstantiationException;
public interface Component {
Type getFcType ();
Object[] getFcInterfaces ();
Object getFcInterface (String interfaceName) throws NoSuchInterfaceException;
}
public interface Interface {
Component getFcItfOwner ();
String getFcItfName ();
Type getFcltfType ();
boolean isFcInternalltf ();
}
public interface Type {
boolean isFcSubTypeOf (Type type);
}
public class Fractal {
public static Component getBootstrapComponent () throws InstantiationException;

public class NoSuchInterfaceException extends Exception {
public NoSuchInterfaceException (String itfName) { super(itfName); }
}
package org.objectweb.fractal.api.control;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.NoSuchInterfaceException;
public interface AttributeController { }
public interface BindingController {
String][] listFc ();
Object lookupFc (String clientItfName) throws NoSuchInterfaceException;
void bindFc (String clientItfName, Object serverItf) throws
NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException;

The ObjectWeb Consortium 35

Draft 2.0-2

The Fractal Component Model

Specification

void unbindFc (String clientItfName) throws
NoSuchInterfaceException, IllegalBindingException, IllegalLifeCycleException;
}

public interface ContentController {
Object[] getFcInternallnterfaces ();

Object getFcInternallnterface (String interfaceName) throws NoSuchInterfaceException;

Component|| getFcSubComponents ();
void addFcSubComponent (Component subComponent)
throws IllegalContentException, IllegalLifeCycleException;
void removeFcSubComponent (Component subComponent)
throws IllegalContentException, IllegalLifeCycleException;
}

public interface SuperController {
Component|] getFcSuperComponents ();
}
public interface LifeCycleController {
String getFcState ();
void startFc () throws IllegalLifeCycleException;
void stopFc () throws IllegalLifeCycleException;

public interface NameController {
String getFcName ();
void setFcName (String name);

public class IllegalBindingException extends Exception {
public IllegalBindingException (String msg) { super(msg); }

public class IllegalContentException extends Exception {
public IllegalContentException (String msg) { super(msg); }
}
public class IllegalLifeCycleException extends Exception {
public IllegalLifeCycleException (String msg) { super(msg); }
}
package org.objectweb.fractal.api.factory;
import org.objectweb.fractal.api.Component;
import org.objectweb.fractal.api.Type;
public interface Factory {
Type getFclnstanceType ();
Object getFcControllerDesc ();
Object getFcContentDesc ();
Component newFcInstance () throws InstantiationException;
}
public interface GenericFactory {
Component newFcInstance (Type type, Object controllerDesc, Object contentDesc)
throws InstantiationException;

public class InstantiationException extends Exception {
public InstantiationException (String msg) { super(msg); }

}

package org.objectweb.fractal.api.type;

import org.objectweb.fractal.api.NoSuchInterfaceException;

public interface ComponentType extends org.objectweb.fractal.api.Type {
InterfaceType[] getFcInterfaceTypes ();
InterfaceType getFclnterfaceType (String name) throws NoSuchInterfaceException;

}

public interface InterfaceType extends org.objectweb.fractal.api.Type {
String getFcItfName ();

The ObjectWeb Consortium 36

Draft 2.0-2

The Fractal Component Model Specification

String getFcltfSignature ();
boolean isFcClientItf ();
boolean isFcOptionalltf ();
boolean isFcCollectionItf ();

public interface TypeFactory {
InterfaceType createFcltfType (
String name, String signature, boolean isClient, boolean isOptional, boolean isCollection)
throws org.objectweb.fractal.api.factory.Instantiation Exception;
ComponentType createFcType (InterfaceType|| interfaceTypes)
throws org.objectweb.fractal.api.factory.InstantiationException;
}

