14 CoCoME in Fractal*

Lubomir Bulej"?, Tomas Bure§'?, Thierry Coupaye’, Martin Décky',
Pavel Jezek', Pavel Parizek', FrantiSek Pl4gil"*, Tomas Poch',
Nicolas Rivierre’, Ondfrej Ser}’fl, and Petr Ttima'

! Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranské namésti 25, Prague 1, 11800, Czech Republic
{lubomir.bulej, tomas.bures,martin.decky, pavel.jezek,
pavel .parizek, frantisek.plasil, tomas.poch, ondrej.sery,
petr.tuma}@dsrg.mff.cuni.cz
% Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodarenskou véZi, Prague 8, 18000, CzechRepublic
{bulej,bures,plasil}@cs.cas.cz
3 France Telecom R&D
Issy les Moulineaux, France
{thierry.coupaye,nicolas.rivierre}@orange-ftgroup.com

This chapter presents our solution to the CoCoME assignment that is based on
the Fractal component model. The solution involves (i) modeling architecture in
Fractal ADL, (ii) specification of component behavior via behavior protocols,
(iii) checking compatibility of components, (iv) verification of correspondence
between component code and behavior specification, and (v) run-time monitor-
ing of non-functional properties. Among the issues we have faced was the need
to modify the architecture - the component hierarchy was reorganized in order
to improve clarity of the design and the hierarchical bus was split into two in-
dependent buses. These were modeled by primitive components, since Fractal
does not support message bus as a first-class entity. Since the CoCoME assign-
ment does not include a complete UML behavior specification (e.g. via activity
diagrams and state charts), behavior protocols for all the components are based
on the provided plain-English use cases, the UML sequence diagrams, and the
reference Java implementation.

14.1 Introduction

14.1.1 Goals and Scope of the Component Model

Fractal [4] is a classical component model with concepts stemming from Dar-
win [19]. It supports components as first-class concepts and allows their hierarchical
nesting. Since first published in 2002, Fractal has gained attention of the professional
community and become quite popular; it is one of the key projects hosted by

* This work was partially supported by the Czech Academy of Sciences project 1ET400300504
and its results will be used in the ITEA/EUREKA project OSIRIS Z!2023.

A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 357 2008.
© Springer-Verlag Berlin Heidelberg 2008

358 L. Bulej et al.

the OW2 Consortium' and it has been often used as the core platform for other
OW?2 projects. Annual Fractal workshops take place collocated with international
conferences.

Fractal aims at providing support for modeling at different levels of abstraction. It
focuses not only on the design of an application, but it also provides tools and envi-
ronment for development, deployment, and runtime. Fractal also tries to address the
limitations in extensibility and adaptation, which are often found in other run-time
supporting component systems (e.g., EJB [30], CCM [23], or .Net [22]). By providing
an open set of control capabilities, Fractal allows customizing the component model
with regard to the target platform (e.g. to lower memory footprint of an embedded
mobile application by excluding reflection capabilities and lifecycle management).

In Fractal, a component is both design and runtime entity with explicit provided
and required interfaces. Each component consists of two parts: a content that is re-
sponsible for application functionality (i.e. implements the component’s frame), and a
membrane, which contains a set of controllers that implement non-functional aspects.
For the purpose of composition, all components are defined by their frame and archi-
tecture. A frame is formed by external interfaces of a component, while an architec-
ture defines the internal structure of the component, i.e. its subcomponents and their
composition (via binding of interfaces). Semantics of the composition is defined via
behavior protocols (a specific process algebra); Fractal also supports divide and con-
quer via interface specification.

Component behavior is specified using behavior protocols (BP) that allow to
model and verify the behavior compliance. The verification tools can verify (i) the
composition correctness (both horizontal and vertical) with respect to behavior speci-
fication (in BP) independently of the implementation, and (ii) the relation between the
model (in BP) and implementation (in Java).

Deployment description is not a part of the architecture and behavior specification.

14.1.2 Modeled Cutout of CoCoME

We model all aspects of the CoCoME example with the exception of extra-functional
properties, which were not modeled but were monitored at runtime. In the process of
modeling the example in Fractal, we modified the original architecture in order
to improve clarity of the design and to cope with limitations of Fractal. In particular,
the hierarchical bus was split into two independent buses that were modeled via
components, since Fractal does not support message buses. We verify correctness of
composition (i.e. behavior compliance) with respect to behavior for all components,
and correspondence of code to behavior specification for primitive components (our
approach allows modeling only such behavior that fits a regular language); the verifi-
cation tools are based on the BP checker and Java PathFinder. Performance of com-
ponents was monitored via a custom controller.

14.1.3 Benefit of the Modeling

The two major benefits of our approach to modeling are: (i) verification of compo-
sition correctness with respect to behavior specification, and (ii) verification of

' OW2 Consortium is an international community of open source middleware developers.

CoCoME in Fractal 359

correspondence between code and behavior specification. Other benefits include
generation of code skeletons from the model and runtime monitoring.

Usage of Fractal with behavior protocols and verification tools is quite easy; learn-
ing curves of both Fractal and behavior protocols are short and both can be used in a
matter of days.

14.1.4 Effort and Lessons Learned

We have needed approximately 10 person-months to model the CoCoME example in
its entirety (we treat nearly all aspects of the example). As detailed further in the text,
the lessons learned include detailed understanding of the limits that our architecture
model and behavior specification has, especially where support for legacy technolo-
gies that do not fit the model framework is concerned.

14.1.5 Structure of the Chapter

The rest of this paper is organized as follows. Sect. 2 introduces the Fractal compo-
nent model and its behavior protocol extension. Sect. 3 presents our solution for the
CoCoME assignment using Fractal. Sect. 4 presents automated transformation from
Fractal ADL to code skeletons, which significantly helps during the implementation
process. In Sect. 5, the analytic techniques for verification of behavior compliance of
components are presented. In Sect. 6, the available tools supporting the verification
are then summarized and accompanied with results of our experiments.

14.2 Component Model

Fractal is specified as a platform independent component model. The specification
(now in version 2.0) [5] defines the key concepts of Fractal and their relations. It also
defines controlling (management) functionality of components to be implemented by
component controllers (Sect. 2.1). Controllers serve, e.g., for creating components,
their reconfiguration, lifecycle management; the interfaces of controllers are defined
in pseudo IDL with mapping to Java, C and CORBA IDL.

The platform independent specification of Fractal has been reified by a number of
implementations. To the most important ones belong Julia [4] (a Java implementation
with support for mobile devices), AOKell [28] (a Java implementation employing
aspect oriented programming), and FractNet [7] (a .NET implementation). Moreover,
there are Fractal implementations aiming at specific application domains. To these
belong Plasma [17] (C++ multimedia applications), ProActive [3] (Java grid comput-
ing), and Think [31] (operating system kernel C development).

There are also a number of tools, extensions and libraries for Fractal ranging from
graphical development of applications to a Swing and JMX support. For the purpose
of this paper, to the most notable tools and extensions belong the FractalRMI [11]
(seamless distribution using RMI), Fractal ADL [9] (XML-based ADL language for
defining architectures of Fractal components), and FractalBPC [10] (Fractal Behavior
Protocol Checker), which is an extension allowing specification of component behav-
ior and verification of component communication compliance.

360 L. Bulej et al.

14.2.1 Static View (Metamodel)

The Fractal component model relies on components as basic building blocks. Since
Fractal is a hierarchical model, components may be either composite or primitive. In
the case of a composite component, the component contains a number of sub-
components. An application in Fractal is represented by a single (typically composite)
top-level component.

A component may have a number of interfaces (“ports” in other component sys-
tems such as Darwin) which are the points of access to the component. Each interface
is an instance of its type, which states the signature of the interface, its kind, contin-
gency and cardinality. The interface kind is either server or client, which corresponds
to provided and required interfaces in Darwin.

The contingency specifies whether an interface is mandatory or optional. In the
case of client interfaces, contingency is useful to express what of the component re-
quirements are vital to its functionality, and which do not have to be addressed while
still guaranteeing a consistent component behavior. In the case of server interfaces,
contingency is used to express e.g. the fact that a server interface of a composite com-
ponent does not have to be bound to a sub-component (effectively leaving such func-
tionality unimplemented). The cardinality is either singleton or collection, permitting
either a single or multiple interface instance(s).

An interesting concept of Fractal is shared component. This concept allows an in-
stance of a component to be a part of several (non-nested) parent components. It is
especially useful when modeling shared resources.

Internally, a Fractal component is formed by a membrane and content. The mem-
brane encapsulates the component’s functional “business” interfaces and also the
controllers with their “management” interfaces. The content consists of several sub-
components (in the case of a composite component) or implementation code, encap-
sulation of legacy components, etc. (in the case of a primitive component). Each of
the controllers is responsible for particular management functionality. Predefined
controllers include the lifecycle controller for managing the lifecycle, binding control-
ler for binding client interfaces, content controller for introspecting and managing
sub-components, etc. As mentioned in Sect. 1, Fractal is an open model, thus the set
of controllers is customizable and extensible. The actual way controllers are imple-
mented depends on a particular Fractal implementation. In Julia, a dedicated tech-
nique of combining mixins using the ASM tool [2] for byte-code manipulation is
employed, while AOKell relies on aspect oriented programming using either Aspect]
or Spoon.

Instantiation of Fractal components is performed using an API defined by Fractal
specification. It defines a bootstrap component factory that serves for creating com-
ponent instances. The created instances are nested and connected according to the
application architecture using controller interfaces. This way of instantiation implies
that an application requires a main class that instantiates and starts particular compo-
nents using the API.

Besides creating such a main class manually, specifically for each application,
there is also an option of using FractalADL. This tool allows defining architecture of
components using an ADL. It parses the ADL description and builds the application
accordingly using Fractal API.

CoCoME in Fractal 361

Fractal ADL is in fact a declarative description of how to instantiate components.
This, however, implies that Fractal ADL operates with component instances as op-
posed to components (such as found in UML 2) and that it is not possible to specify
component cardinality.

More information on the development process in Fractal may be found in [21][18].

14.2.2 Behavioral View

The applications behavior is specified via behavior protocols originally employed in
the SOFA component model [27]. In the Fractal platform this formalism is used by
FractalBPC which is a Fractal extension allowing specification of component behav-
ior and verification of component communication compliance.

The behavior is not captured as a whole (by a single behavior protocol). Instead,
each of the application’s components has one behavior protocol associated with it
(frame protocol) that describes the component’s behavior as it is observable by the
environment of the component, i.e. the component’s code is abstracted in terms of
capturing the traces of events related to method calls crossing the component bound-
ary. Assuming component A requires an interface I that is provided by component B
and assuming the interfaces A.I and B.I are bound together, these events are: (i) issu-
ing a method request M on component A’s required interface I: 'I.M71, (ii) accepting a
method request M on component B’s provided interface I: ?.M1, (iii) sending a re-
sponse to method request on component B’s provided interface I: !I.M|, (iv) accept-
ing a response to method request issued on component A’s required interface I:
1.M|. Component’s behavior is then described by an expression (component’s frame
protocol), where these events can be connected together using several operators (; for
sequence, + for alternative, * for repetition and | for parallel execution). To simplify
expressing method calls, the following abbreviations are introduced: ?I.M (stands for
NM1; ILM]), ?2LM{P} (stands for 2IL.M7; P; 'I.M|), where {P} specifies a reaction
to accepting the method call (P is a protocol here). The abbreviations !I.M, and
I.LM{P} have a similar meaning.

Having a set of components with formal specification of their behavior via their
frame protocols, the components can be connected together and compatibility of their
behavior can be verified [1] (components horizontal compliance — meaning compli-
ance at a particular level of nesting).

Every composite component also has a hand-written frame protocol that specifies
its behavior. During the development of process of a composite component, its frame
protocol can be verified against the behavior of its internals [1] (the vertical compli-
ance — meaning compliance of components on adjacent levels of nesting) — the inter-
nal behavior of a composite component is described by an architecture protocol of its
subcomponents (this behavior protocol is however not hand-written, but it is, in a
way, automatically generated from frame protocols of the components that are part of
the composite component’s architecture).

The verification process of the horizontal and vertical compliance assures that the
application’s architecture is composed correctly. In addition to it, the verification of
primitive components’ frame protocols against their code can be done (code model
checking) [1], which guarantees that the behavior described by the top-level architec-
ture protocol corresponds to the true behavior of the application. However, model

362 L. Bulej et al.

checking of a single component faces a significant problem, as most of today’s model
checkers require a complete program to verify — a so-called missing environment
problem [25]. This problem can be solved by generating an artificial environment and
combining it with the code of the component, forming a complete program — such a
program can then be passed to a modified JPF model checker [32] and its compliance
to the component’s frame protocol can be verified [26].

14.2.3 Deployment View

The Fractal specification does not address issues related to deployment. As a result,
each implementation of Fractal deals with deployment in a specific way. For instance,
Julia, the most widely used Fractal implementation in Java, is local (i.e., it provides
no support for distribution). A Fractal application in Julia is executed by a dedicated
Java class that instantiates and starts the components of the application. Besides hav-
ing such a class specifically created for each application, it is possible to use a generic
launcher that is part of FractalADL.

Although Julia does not support distribution by itself, it is possible to use extending
libraries which add this feature. This is the case of FractalRMI library, which provides
distribution using RMI. FractalRMI, however, is not tied only to Julia, it introduces
distribution to other Java-based implementations of Fractal (e.g. AOKell).

FractalRMI is integrated with FractalADL. Thus, it is possible to specify a target
deployment node for each component in FractalADL and subsequently use the Fracta-
IADL launcher to instantiate a distributed application.

Apart from local implementations of Fractal there also exist special purpose im-
plementations which bring the support for distribution already in their core and do not
need any extensions. This is for example the case of ProActive, which aims at grid
computing.

Another important issue of deployment related to the CoCoME example is the sup-
port for different communication styles (e.g., method invocation, asynchronous mes-
sage delivery, etc.), which are reified by different middleware (e.g., RMI, JMS, etc).
Fractal does not provide any direct support for modeling different communication
styles. It addresses this issue only partially by defining so called composite bindings,
which are in fact regular components that encapsulate the use of middleware. Such
binding components can be built using the Dream framework [7] which provides
Fractal components for construction of middleware.

14.3 Modeling the CoCoMe

Employing Fractal in the CoCoME assignment revealed several issues that required
modifications of the architecture. These modifications are presented and justified in
Sect. 3.1 (Static view). Since behavior specification using Behavior Protocols is sup-
ported by Fractal, each of the components of the Trading System was annotated with
its frame protocol. As CoCoME assignment does not include complete behavior
specification, these protocols are created based on the CoCoME UML specification
and the reference implementation and further described in Sect. 3.2 (Behavioral
view). Sect. 3.3 (Deployment view) presents deployment and distribution using

CoCoME in Fractal 363

Fractal-specific means (FractalRMI and FractalADL). In Sect. 3.4 (Implementation
view), we describe beside the basic Fractal implementation strategy also the details
related to performance evaluation and estimation. Additionally, Sect. 3.5 presents
behavior specification of two components featuring non-trivial behavior (Cash-
DeskApplication and CeshDeskBus) in more detail. Behavior specification of the rest
of the components can be found in Appendix and on the Fractal-CoCoME web
page [33].

14.3.1 Static View

As the architecture of the Trading System used in Fractal differs slightly from the Co-
CoME assignment, this section presents the modified architecture and justifies the
modifications made. In general, there are two sorts of modifications: (i) Modifications
which are not directly related to Fractal and do not influence complexity of the solution,
but rather contribute to the clarity of the design and the other views (in Sect. 3.2 — 3.4).
(i1) Modifications directly forced by specific properties of Fractal. These modifications
reveal strengths and limitations of Fractal and therefore should be taken into account in
the comparison between different modeling approaches.

The (i) modifications include reorganization of the component hierarchy and ex-
plicit partitioning of EventBus into two independent buses. All primitive components
are left unchanged, but the composed components GUI and Application located in the
Inventory component are substituted by components StoreApplication, ReportingAp-
plication (compare Fig. 1 and Fig. 3). The new components more clearly encapsulate
the logical units featuring orthogonal functionality, whereas the old ones merely pre-
sent a general three tier architecture. The StoreApplication component encapsulates the
store functionality as required by the CashDeskLine component in UC1 (use case #1 in
CoCoME assignment), whereas ReportingApplication encapsulates functionality for

ComplexOrderEntryTO «component» E
ComplexOrderTO
OrderEntryTO TradingSystem::Inventory
OrderTO
ProductTO
ProductWithStockitemTO
ProductWithSupplierAndStockltemTO * «component» {]
ProductWithSupplierTO StoreTO
SaleTO eul EnterpriseTO
StockltemTO — | — ReportTO
StoreWithEnterpriseTO TTT—V 1l 1] -
SupplierTO \\Store\f/ > @Rs "
CashDesk 1 ‘|'
CashDesk Connectorlf
1 ,:O— * «component» g]
SaleReglslered))| :Application
SaleRs
Event 1 1| 1
N} N [N}
EnterpriseQuerylf Persistencelf StoreQuerylf
TradingEnterpris! —— ~—
ProductSupplier { — 1 1 1 \\\ OrderEntry
* «component» g ~ godmlower
ockltem
:Data Store
| Product
@JDBC
1
1 «component» g]
:Database

Fig. 1. The original design of the Inventory component in CoCoME

364 L. Bulej et al.

<components 0

TradingSystem::CashDeskLine

l

! 4]

‘e[t B[e ®

Fig. 2. The original design of the CashDeskLine component in CoCoME

managing goods as used in UC3 — UC7. The Data component is left unchanged. Sec-
ond modification of the component hierarchy relates to UCS, as neither the architecture
in CoCoME assignment, nor its reference implementation provides a full UCS8 func-
tionality. Specifically, UC8 expects communication among EnterpriseServer and
StoreServers; however no interface for the communication is present. Moreover, the
reference implementation includes UC8 functionality as a part of UC1, which, how-
ever, should be independent. The reference implementation deeply exploits the fact
that it is not distributed and accesses the shared database, which would not be the case
in a real-life implementation. Therefore, the new architecture is enriched by explicitly
distinguishing the EnterpriseServer component and the ProductDispatcherlf and
MoveGoodsIf interfaces that encapsulate UC 8 functionality (Fig. 3).