C API

typedef unsigned char jboolean;

typedef unsigned short jchar;

typedef signed char jbyte;

typedef signed short jshort;

typedef signed int jint;

typedef signed long long jlong;

typedef float jfloat;

typedef double jdouble;

struct Morg objectweb naming Name {
Rorg_objectweb naming NamingContext* (*getNamingContext)(void * _this);
jbyte* (*encode)(void *_this);

struct Morg objectweb naming NamingContext {
Rorg_objectweb naming Name* (*export)(void * _this, void* o, void* hints);
Rorg_objectweb naming Name* (*decode)(void * _this, jbyte* b);

b

struct Morg objectweb naming Binder {
Rorg_objectweb naming Name* (*export)(void * _this, void* o, void* hints);
Rorg_objectweb_naming Name* (*decode)(void * _this, jbyte* b);
void* (*bind)(void * _this, Rorg_objectweb naming Name* n, void* hints);

struct Morg objectweb fractal api Component {
Rorg_objectweb fractal api Type* (*getFcType)(void * _this);
void** (*getFcInterfaces)(void * _this);
void* (*getFcInterface)(void * _this, char* interfaceName);

k;

struct Morg objectweb fractal api_Interface {
Rorg_objectweb fractal api Component* (*getFcItfOwner)(void * _this);
char* (*getFcltfName)(void * _this);
Rorg_objectweb fractal api Type* (*getFcltfType)(void * this);
jboolean (*isFcInternalltf)(void * _this);

b

struct Morg objectweb fractal api Type {
jboolean (*isFcSubTypeOf)(void * _this, Rorg_objectweb fractal api_Type* type);

struct Morg_objectweb fractal api control AttributeController { };

struct Morg objectweb fractal api_control BindingController {

char** (*listFc)(void * _this);

void* (*lookupFc)(void * _this, char* clientItfName);

void (*bindFc)(void * _this, char* clientItfName, void* serverltf);

void (*unbindFc)(void * _this, char* clientItfName);

})

The ObjectWeb Consortium 37 Draft 2.0-2

The Fractal Component Model Specification

struct Morg objectweb fractal api_control ContentController {
void** (*getFcInternallnterfaces)(void * _this);
void* (*getFclnternallnterface)(void * _this, char* interfaceName);
Rorg_objectweb fractal api Component** (*getFcSubComponents)(void * _this);
void (*addFcSubComponent)(
void *_this, Rorg_objectweb_fractal api Component* subComponent);
void (*removeFcSubComponent)(
void * _this, Rorg objectweb_fractal api Component* subComponent);
b

struct Morg objectweb fractal api control SuperController {
Rorg_objectweb _fractal _api_Component** (*getFcSuperComponents)(void * _this);
b
struct Morg_objectweb fractal api control LifeCycleController {
char* (*getFcState)(void * _this);
void (*startFc)(void * _this);
void (*stopFc)(void * _this);
b
struct Morg objectweb fractal api control NameController {
char* (*getFcName)(void * _this);
void (*setFcName)(void * _this, char* name);
b
struct Morg objectweb fractal api factory Factory {
Rorg_objectweb fractal api Type* (*getFclnstanceType)(void * this);
void* (*getFcControllerDesc)(void * _this);
void* (*getFcContentDesc)(void * _this);
Rorg_objectweb _fractal api_Component* (*newFcInstance)(void * _this);
b
struct Morg_objectweb fractal api factory GenericFactory {
Rorg_objectweb fractal api Component* (*newFcInstance)(
void * this, Rorg objectweb fractal api Type* type, void* ctrlDesc, void* cntntDesc);
b

struct Morg objectweb fractal api type ComponentType {
jboolean (*isFcSubTypeOf)(void * _this, Rorg objectweb fractal api Type* type);
Rorg_objectweb fractal api type InterfaceType** (*getFcInterfaceTypes)(void * this);
Rorg_objectweb fractal api_type InterfaceType* (*getFcInterfaceType)(void * this, char* name);
b
struct Morg objectweb fractal api type InterfaceType {
jboolean (*isFcSubTypeOf)(void * _this, Rorg_objectweb fractal api Type* type);
char* (*getFcItfName)(void * _this);
char* (*getFcltfSignature)(void * _this);
jboolean (*isFcClientItf)(void * _this);
jboolean (*isFcOptionalltf)(void * this);
jboolean (*isFcCollectionItf)(void * _this);
b
struct Morg objectweb fractal api type TypeFactory {
Rorg objectweb fractal api type InterfaceType* (*createFcItfType)(
void * _this, char* name, char* signature,
jboolean isClient, jboolean isOptional, jboolean isCollection);
Rorg_objectweb_fractal _api_type ComponentType* (*createFcType)(
void * _this, Rorg objectweb_fractal api type_InterfaceType** interfaceTypes);
b