EventBus from the CoCoME assignment (Fig. 2) represents a composite of buses
eventChannel and extCommChannel. As there is no apparent benefit of having the
eventChannel outside the CashDesk component, EventBus is split into two independ-
ent buses CashDeskLineBus and CashDeskBus, which correspond to extCommChan-
nel and eventChannel, respectively. Moreover, CashDeskBus is moved inside the
CashDesk component where it more naturally belongs, since it mediates mostly the
communication among the components and devices internal to CashDesk.

As to the (ii) modifications, Fractal does not support message bus as a first-class
entity. Therefore, the CashDeskLineBus and CashDeskBus buses are modeled as
primitive components, multiplexing the published messages to each of the subscribers
(compare Fig. 2 and Fig. 3).

Despite the modifications made, many parts of the original design and prototype
implementation are adopted even when “unrealistic”, such as the CardReader compo-
nent communicating with Bank through CashDeskApplication instead of directly,

CoCoME in Fractal 365

which presents a security threat with PIN code interception possibility. In order to
share as much of the CoCoME assignment as possible, other parts of the design such
as the data model and the transfer objects are left unmodified. The Fractal implemen-
tation is designed to use Hibernate and Derby database for persistency as is the case
with the prototype implementation.

14.3.2 Behavioral View

The behavior protocols describing application’s behavior are meant to be part of the
specification of the application. Created at the application design stage, they allow
developers to verify that the implementation is compliant with the design, or, in other
words, that it really implements the specification. However, as the behavior protocols
were not part of the specification of the CoCoME assignment, they had to be recre-
ated from the description provided in it.

The provided specification contains only sequence diagrams and use-cases, which
do not provide as precise and unambiguous specification of the application’s behavior
as it is required to formally verify the resulting implementation correctness (in order
to be sufficient, the specification would have to include more complete UML descrip-
tion, like collaboration and activity diagrams or state machines). For this reason, we
had to use the reference implementation provided also as a part of the specification
and use both the UML descriptions and the reference implementation to create the
behavior protocols for the application. A problem has however arisen during the be-
havior protocol development process — we found that the reference implementation is
not fully compliant with the CoCoME UML specification as provided — there are two
major differences between the reference implementation and the specification: (i)
missing continuation of the payment process after erroneous credit card payment —
UCl, (ii) missing implementation of UC8. We solved this problem by creating two
alternatives of the protocols — the first specifying the behavior imposed by the Co-
CoME UML specification, and the second specifying the behavior observable in the
reference implementation. As our component-based implementation of the application
is based on the reference implementation (we have reused as much of the reference
implementation code as possible), we show later in the text that our implementation
(and the reference implementation) is not exactly following the requirements imposed
by the CoCoME UML specification (by formally refuting it).

Regarding the behavior specification, it is also worth noting that we do not model
the behavior of the actors (e.g. customer, cashier) specified by the UML model as we
model only the software components that are part of the application’s architecture.
However, as the behavior of agents is observable via interfaces provided for the GUI
part of the application, the behavior protocols describing the behavior of application’s
components also transitively impose restrictions on behavior of agents, though the
actual formal verification is done against the GUI components.

We show that creating behavior protocols as part of the application specification
allows precisely defining the required application’s behavior early in the development
process (in the application design stage). Such specification then provides not only the
global view that is required to correctly create the application’s architecture, but also
a per component behavioral view that can serve as a precise guide for developers of

366 L. Bulej et al.

TradingSystem o]

* “CashDeskLine, ﬂ

* “CashDesk]

[Casnbesau

Barkif
o4

=]

& J\
cortra &
|
i — §
= : 3
7 T
EntorpriseServer * StoreSerfer
— 5] [T - 7]
£]
R Tk TLL
' \ 4oy
= S—
© o o _ O [®)
& i i iy &
ofta % Fa) o]]
£] g] €] £] g] £]
cnre || pasenc s || porienct

Fig. 3. Final architecture, as it is used in the Fractal modeling approach

specific component implementations. Furthermore, the specification can be used to
formally verify that the implementation really complies with the specification
requirements and that all the application components (although each might be imple-
mented by a different developer) are compatible and together provide the functional-
ity (exposed by their behavior) required by the specification.

14.3.3 Deployment View

From the deployment point of view, we introduced a few changes mainly to the mid-
dleware used in the reference architecture. These changes were motivated by the way
Fractal can be distributed and by the libraries available for the distribution.

We have used FractalRMI instead of Sun RMI. FractalRMI is a library for Fractal
that allows transparent distribution. The components are not aware of the fact that
they communicate remotely.

In a similar fashion, we have eliminated the use of JMS, which has been used in
the reference architecture for implementing buses. We have replaced each of the both
busses by a component that is responsible for routing the messages. Remote commu-
nication in this case may be again transparently realized using FractalRMI.

CoCoME in Fractal 367

The Fractal specification also lays out another way of solving distribution and vari-
ous communication styles. It defines so called composite bindings. Each composite
binding consists of a number of binding components. These components are classical
components from the Fractal point of view, their responsibilities are to encapsulate or
implement middleware. A significant help in implementing the composite bindings is
provided by the Dream framework, which implements Fractal components that support
construction of communication middleware with various communication styles, in-
cluding JMS.

Our choice of FractalRMI is transparent and requires no additional implementation
effort. We did not use the composite bindings and Dream also because Dream is still
under development; additionally, our solution brings no restrictions to the modeled
CoCoME example.

Another important aspect of deployment is the way deployment is planned and per-
formed. In our approach, we have put the information about deployment into Fracta-
IADL. Each specified component is annotated with an element virtual-node which
states the deployment node to which the component is to be deployed. The actual
distribution is then realized via FractalRMI.

14.3.4 Implementation View

The Fractal implementation is based both on the Fractal architecture model of the
application and the provided reference implementation. We have created a Fracta-
IADL model of the application architecture using the FractalGUI modeling tool [11],
taking into account the changes mentioned in Sect. 2.3 and Sect. 3.3. The resulting
model was then extended by hand to accommodate behavior protocol specification,
because it is not supported by the modeling tool.

To speed up and simplify the development, we have used a tool to create compo-
nent skeletons from the architecture model. More detailed description of the transfor-
mation can be found in Sect. 4. The functional part of the application was then
adapted from the CoCoME reference implementation and integrated into the gener-
ated component skeletons.

14.3.4.1 Testing the Implementation against Use-Case Scenarios

To enable the testing of functional properties specified by behavior protocols, Frac-
talBPC allows monitoring communication on the interfaces of a component C when
the application is running. The runtime checker integrated in FractalBPC automati-
cally tests whether C communicates with other components in a way that is allowed
by C’s frame protocol. Any violation of the frame protocol by C or one of the compo-
nents communicating with C is reported.

In addition, the reference implementation of the trading system contains a
small test suite for testing the behavior of the implementation against the use case
scenarios described in the CoCoME assignment. The test suite, based on the jUnit
[16] framework, contains a number of tests which exercise operations prescribed by
the respective use cases and verify that the system responds accordingly.

As it is, however, the test suite from the reference implementation is unsuitable for
testing. The key issues are testing of crosscutting concerns, test design, and insuffi-
cient automation.

368 L. Bulej et al.

The tests attempt to verify not only that the implementation functions correctly, but
also impose timing constraints on the executed operations. This makes the tests unre-
liable, because two orthogonal aspects are tested at the same time. Combined with
rather immodest resource requirements of the application arising from the use of
“heavy-duty” middleware packages for database functionality, persistence, and mes-
sage-based communication, the application often fails to meet the test deadlines on
common desktop hardware, even though it functions correctly.

Moreover, the tests always expect to find the trading system in a specific state,
which is a very strong requirement. To accommodate it, all the applications compris-
ing the trading system are restarted and the database is reinitialized after each test run,
which adds extreme overhead to the testing process.

This is further exacerbated by insufficient automation of the testing infrastructure.
The trading system consists of a number of components, such as the enterprise server
and clients, store server and clients, database server, etc. Starting the trading system is
a long and complicated process, which can take several minutes in the best case, and
fail due to insufficient synchronization between parts of the system in the worst case.
Manual starting of the trading system, combined with the need for restarting the sys-
tem after each test run, makes the test suite in its present form unusable.

To enable testing in a reasonably small environment, we take the following steps to
eliminate or mitigate the key issues, leading to a considerable increase in the reliabil-
ity of the tests as well as reduced testing time:

e We simplify the implementation of the trading system by eliminating the GUI
components, leaving just the business functionality, which allows the trading
system to be operated in headless mode.

e We eliminate the validation of extra-functional properties from testing; timing
properties of the trading system are gathered at runtime by a monitoring infra-
structure described in Sect. 3.4.2. Validation of extra-functional system proper-
ties is independent from functional testing and is based on the data obtained
during monitoring.

e We improve the testing infrastructure by automating the start of the trading sys-
tem. This required identifying essential and unnecessary code paths and fixing
synchronization issues between various parts of the system.

14.3.4.2 Runtime Monitoring of Extra-Functional Properties

The extra-functional properties articulated in the CoCoME assignment enhance the
functional specification with information related to timing, reliability, and usage pro-
file. The specification provides two kinds of properties: assumed and required. As-
sumed properties reflect domain knowledge and describe the environment in which
the system will be expected to operate. The required properties reflect the require-
ments on performance of the system within the environment.

These parameters can be used in performance analysis of the system architecture
preceding the implementation of the system to verify that the proposed architecture
has the potential to satisfy performance requirements. However, pure model-based
performance analysis is typically used to determine principal performance behavior,
such trends in response to requests, not the actual performance of a real system in a
real environment.

CoCoME in Fractal 369

Deciding whether a particular instance of a system satisfies the performance re-
quirements dictated by the specification requires analyzing performance data from a
real system. Runtime monitoring requires the analysis of performance data to be per-
formed isochronously with system execution. This limits the level of detail compared
to offline analysis, but provides immediate information on high-level performance
attributes. On the other hand, the data from performance measurements intended for
offline analysis can be used to correct the assumptions and to calibrate a generic per-
formance model to reflect the environment and properties of a particular instance of
the system.

High-level performance data suitable for monitoring are typically exported by ap-
plications using technologies such as JMX [14] and SNMP [29], for which generic
monitoring tools are available. However, exporting performance data is the final step.
The data has to be first obtained using either an application-specific or a generic
approach.

Application-specific approach requires that an application collects performance
data internally, using its own measurement infrastructure. This allows obtaining cer-
tain application and domain specific performance metrics that cannot be obtained
using a generic approach, but it also requires including support for performance
measurements in various places directly in the implementation of application compo-
nents, which in turn requires mixing functional and non-functional aspects of imple-
mentation. This can be alleviated using aspect-oriented programming which allow
separating the implementation of functional and non-functional aspects of a system.

A generic approach based on architectural aspects exploits the description of appli-
cation architecture as well as the capabilities of the runtime to obtain performance
data. Architectural aspects are used to instrument an application with performance
data collection capabilities, but their application is less intrusive than in the case of
classical aspect oriented programming, because it is performed only at the design-
level boundaries exposed by the application architecture. As a result, the instrumenta-
tion is completely transparent to the developer and does not require modifications in
the implementation of an application, which in turn allows the work on performance
monitoring to be done in parallel with development. Another advantage of using ar-
chitectural aspects is that the application source code does not have to be available,
but that was not an issue in this particular case.

Selecting performance properties for monitoring

To demonstrate the concept of using architectural aspects for performance monitor-
ing, we have identified the following extra-functional properties from the CoCoME
assignment that would be suitable for monitoring:

t13-3: Time for signaling an error and rejecting an ID

t15b2-2: Time waiting for validation

t14-1: Time for showing the product description, price, and running total
t34-1: Time for querying the inventory data store

We have taken into account the importance of the properties with respect to the per-
formance of the system, therefore the preference was mostly on required properties
associated with internal actions of the system (e.g. time to execute a database query)
and not external actors and hardware (e.g. time to switch a light display). We have

370 L. Bulej et al.

also taken into account assumed properties that have the potential to be covered by a
Service Level Agreement (i.e. guaranteed by an external service provider, such as a
bank in case of credit card validation), where monitoring can be used to ensure that an
external contractor fulfills its obligations.

Performance related extra-functional properties typically specify acceptable ranges
for various performance metrics. An important aspect considered during selection of
properties for monitoring was also the observability of the required performance met-
rics on the design level of abstraction, i.e. at component boundaries represented by
component interfaces. Performance metrics that could not be calculated from data
collected at component boundaries would have to be explicitly supported by the im-
plementation.

Technical implementation

To obtain performance data from a system implemented using the Fractal component
model, we have taken advantage of the mixin-based construction of controllers
within a component membrane (see Sect. 2.1) supported by the Julia implementation
of Fractal.

We have extended the membrane to include a performance monitoring controller
and an interceptor on component business interfaces. The interceptor provides events
related to business method invocations to the controller, which stores these events and
calculates simple statistics and durations of method invocations. When an application
stops, it writes the collected data to disk. For runtime performance monitoring, the
controller provides a simple JMX based interface which allows configuring what
methods and events should be observed and also allows accessing the simple sum-
mary statistics.

This approach is similar to that of FractalJMX [12], which is a Fractal extension
that allows exposing the functional and control interfaces of Fractal components in a
JMX agent and collecting simple statistics related to method invocations We have
however implemented a custom interceptor which provides low-level data to the per-
formance monitoring controller. The data can be used both for offline analysis and
performance monitoring. JMX interface is used for management of monitoring con-
trollers and for exposing simple statistics calculated from the low-level data.

Measurement results

Of the above extra-functional properties, we have decided to focus on t15b2-2, which
is the assumed time of credit card validation. Using a simple simulator of the UC1
scenario, we have collected performance data related to invocations of the validate-
Card() method on the Banklf interface of the Bank component. The simulation was
configured for 50 cash desks, started in 1 second intervals, and each processing 50
sales. The validateCard() method in the Bank component was implemented to wait a
random time according to the histogram specification associated with the t15b2-2
property.

The distribution of validateCard() invocation times calculated from the measured
data is identical to the specified distribution, which served as a basic validation of the
approach. Using the measured data, we have performed an analysis with the goal to
determine the average load on the Bank component, expressed as the number of vali-
dateCard() method invocations during a 60-second interval. This load may be covered

CoCoME in Fractal 371

in a 60-

of i

T T T T T T T T
0 200 400 600 800 1000 1200 1400

Simulation time [seconds]

Fig. 4. The load on the card validation service of the Bank component

by a Service Level Agreement with a bank, which may only guarantee specific per-
formance of its card validation service in response to a specific load.

The results of the analysis are shown in Fig. 4, with the dashed line denoting the
maximal load on the Bank component given the above simulation parameters. The
rising edge of the curve starting at time O corresponds to the delayed startup of indi-
vidual cash desks, while the falling edge starting approx at time 1100 corresponds to
closing of cash desks after they have processed 50 sales.

We would like to emphasize that the above analysis has been performed on data
collected without actually modifying a single line of application code. Information
about the distribution of durations of validateCard() invocations could be used to
monitor the performance of the card validation service provided by a bank. On the
other hand, runtime analysis (and throttling) of validateCard() invocation rate can be
used to ensure that a store does not violate a Service Level Agreement.

The overhead of the measurement was 40 microseconds per method invocation, in
99% of cases, without any attempt at performance optimization. The duration of vali-
dateCard() invocation was between 4 and 5 seconds in 90% of cases. The difference
between the times is 5 orders of magnitude, which in this particular case makes the
overhead of the measurement insignificant. Due space constraints, we have only in-
cluded the above analysis. The Distributed System Research Group project page on
CoCoME in Fractal [33] provides additional measurement results.