// where Rzyz types are defined by:
// typedef struct {

// struct Mzyz *meth;

// void *selfdata;

/]'} Rayz;

The ObjectWeb Consortium 38 Draft 2.0-2

The Fractal Component Model Specification

OMG IDL API

typedef sequence<Object> ObjectArray;
typedef sequence<string> stringArray;
typedef sequence<octet> octetArray;
module org_objectweb naming {
exception NamingException { };
interface NamingContext;
interface Name {
NamingContext getNamingContext ();
octetArray encode () raises(NamingException);
5
interface NamingContext {
Name export (in Object o, in Object hints) raises(NamingException);
Name decode (in octetArray b) raises(NamingException);
ks
interface Binder : NamingContext {
Object bind (in Name n, in Object hints) raises(NamingException);
s
b
module org_objectweb fractal api {
exception NoSuchInterfaceException { };
interface Type {
boolean isFcSubTypeOf (in Type type);
b
interface Component {
Type getFcType ();
ObjectArray getFcInterfaces ();
Object getFcInterface (in string interfaceName) raises(NoSuchInterfaceException);
b
typedef sequence<Component> ComponentArray;
interface Interface {
Component getFcItfOwner ();
string getFcltfName ();
Type getFcltfType ();
boolean isFcInternalltf ();
ks
b
module org_objectweb fractal api control {
exception IllegalBindingException { };
exception IllegalContentException { };
exception IllegalLifeCycleException { };
interface AttributeController { };
interface BindingController {
stringArray listFc ();
Object lookupFc (in string clientItfName)
raises(org_objectweb fractal api:NoSuchInterfaceException);
void bindFc (in string clientItfName, in Object serverItf) raises(IllegalBindingException,
TllegalLifeCycleException, org_objectweb fractal api::NoSuchlnterfaceException);
void unbindFc (in string clientItfName) raises(IllegalBindingException,
TllegalLifeCycleException, org_objectweb fractal api::NoSuchInterfaceException);
ks
interface ContentController {
ObjectArray getFcInternallnterfaces ();
Object getFcInternallnterface (in string interfaceName)
raises(org objectweb fractal api::NoSuchInterfaceException);
org_objectweb fractal api::ComponentArray getFcSubComponents ();
void addFcSubComponent (in org_objectweb fractal api::Component subComponent)

The ObjectWeb Consortium 39

Draft 2.0-2

The Fractal Component Model Specification

raises(IllegalContentException, IllegalLifeCycleException);
void removeFcSubComponent (in org_objectweb fractal api::Component subComponent)
raises(IllegalContentException, IllegalLifeCycleException);
b
interface SuperController {
org_objectweb _fractal api::ComponentArray getFcSuperComponents ();
ks
interface LifeCycleController {
string getFcState ();
void startFc () raises(IllegalLifeCycleException);
void stopFc () raises(IllegalLifeCycleException);
b
interface NameController {
string getFcName ();
void setFcName (in string name);
b
b
module org_objectweb fractal api factory {
exception InstantiationException { };
interface GenericFactory {
org_objectweb _fractal api::Component newFclnstance (
in org_objectweb fractal api::Type type, in Object controllerDesc, in Object contentDesc)
raises(InstantiationException);
b
interface Factory {
org_objectweb_fractal _api::Type getFcInstanceType ();
Object getFcControllerDesc ();
Object getFcContentDesc ();
org_objectweb fractal api::Component newFcInstance () raises(InstantiationException);
}s
b
module org_objectweb fractal api_type {
interface InterfaceType : org objectweb fractal api:Type {
string getFcItfName ();
string getFcltfSignature ();
boolean isFcClientItf ();
boolean isFcOptionalltf ();
boolean isFcCollectionItf ();
b
typedef sequence<InterfaceType> InterfaceTypeArray;
interface ComponentType : org_objectweb _fractal api:Type {
InterfaceTypeArray getFcInterfaceTypes ();
InterfaceType getFcInterfaceType (in string name)
raises(org_objectweb fractal api::NoSuchInterfaceException);
ks
interface TypeFactory {
InterfaceType createFcltfType (
in string name, in string signature,
in boolean isClient, in boolean isOptional, in boolean isCollection)
raises(org_objectweb_fractal api_factory::InstantiationException);
ComponentType createFcType (in InterfaceTypeArray interfaceTypes)
raises(org_objectweb fractal api factory::InstantiationException);
b
b