372 L. Bulej et al.

14.3.5 Specification of Selected Components

This section is mostly focused on behavioral view of CoCoMe components. More
specifically, it assumes that the specification of component structure, interfaces, and
overall architecture is taken over from the CoCoMe assignment with the few modifi-
cation mentioned in Sect. 3.1. As emphasized in Sect. 3.2, the behavior specification
provided here is done in behavior protocols and stems from the CoCoMe use cases
and the component behavior encoded in the Java implementation provided in the
CoCoMe assignment. Since the behavior specification of the whole application is too
large to fit into space reserved for this chapter, two “interesting” components (Cash-
DeskApplication and CashDeskBus) were chosen to demonstrate the capabilities of
behavior protocols. Interested reader may find the specification of other “interesting”
components in the appendix and full specification at [33].

Demonstrating the ordinary usage of this formalism, the behavior protocol of
CashDeskApplication describes the actual behavior of a cash desk. In principle, it
captures the state machine corresponding to the sale process. In contrast, the behavior
protocol of CashDeskBus illustrates the specific way of expressing mutual exclusion.

Since both these protocols are non-trivial, their “uninteresting” fragments are omit-
ted in this section.

14.3.5.1 CashDeskApplication

The CashDeskApplication has application specific behavior — its frame protocol re-
flects the state of the current sale. It indicates what actions a cash desk allows the
cashier to perform in a specific current sale state. The “interesting” parts of the proto-
col take the following form.

(
INITIALISED

(
?CashDeskApplicationHandler.onSaleStarted
) ;

SALE_STARTED
(

?CashDeskApplicationHandler.onProductBarcodeScanned{
!CashDeskConnector.getProductWithStockItem;
!CashDeskApplicationDispatcher.sendProductBarcodeNotValid+
!CashDeskApplicationDispatcher.sendRunningTotalChanged

}

)*; # <--- LOOP
?CashDeskApplicationHandler.onSaleFinished;

SALE_FINISHED
(

?CashDeskApplicationHandler.onPaymentMode
) ;

PAYING_BY_CASH
(
(
(
?CashDeskApplicationHandler.onCashAmountEntered
)*.

7

CoCoME in Fractal 373

On Enter
?CashDeskApplicationHandler.onCashAmountCompleted{

!CashDeskApplicationDispatcher.sendChangeAmountCalculated
Y

?CashDeskApplicationHandler.onCashBoxClosed{
!CashDeskApplicationDispatcher.sendSaleSuccess;
!|CDLEventDispatcher.sendAccountSale;
ICDLEventDispatcher.sendSaleRegistered

}

)*]
Enable Express Mode
?CDLEventHandler.onExpressModeEnabled{
!CashDeskApplicationDispatcher.sendExpressModeEnabled
}

) * (
Disable Express Mode
?CashDeskApplicationHandler.onExpressModeDisabled

) *

To communicate with each of the buses CashDeskBus and CashDeskLineBus, the
component features a pair of interfaces (CashDeskApplicationHandler, CashDeskAp-
plicationDispatcher and CDLEventHandler, CDLEventDispatcher). The interfaces
contain a specific method for each event type that can occur on a bus. In addition, the
interface, CashDesklInterface serves to get the data from Inventory.

The protocol specifies three parallel activities. The first one is the sale process it-
self, while the other two deal with cash desk mode switching. In the initial state, the
sale process activity is waiting for SaleStartedEvent on the CashDeskBus (?cash-
DeskApplicationHandler.onSaleStarted). It denotes beginning of a new sale.
Then (; operator) BarcodeScannedEvent is accepted (?CashDeskaApplication-
Handler .onProductBarcodeScanned) for each sale item. Repetition operator (*)
ensures that arbitrary finite number of events can be accepted. In reaction (the expres-
sion enclosed in {}) to each BarcodeScannedEvent, the price is obtained from Inven-
tory. (!CashDeskConnector.getProductWithStockItem) . Depending on the result,
the rest of the CashDesk is informed about the change of total sale price (!cash-
DeskApplicationDispatcher.sendRunningTotalChanged) or, alternatively (+
operator), ProductBarcodeNotValidEvent is issued (!cashDeskapplication-
Dispatcher.sendProductBarcodeNotvalid). When SaleFinishedEvent is accepted
(?cashDeskApplicationHandler.onSaleFinished), the sale process reaches the
payment phase which is specified in similar manner. When one sale is finished, the
sale process activity returns to the initial state to accept another sale (repetition opera-
tor *). In parallel operators (), the cash desk performs two other activities to process
cash desk mode switching events coming from either of the buses.

This simplified version of the frame protocol does not capture paying by credit
card and does not cope with events not allowed in a particular sale process state.

14.3.5.2 CashDeskBus

The particular bus behavior comprises of two different aspects — events serialization
and multiplexing. While the former aspect takes part in modeling “many to one”
messages, the latter aspect is related to “one to many” messages. The event passing
is synchronous, meaning that if an event is emitted by a publisher component, the

374 L. Bulej et al.

component is blocked until all subscribers process the event. If there is another com-
ponent wanting to emit a message when the bus is processing another message, the
component is also blocked. Such behavior corresponds to the implementation using
FractalRMI. This behavior might be prone to deadlocks, but fortunately, absence of
deadlocks is one of properties we can verify using the behavior protocols.

As discussed in Sect. 3.1, the bus is implemented as a component. For every pub-
lisher and subscriber, it has an interface containing a method for every event type. As
the bus component does not contain any application logic, its protocol can be gener-
ated using the information from the architecture — which components are involved in
subscriber role, which components are involved in publisher role and what event
types do they accept, resp. emit. This situation is not typical for behavior protocols.

The method used to model the serialization in behavior protocols follows the typi-
cal model of mutual exclusion in Petri nets — borrowing a token. The protocol repre-
senting the bus is accepting events from event producers in parallel, but it does not
propagate them to the subscribers immediately. Instead of it, the bus protocol is wait-
ing for the token event which is emitted by helper protocol. As the helper protocol
does not produce another event until it receives response from the previous one, the
bus event propagation parts are mutually excluded. Finally, the bus protocol must
have empty parallel branch accepting the spare token events. Although the helper
protocol in the model produces many spare token events which are just accepted by
the empty parallel branch with no other use, this is not a performance issue in the
implementation. In the implementation, standard Java synchronization with passive
waiting is used to achieve the mutual exclusion — important is observable behavior,
the means can differ in the implementation and model.

The multiplexing is straightforward — when the bus accepts an event from a pro-
ducer and the token, the event is propagated to all subscribers.

The following protocol is a fragment of the CashDeskBus protocol PcasipeskBus-

(?CashBoxControllerDispatcher.sendExpressModeDisabled{
?Helper. token{
!CashDeskGUIHandler . onExpressModeDisabled |
ILightDisplayControllerHandler.onExpressModeDisabled |
!CardReaderControllerHandler.onExpressModeDisabled|
!CashDeskApplicationHandler.onExpressModeDisabled

}
)*

(?CashDeskApplicationDispatcher.sendExpressModeEnabled({
?Helper. token{
!CashDeskGUIHandler . onExpressModeEnabled |
'LightDisplayHandler.onExpressModeEnabled |
!CardReaderControllerHandler.onExpressModeEnabled

}

)*

| ?Helper. token*

The fragment captures the synchronous delivering of ExpressModeEnabled and
ExpressModeDisabled events. When the CashBoxController component emits the
ExpressModeDisabled event, it is accepted by the bus (?cashBoxController-
Dispatcher.sendExpressModeDisabled). Then, after accepting the token event, the

CoCoME in Fractal 375

ExpressModeDisabled event is delivered in parallel to all subscribers (CashDeskGUI,
LightDisplayController and CardReaderController). As the method calls are synchro-
nous in behavior protocols, the bus waits until all subscribers acknowledge the event
delivery. Then, the token is returned (the first closing curly brace) and finally,
the CashBoxController is notified about successful delivery to all subscribers (the
second closing curly brace). In the similar manner, the ExpressModeEnabled event is
processed.

While the events from producers are accepted in parallel, which ensures that no
producer can issue an event in a wrong moment, waiting for the equal token within
the processing of distinct events ensures the mutual exclusion of the event deliveries,
so the subscribers need not to care about parallelism. The final part of the fragment
(?Helper. token*) accepts the unnecessary token events.

As there must be a token event source, the specification must be enriched by a
helper protocol Pygjper: tHelper . token*. The complete frame protocol of the Cash-
DeskBus component featuring mutual exclusion is then obtained by composing the
PrOtOCOlS PCashDeSkBus and PHelper by the consent OPeratOT - PCashDeskBus V{Helper.”l"oken]
Phiciper- It synchronizes the opposite actions (!Helper.token and ?Helper.token) and
replaces them by single internal action.

14.4 Transformations

In the process of implementing CoCoME components in Fractal, we have used a tool
allowing for automated transformation of FractalADL specification to component
code fragments. The tool runs as a backend to FractalADL and operates on the ab-
stract syntax tree of a parsed ADL description. The implementation artifacts it can
produce comprise code skeletons of component interfaces and code skeletons for
primitive components.

A fragment of a code skeleton generated by the tool is provided below, showing
the Coordinator component from the CoCoME example.

public class CoordinatorImpl implements
BindingController, CoordinatorEventHandlerIf (

/) e m e m e

// Required interface CoordinatorEventDispatcherIf

[/ mm e e e e

protected CoordinatorEventDispatcherIf

CoordinatorEventDispatcherIf;

public void onSaleRegisteredEvent (
org...cashdeskline.SaleRegisteredEvent arg0) ({
// TODO: Generated method
}

/) T
// Implementation of the BindingController interface

/=

376 L. Bulej et al.

public Object lookupFc (String clientItfName) ... {
if (clientItfName.equals("CoordinatorEventDispatcherIf")) {
return CoordinatorEventDispatcherIf;

}
}

public void bindFc (String cltItfName, Object serverItf) ... {
if (cltItfName.equals ("CoordinatorEventDispatcherIf")) {
CoordinatorEventDispatcherIf =
(CoordinatorEventDispatcherIf) serverItf;
return;

}

The generated code contains implementation of the binding controller, which is vi-
tal for binding required (client) interfaces. The required interfaces are reflected in the
code by protected instance variables containing references to the bound provided
interfaces of other components. The provided interfaces offered by the component are
reflected in the implements clause of the generated class. The tool also generates a
skeleton for each method of the provided interfaces.

14.5 Analysis

As a behavior protocol specifies behavior via allowable sequences of method calls on
component’s interfaces, the property to be analyzed is compliance of the behavior of
components as correctness of communication on component’s interfaces. In general,
by correctness of communication, we mean absence of communication errors, i.e. a
situation in which two or more components do not meet expectations of the others.
Three types of communication errors are identified: bad activity — the issued event
cannot be accepted, no activity (deadlock) — all of the ready events’ tokens are pre-
fixed by “?”, and infinite activity (divergence) — the composed protocols “cannot
reach their final events at the same time”, so that the composed behavior would con-
tain an infinite trace (only finite traces are allowed).

The compliance of behavior is of two kinds: horizontal compliance and vertical
compliance. Horizontal compliance refers to correctness of communication among
components on the same level of component hierarchy, whereas vertical compliance
refers to correctness of communication on adjacent levels of component hierarchys, i.e.
whether a composed component is correctly implemented by its subcomponents. The
vertical compliance is therefore a kind of behavioral subtyping.

Checking of horizontal and vertical compliance makes sense only if behavior of
each primitive component corresponds to its frame protocol, i.e. if each primitive
component can accept and emit method calls on its external interfaces only in se-
quences that are determined by its frame protocol. This correspondence can be
checked in two ways: (i) code model checking with the modified Java PathFinder [15]
(JPF) and (ii) run-time checking.

CoCoME in Fractal 377

Code model checking of primitive components with JPF allows exhaustive verifi-
cation whether the implementation of each primitive component corresponds to its
frame protocol. Since each primitive component is checked in isolation, the problem
of missing environment has to be faced (Java PathFinder checks only complete pro-
grams) via constructing an artificial environment for a component and checking the
complete program composed of the component and environment. The behavior of an
environment is specified by the component’s inverted frame protocol, which is de-
rived from the frame protocol by replacing all the accept events with emit events and
vice versa.

Although the well-know problem of state explosion is partially mitigated by appli-
cation of code model checking to isolated primitive components (a single component
has a smaller state space than the whole application), still the checking has very high
time and space complexity; for highly parallel components, it may even not be feasi-
ble. We address this by optional heuristic transformations of environment’s behavior
specification that help reduce the complexity of a component environment, while
making the checking not exhaustive (not all thread interleavings are checked if the
heuristic transformations are used). Alternatively, it is also possible to use run-time
checking in such a case.

The basic idea of run-time checking is to monitor method call-related events on the
component’s external interfaces at run-time and check whether the trace composed
from the events is specified by the component’s frame protocol. Since only a single
run of an application is checked in this way (run-time checking is inherently not ex-
haustive), a violation of a frame protocol may not be detected for many runs of the
application that involves the erroneous component; in this respect, the technique of
run-time checking is similar to testing.

14.6 Tools and Results

Verification of an application consists of two steps. First step is checking the proto-
cols compliance. Protocols of all components used to implement a composite compo-
nent are checked against the frame protocol of the composite component. Second step
is checking whether the implementation of the primitive components correspond to
their protocols.

Compliance of the whole Trading System was checked using the dChecker [6] tool
with positive result. The dChecker tool is based on translation of the protocols into
minimized finite state machines. Then, composite state space is generated on the fly
to discover a potential bad activity error or deadlock. Moreover, in order to fight the
state explosion problem, dChecker supports both parallel and distributed verification,
so that the full computational power of multiprocessor and multicomputer systems is
exploited. For illustration, correctness of the whole architecture takes 192 seconds to
be verified on a 2xDualCore at 2.3GHz with 4GB RAM PC. Specifically, the protocol
of CashDeskApplication is translated into finite state machine consisting of 944
states. The composite state space of CashDesk features 398029 states and it takes 8
seconds to be verified (on the same PC).

Correspondence of the implementation of primitive components to their frame pro-
tocols is verified by the Java PathFinder (JPF) model checker. Since JPF, by default,

378 L. Bulej et al.

checks only low level properties like deadlocks and uncaught exceptions, we use
JPF in combination with the behavior protocol checker (BPC) [26]. Component envi-
ronment is represented by a set of Java classes that are constructed in a semi-
automated way: (i) The EnvGen tool (Environment Generator for JPF) is used to
generate the classes according to the behavior specification of the environment via the
component’s inverted frame protocol, and (ii) the generated classes are manually
modified if the environment has to respect data-flow and the component's state in
order to behave correctly (original behavior protocols do not model data and compo-
nent's state explicitly).

By code checking implementation of the CashDeskApplication against the frame
protocol created according to the reference specification of UC1, we were able to
detect the inconsistency between the reference implementation and specification of
UCI1 that is first mentioned in Sect 3.2. Detection of this inconsistency took 2 seconds
on a 2xDualCore at 2.3GHz with 4 GB RAM PC. Code checking of the implementa-
tion of CashDeskApplication against the frame protocol created according to the ref-
erence implementation has not reported any error and took 14 seconds. Nevertheless,
switching between the express and normal mode is not checked, since the environ-
ment is not able to find whether the application is in the express mode or not, and thus
it does not know whether it can trigger payment by credit card (forbidden in the ex-
press mode). Moreover, we also had to introduce the CashAmountCompleted event
into the frame protocol and implementation of CashDeskApplication. This change
was motivated by the need to explicitly denote the moment when the cash amount is
completely specified (originally, the CashAmountEntered event with a specific value
of its argument was used for this purpose). Were the CashAmountCompleted event
not added, the environment for CashDeskApplication would exercise the component
in such a way that a spurious violation of its frame protocol would be reported by JPF.

As for run-time checking, the special version of BPC is used again. The difference
is that notification is not performed by JPF, but by runtime interceptors of method
calls on component’s external interfaces; moreover, no backtracking in BPC is needed
since only a single run of the application is checked.

When using the tools, however, the state explosion problem became an issue.
Some of the behavior protocols (namely CashDeskBus and Data) originally featured
prohibitively large state space. Thus, in order to fight the state explosion problem,
heuristics were employed. First, CashDeskBus protocol is separated into multiple
protocols (as if for multiple components), so that it can be represented by multiple
smaller finite state machines in contrast to a single unfeasibly large state machine.
Second, method calls inside behavior protocol of the Data component are explicitly
annotated by the thread number. This is again in order to the fight state explosion as
this makes the protocol more deterministic while preserving the same level of paral-
lelism. For these reasons, protocols on the CoCoME Fractal web page differ from the
protocols described in Sect. 3.5 and Appendix, as they include also the heuristics.

14.7 Summary

In this chapter, we presented our solution to the CoCoME assignment that is based
on the Fractal component model extended with support for component behavior
specification.

CoCoME in Fractal 379

Several issues in the UML specification and reference implementation were dis-
covered and solved during implementation of the CoCoME assignment in the Fractal
component model. Most notably, the component hierarchy was reorganized in order
to improve clarity of the design and the hierarchical bus was split into two independ-
ent buses. These were modeled by primitive components, since Fractal does not sup-
port message bus as a first-class entity.