The ObjectWeb Consortium 40 Draft 2.0-2

The Fractal Component Model Specification

B. Glossary

This section defines the core concepts of the Fractal model.

binder: a naming context that can also give access (reference) to the interfaces designated
by the names it manages.

binding: a primitive, local communication path between a client and a server interface. More
complex “bindings” are made of bindings and of binding components.

concept: an abstract representation composed of the properties common to a set of concrete
representations of directly observable entities.

cardinality: a property of an interface type that indicates how many interfaces of this type
a given component may have. The cardinality is either singleton or collection.

component: a runtime entity exhibiting a recursive structure and reflexive capabilities. A
component is composed of a controller and a content. A component has well defined ac-
cess points called interfaces, and provides more or less introspection and control capabilities
(intercession) to other components.

e base component: a component that does not have any control interface.

e primitive component: a component with some control interfaces, but that does not
expose its content.

e composite component: a component that exposes its content.
e sub component: a component that is contained in another component.

e super component: relatively to a (sub) component: a component that contains this
(sub) component. Due to component sharing, a component may have several super
components.

e shared component: a component that is contained in several super components.

¢ binding component: a component dedicated to the communication between other
components. Similar to a connector in other component models.

conformance level : a symbolic name that designates a set of options or extensions of the
Fractal component model. A Fractal system is conform to a given conformance level if it
supports all the options designated by this level.

content: one of the two parts of a component, the other one being its controller. A content
is an abstract entity controlled by a controller. The content of a component is (recursively)
made of sub components and bindings.

contingency: a property of an interface indicates if the functionality of this interface is
guaranteed to be available or not, while its component is running. The contingency is either
optional or mandatory.

controller: one of the two parts of a component, the other one being its content. A con-
troller is an abstract entity that embodies the control behavior associated with a particular

The ObjectWeb Consortium 41 Draft 2.0-2

The Fractal Component Model Specification

component. A controller can exercise an arbitrary control over the content of the component
it is part of (intercept incoming and outgoing operation invocations for instance).

entity: anything having existence.

factory: a component that can create other components. Generic factories can create several
kinds of components, while standard component factories create only one kind of components.

fractal: a property that characterizes entities (objects in nature; sets, functions in mathe-
matics; software components in the case of Fractal) which exhibit a structure at all scales or
at least at numerous scales, i.e. whose structure depends explicitly on the resolution at which
they are being observed. Some fractal systems are scale invariants - which means they exhibit
in fact the same structure at all scales. Fractal software systems are scale invariant. They are
modelled as interacting Fractal components which are self similar: they are not identical (of
course!) but exhibit the same structure expressed in terms of interfaces, bindings, attributes
and controllers at any resolution they are being observed.

intercession: the ability of a component (seen as a program) to modify its own execution
state; or to alter its own interpretation or semantics.

interface: an access point to a component, also called a component interface; or a language
interface, i.e. a type made of several operation declarations.

e component interface: an access point to a component, i.e., a place where operation
invocations can be emitted or received.