Behavior of all components of the Trading System is specified via behavior proto-
cols. Since the CoCoME assignment does not include a complete UML behavior
specification (e.g. via activity diagrams and state charts), behavior protocols for all
the components are based on the provided plain-English use cases, the UML sequence
diagrams, and the reference Java implementation. By application of code model
checking to our implementation (based on the reference implementation), we were
able to detect inconsistency between the specification and reference implementation
of UC1 (details in Sect. 3.2. and Sect. 5). Consequently, we have created two versions
of behavior protocols for several components — one version corresponds to the UML
specification and the second to the reference implementation.

For deployment and distribution, we have used Fractal-specific means (FractalRMI
and FractalADL). Since the buses are represented by primitive components that route
the message, use of JMS was eliminated.

One limitation of our approach is only partial support for extra-functional proper-
ties via monitoring (no static analysis is employed). In particular, performance is
monitored by custom component controllers for the Julia implementation of Fractal.

Very useful is support for verification of primitive component’s code against
the behavior specification (behavior protocols). Using that, it was possible to check
whether the implementation corresponds to the behavior specification created at
design time.

Acknowledgements

The authors would like to thank Marc Leger (France Telecom R&D) for providing the
transformation tool that generates primitive component skeletons from Fractal ADL.

References

1. Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil, F.: Component
Reliability Extensions for Fractal Component Model (2006),
http://kraken.cs.cas.cz/ft/public/public_index.phtml

2. ASM, http://asm.objectweb.org/

3. Baude, F., Baduel, L., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.: Pro-
gramming, Composing, Deploying for the Grid. In: Cunha, J.C., Rana, O.F. (eds.) GRID
COMPUTING: Software Environments and Tools. Springer, Heidelberg (January 2006)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.B.: The FRACTAL com-
ponent model and its support in Java. Softw., Pract. Exper. 36(11-12) (2006)

5. Bruneton, E., Coupaye, T., Stefani, J.B.: Fractal Component Model, version 2.0-3 (Febru-
ary 2004)

6. dChecker, http://dsrg.mff.cuni.cz/projects.phtml?p=dchecker

380

10.
11.
12.
13.
14.
15.

16.
17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. Bulej et al.

. Dream, http://dream.objectweb.org/
. FRACTNET, http://www-adele.imag.fr/fractnet/

Fractal ADL, http://fractal.objectweb.org/fractaladl/index.html
Fractal BPC, http://fractal.objectweb.org/fractalbpc/index.html
Fractal GUI, http://fractal.objectweb.org/fractalgui/

Fractal IMX, http://fractal.objectweb.org/fractal jmx/

Fractal RMI, http://fractal.objectweb.org/fractalrmi/index.html
Java Management Extensions (JMX) Specification, version 2.0, JSR 255,
http://jcp.org/en/jsr/detail?id=255

Java PathFinder, http://javapathfinder.sourceforge.net/

JUnit, http://www.junit.org/

Layaida, O., Hagimont, D.: PLASMA: A Component-based Framework for Building Self-
Adaptive Applications. In: Proceedings of SPIE/IS&T Symposium On Electronic Imaging,
Conference on Embedded Multimedia Processing and Communications, San Jose, CA,
USA (January 2004)

Loiret, F., Servat, D., Seinturier, L.: A First Experimentation on High-Level Tooling Sup-
port upon Fractal. In: Proceedings of the 5th International ECOOP Workshop on Fractal
Component Model (Fractal 2006), Nantes, France (July 2006)

. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software Architec-

ture, Proceeding of the 5th European Software Engineering Conference (ESE’C 1995). In:
Botella, P., Schifer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 137-153. Springer, Hei-
delberg (1995)

Mencl, V., Bures, T.: Microcomponent-Based Component Controllers: A Foundation for
Component Aspects. In: Proceedings of APSEC 2005, Taipei, Taiwan, December 2005,
IEEE CS, Los Alamitos (2005)

Mencl, V., Polak, M.: UML 2.0 Components and Fractal: An Analysis. In: Proceedings of
the 5th International ECOOP Workshop on Fractal Component Model (Fractal 2006),
Nantes, France (July 2006)

Microsoft .NET Framework, http: //www.microsoft.com/net/

Object Management Group, Corba Components, version 3.0 (June 2002),
http://www.omg.org/docs/formal/02-06-65.pdf

OMG, Object Management Group: UML Profile for Schedulability, Performance and
Time (2005), http://www.omg.org/cgi-bin/doc?formal/2005-01-02
Parizek, P., P14sil, F.: Modeling Environment for Compoment Model Checking from Hier-
archical Architecture. In: Proceedings of Formal Aspects of Component Software (FACS
2006), Prague, Czech Republic (September 2006)

Parizek, P., P1asil, F., Kofrofi, J.: Model checking of Software Components: Combining
Java PathFinder and Behavior Protocol Model Checker. In: Proceedings of 30th
IEEE/NASA Sofrware Engineering Workshop (SEW-30), January 2007, pp. 133-141.
IEEE Computer Society, Los Alamitos (2007)

P14sil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Transactions
on Software Engineering 28(11) (November 2002)

Seinturier, L., Pessemier, N., Duchien, L., Coupaye, T.: A Component Model Engineered
with Components and Aspects. In: Gorton, I., Heineman, G.T., Crnkovi¢, 1., Schmidt,
H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063.
Springer, Heidelberg (2006)

Simple Network Management Protocol (SNMP), RFC (1157),
http://www.fags.org/rfcs/rfcll57.html

Sun Microsystems, JSR 220: Enterprise JavaBeansTM, Version 3.0

31.
32.

CoCoME in Fractal

THINK, http://think.objectweb.org
Visser, W., Havelund, K., Brat., G., Park, S., Lerda, F.: Model Checking Programs. Auto-

mated Software Engineering Journal 10(2) (April 2003)

33. Fractal CoCoME, http://dsrg.mf

Appendix

This section contains the full behavior specification of the CashDeskApplication and
CashDeskBus components discussed in the Sect. 3.5, the CashDeskBox component,
and the StoreApplication component. In comparison to the protocols published on the
project site [33], the interface names are slightly abbreviated for brevity. In a similar
vein, the CashDeskBus protocol is presented for simplicity in a form of a single pro-
tocol containing a number of parallel activities - as mentioned in Sect. 6, the Cash-
checking was split into smaller parts to over-

DeskBus protocol used for compliance

f.cuni.cz/cocome/fractal

come technical difficulties with state explosion.

TradingSystem::CashDeskLine::CashDesk::CashDeskA pplication

(
INITIALISED
(

(#Accept and throw away events that are not expected in this phase

?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
)*

The important part:
) ;
SALE_STARTED

(
The important part:

onSaleFinishedEvent+
onPaymentModeEvent+
onCashAmountEnteredEvent+
onCashBoxClosedEvent+
onProductBarcodeScannedEvent+
onCreditCardScannedEvent+
onPINEnteredEvent

?CashDeskApplicationHandler.onSaleStartedEvent

?CashDeskApplicationHandler.onProductBarcodeScannedEvent {
ExpressMode & products.size == 8

NULL
+

(

!CashDeskConnectorIf.getProductWithStockItem;

!CashDeskApplicationDispatcher.sendProductBarcodeNotValidEvent

+

!CashDeskApplicationDispatcher.sendRunningTotalChangedEvent

)

#4#

} o+
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
)*; # <--- LOOP

onSaleStartedEvent+
onPaymentModeEvent+
onCashAmountEnteredEvent+
onCashBoxClosedEvent+
onCreditCardScannedEvent+
onPINEnteredEvent

382

) .

L. Bulej et al.

The important part:

?CashDeskApplicationHandler.onSaleFinishedEvent;

(

?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
*

)

7

SALE_FINISHED

(

) .

The important part:

onSaleStartedEvent+
onSaleFinishedEvent+
onCashAmountEnteredEvent+
onCashBoxClosedEvent+
onCreditCardScannedEvent+
onPINEnteredEvent+
onProductBarcodeScannedEvent

?CashDeskApplicationHandler.onPaymentModeEvent ;

###
(

?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.

)*

7

PAYING_BY_ CASH

(
(

(
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
The important part:
?CashDeskApplicationHandler.

) *;

On Enter
The important part:

onSaleStartedEvent+
onSaleFinishedEvent+
onCashBoxClosedEvent+
onPaymentModeEvent+
onProductBarcodeScannedEvent+
onPINEnteredEvent

onSaleStartedEvent+
onSaleFinishedEvent+
onCashBoxClosedEvent+
onPaymentModeEvent+
onProductBarcodeScannedEvent+
onPINEnteredEvent+
onCreditCardScannedEvent+

onCashAmountEnteredEvent

?CashDeskApplicationHandler.onCashAmountEnteredEvent {
!CashDeskApplicationDispatcher.sendChangeAmountCalculatedEvent

}i

(
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.