e language interface: a type made of several operation declarations.

e client interface: a component interface that emits operation invocations.

e server interface: a component interface that receives operation invocations.

e optional interface: a component interface whose functionality is not guaranteed to be
available, while the component is running.

e mandatory interface: a component interface whose functionality is guaranteed to be
available, while the component is running.

e external interface: a component interface that is only accessible from outside the
component.

e internal interface: a component interface that is only accessible from inside the com-
ponent, i.e. from its sub components.

e complementary interface: of an interface I, a component interface with the same
name, signature, contingency, and cardinality as I, but with opposite role and visibility
(external or internal).

e functional interface: a component interface that corresponds to a provided or required
functionality of a component, as opposed to a control interface.

The ObjectWeb Consortium 42 Draft 2.0-2

The Fractal Component Model Specification

e control interface: a component interface that manages a “non functional aspect” of
a component, such as introspection, configuration or reconfiguration, and so on. By
convention, control interfaces are server interfaces whose name ends with -controller, or
is equal to component.

introspection: the ability of a component (seen as a program) to observe and reason about
its own execution state.

model: a system of relations between selected concepts - built explicitly at ends of description,
explanation or forecast.

name: a value that designates a component interface, but that does not necessarily give access
to (reference) it.

naming context: a entity that creates and manages names. Naming contexts can be nested
and overlapping, allowing names to be valid in different naming contexts. A component
controller constitutes a primitive naming context.

reflection (reflective capabilities): the ability of a component (seen as a program) to
manipulate as data the entities that represent its execution state during its own execution.
This manipulation can take two forms: introspection and intercession.

role: a property of a component interface, indicates if this interface is a client or server
interface.

signature: of a component interface, is the name of the language interface type corresponding
to this component interface.

template: a special kind of factory that creates components that are “isomorphic” to itself.

type: a set of structural properties common to a set of entities (components and interfaces
for instance).

The ObjectWeb Consortium 43 Draft 2.0-2

The Fractal Component Model Specification

The ObjectWeb Consortium 44 Draft 2.0-2

The Fractal Component Model Specification

C. Change History

Changes from version 2.0

Changes in the document:

e The Rationale (section 1.1) has been rewritten.

e Section 2.1 and Appendix A have been rewritten (the IDL is now clearly presented as a
pseudo, non normative IDL, used only for documentation purposes).

Changes from version 1.0

The document has been completely rewritten. It is now focused exclusively on the Fractal
component model, i.e. the considerations about the Fractal framework and the associated
roles have been removed. All features of the Fractal model have been made optional, so that
the model can be used in many situations, from embedded software to application servers.
Finally the Fractal model itself has been revised, in order to clarify and/or simplify some
points (binding control, interface collections...).

Changes in the document:

e Some sections have been completely removed: Requirements (2.2), General Model (3.1),
Framework Increments (4.2), Roles and Responsibilities (6), Framework Packaging (7),
and Bibliography (Appendix B). The material of the remaining sections has been com-
pletely reorganized to improve clarity.

e Some completely new sections have been added: Interface Definition Language (2.1),
Options (7), Glossary (Appendix B).

Major changes in the API:

e The API is now presented with an abstract IDL, not strictly dedicated to Java.

e The naming and binding framework which was defined in version 0.7.3, and removed in
version 0.8, has been added back.

e Componentldentity and InterfaceReference have been renamed and decoupled, and both
interfaces are now optional. As a consequence, InterfaceReference has been replaced with
any in the signature of the getFc[Internal|lnterface[s|, lookupFc, and bindFc operations.

e The BindingController interface has been modified so that UserBindingController is no
longer necessary. This latter interface has then been removed.

e Attributes can now be readable, writable or both: attribute controllers are not forced
anymore to define a pair of accessors (getters and setters).

e Addition of the SuperController and NameController interfaces.

The ObjectWeb Consortium 45 Draft 2.0-2

The Fractal Component Model Specification

e Templates are now optional. The Template interface has been slightly modified and
renamed into Factory. TemplateFactory has been simplified and renamed into Generic-
Factory.

e The type system semantic has been slightly modified, but not its API.

e All exceptions are now checked exceptions.

Changes from version 0.9

Changes in the document:

e Minor typographic changes.
e Sections 4.14 and 5 have been updated to take into account the API changes (see below).
e Addition of a “Rationale” paragraph in Section 4.2.1.

e Addition of an appendix “Features Deferred to Future Releases”.
Major changes in the API:

e Removal of setFCControllerDesc and setFCContentDesc operations in Template. These op-
erations have been replaced with two new parameters in TemplateFactory.createTemplate.

Minor changes in the API:

e The ..FC... pattern has been replaced with ...Fc...

Changes from version 0.8-0

Changes in the document:

e Section “Roles and Contracts” has moved from Section 3 to Section 6. The role Frame-
work Provider has been refined (and the section has been renamed “Roles and Respon-
sibilities”).

e Section “Framework Increments” has been developed - especially the section “Program-
ming Support Increments”.

e Section “Programming Support Increments” has been removed for it was mostly Julia-
specific. As such it should be available in the fore coming Julia documentation. This
point is linked to the two points above.

Major changes in the API:

The ObjectWeb Consortium 46 Draft 2.0-2

The Fractal Component Model Specification

e Removal of the naming system introduced in the previous version of Fractal. This point
is linked to discussions about a potential ObjectWeb naming system.

e Introduction of the interface UserBindingController. It is very close from the interface
LocalBindingController of version 0.7.2. Its purpose is to ease call-backs implementation
by programmers in “user components”, i.e. Java objects.

e Refinement of the exceptions management: introduction of Fractal specific exceptions:

— NoSuchlinterfaceException, lllegalBindingException, IllegalContentException, lllegalLife-
CycleException, InstantiationException.

e Refinement of the instantiation phase of components: introduction of an additional
parameter in the template creation operation createFCTemplate in TemplateFactory and
of two operations setFCControllerDesc and setFCContentDesc in Template.

Minor changes in the API:

e The Fractal API previously defined in the org.objectweb.fractal package is now defined
in the org.objectweb.fractal.api package. Fractal implementations will be defined in
org.objectweb.fractal.xxx packages: the Fractal Reference Implementation for instance
is defined in org.objectweb.fractal.julia.

e Systematization on the usage of a naming convention to prevent name clashes. All
method names are built using the naming convention: verb+"FC’+noun as in getFCln-
terfaces.

Changes from version 0.7.3-0

Changes in the document:

e A separate section is now devoted to the running example.

e Removal of the appendix “Features Deferred To Future Releases” (which was empty
anyway).

e Addition of the appendix “Bibliography” and bibliographic references in text.
Major changes in the API:

e Introduction of a naming framework that defines interfaces Name and NamingContext.
Interface InterfaceReference (defined in package org.objectweb.fractal) now inherits from
Name (defined in org.objectweb.naming).

e Typed interfaces references: an interface reference (InterfaceReference) now has the Java
type of the interface it references. This is a major change with respect to the Fractal
programming model. The major consequences are: 1) explicit binding operations (bind)
can be avoided (but cast operations are needed instead) and 2) the bootstrap process is
simpler (a bootstrap component does not have to be a container anymore).

The ObjectWeb Consortium 47 Draft 2.0-2

The Fractal Component Model Specification

e Binding controllers now only deal with local bindings (same address space, same enclos-
ing component). The interface LocalBindingController has been suppressed. A method
check has been introduced (see below).

Minor changes in the API:

e Name of the java package are changed from org.objectweb.compfw to org.objectweb.fractal.

e Replacement of methods createXXXInterfaceType with one single method createFCltfType
with Boolean parameters (isClient, isOptional, isCollection) in interface TypeFactory.

e Addition of a method check (which checks that bindings between components are really
local) in interface ContentController.

The ObjectWeb Consortium 48 Draft 2.0-2