)*;

The important part:

onSaleStartedEvent+
onSaleFinishedEvent+
onPaymentModeEvent+
onCashAmountEnteredEvent+
onProductBarcodeScannedEvent+
onPINEnteredEvent+
onCreditCardScannedEvent

?CashDeskApplicationHandler.onCashBoxClosedEvent {
!CashDeskApplicationDispatcher.sendSaleSuccessEvent;
!CashDeskDispatcher.sendAccountSaleEvent;
!CashDeskDispatcher.sendSaleRegisteredEvent

}
)

+

PAYING_BY_ CREDITCARD

(

)

(
?CashDeskApplicationHandler.

CREDITCARD_SCANNED
(
?CashDeskApplicationHandler
!BankLock.lock;
!BankIf.validateCard;
(
!CashDeskApplicationDispa
+

!BankIf.debitCard;
!CashDeskApplicationDisp
)
) ;
!BankLock.unlock

}

+
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.

) *;
?CashDeskApplicationHandler.
!BankLock.lock;
!'BankIf.validateCard;
!BankIf.debitCard;
!CashDeskApplicationDispatc
!BankLock.unlock

}

)*;

?CashDeskApplicationHandler.o

CREDITCARD_SCANNED

(
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
?CashDeskApplicationHandler.
) *;

The important part:

?CashDeskApplicationHandler.o
!BankLock.lock;
!'BankIf.validateCard;
!'BankIf.debitCard;
!BankLock.unlock;

CoCoME in Fractal

onCreditCardScannedEvent ;

.onPINEnteredEvent {

tcher.sendInvalidCreditCardEvent

atcher.sendInvalidCreditCardEvent

onSaleStartedEvent+
onSaleFinishedEvent+
onPaymentModeEvent+
onCashAmountEnteredEvent+
onProductBarcodeScannedEvent+
onCreditCardScannedEvent+
onCashBoxClosedEvent

onPINEnteredEvent ({

her.sendInvalidCreditCardEvent;

nCreditCardScannedEvent ;

onSaleStartedEvent+
onSaleFinishedEvent+
onPaymentModeEvent+
onCashAmountEnteredEvent+
onProductBarcodeScannedEvent+
onCreditCardScannedEvent+
onCashBoxClosedEvent

nPINEnteredEvent {

!CashDeskApplicationDispatcher.sendSaleSuccessEvent;

!CashDeskDispatcher.sendAcco
!CashDeskDispatcher.sendSale
}

untSaleEvent;
RegisteredEvent

383

384 L. Bulej et al.

)* | (

Enable Express Mode

?CashDeskHandler.onExpressModeEnabledEvent {
!CashDeskApplicationDispatcher.sendExpressModeEnabledEvent

}

)* |

Disable Express Mode
?CashDeskApplicationHandler.onExpressModeDisabledEvent
)*

TradingSystem::CashDeskLine::CashDesk::CashDeskBus

(!Helper.token) *
sync{Helper. token}

(?CashBoxControllerDispatcher.sendCashAmountEnteredEvent {

?Helper. token{
!CashDeskApplicationHandler.onCashAmountEnteredEvent|
|PrinterControllerHandler.onCashAmountEnteredEvent |
!CashDeskGUIHandler .onCashAmountEnteredEvent
}

) *

(?CashBoxControllerDispatcher.sendCashBoxClosedEvent {

?Helper. token{
!CashDeskApplicationHandler.onCashBoxClosedEvent|
!PrinterControllerHandler.onCashBoxClosedEvent

}
)

(?CardReaderControllerDispatcher.sendCreditCardScannedEvent {
?Helper. token{
!CashDeskApplicationHandler.onCreditCardScannedEvent
}
) *

(?CashBoxControllerDispatcher.sendExpressModeDisabledEvent {

?Helper. token{
!CashDeskGUIHandler . onExpressModeDisabledEvent |
!LightDisplayControllerHandler.onExpressModeDisabledEvent |
!CardReaderController.onExpressModeDisabledEvent |
!CashDeskApplicationHandler.onExpressModeDisabledEvent
}

) *

(?CashDeskApplicationDispatcher.sendExpressModeEnabledEvent {
?Helper. token{
|CashDeskGUIHandler .onExpressModeEnabledEvent |
!LightDisplayControllerHandler.onExpressModeEnabledEvent |
!CardReaderController.onExpressModeEnabledEvent
}
) *

(?CashDeskApplicationDispatcher.sendChangeAmountCalculatedEvent {
!CashDeskGUIHandler .onChangeAmountCalculatedEvent |
!PrinterControllerHandler.onChangeAmountCalculatedEvent |
!CashBoxController.onChangeAmountCalculatedEvent
}

)*

(?CashDeskApplicationDispatcher.sendInvalidCreditCardEvent{
!CashDeskGUIHandler.onInvalidCreditCardEvent
}

)*

CoCoME in Fractal 385

(?CashBoxControllerDispatcher.sendPaymentModeEvent {
?Helper. token{
!CashDeskApplicationHandler.onPaymentModeEvent
}
) *

(?CardReaderControllerDispatcher.sendPINEnteredEvent {
?Helper. token{
!CashDeskApplicationHandler.onPINEnteredEvent
}
) *

(?CashDeskApplicationDispatcher.sendProductBarcodeNotValidEvent {
!CashDeskGUIHandler .onProductBarcodeNotValidEvent
}

)*

(?ScannerControllerDispatcher.sendProductBarcodeScannedEvent {
?Helper. token{
!CashDeskApplicationHandler.onProductBarcodeScannedEvent
}
)

(?CashDeskApplicationDispatcher.sendRunningTotalChangedEvent {
!CashDeskGUIHandler.onRunningTotalChangedEvent|
!'PrinterControllerHandler.onRunningTotalChangedEvent

)*

(?CashBoxControllerDispatcher.sendSaleFinishedEvent{

?Helper. token{
!CashDeskApplicationHandler.onSaleFinishedEvent |
!'PrinterControllerHandler.onSaleFinishedEvent
}

) *

(?CashBoxControllerDispatcher.sendSaleStartedEvent {

?Helper. token{
!PrinterControllerHandler.onSaleStartedEvent |
|CashDeskApplicationHandler.onSaleStartedEvent |
!CashDeskGUIHandler.onSaleStartedEvent
}

) *

(?CashDeskApplicationDispatcher.sendSaleSuccessEvent{
|PrinterControllerHandler.onSaleSuccessEvent |
!CashDeskGUIHandler.onSaleSuccessEvent
}

)*

accept spare tokens
?Helper.token*

TradingSystem::CashDeskLine::CashDesk::CashBox protocol

This component is an example of simple bus event producer and subscriber contain-
ing no internal state information. In response to the cashier actions, which are not
modeled, it is sending events and in parallel it is able to receive the Change Amount-
Calculated event.

(
!CashBoxControllerDispatcherIf.sendCashAmountEnteredEvent
+

386 L. Bulej et al.

!CashBoxControllerDispatcherIf.sendCashBoxClosedEvent
TCashBoxControllerDispatcherIf.sendExpressModeDisabledEvent
TCashBoxControllerDispatcherIf.sendPaymentModeEvent
TCashBoxControllerDispatcherIf.sendSaleFinishedEvent
ECashBoxControllerDispatcherIf.sendSaleStartedEvent
;CashBoxController.onChangeAmountCalculatedEvent*

TradingSystem::Inventory::StoreApplication protocol

This component is an example of a component from the Inventory part of the applica-
tion which does not directly communicate with a bus.

(

(
?CashDeskConnectorIf.getProductWithStockItem {

!|PersistenceQueryIf_1.getPersistenceContext_1;
!StoreQueryIf_1.queryStockItem_ 1
}
)
+
(
?AccountSaleEvent.bookSale {
!PersistenceQueryIf_1.getPersistenceContext_1;
IStoreQueryIf_1.queryStockItemById_ 1%*;

!PersistenceQueryIf_1.getPersistenceContext_1;
IStoreQueryIf_1.queryLowStockItems_1;
IStoreQueryIf_1.queryStoreById_1;
!ProductDispatcherIf.orderProductsAvailableAtOtherStores;
(!StoreQueryIf_1.orderProductsAvailableAtOtherStores_1 + NULL)
}
)
) *
|
(
!PersistenceQueryIf_1l.getPersistenceContext_2;
(
(
IStoreQueryIf_1.queryProductById_ 2%*;
!StoreQueryIf_1.queryStoreById 2*
)
+
(# Fig. 20
!StoreQueryIf_1.queryOrderById_ 2;
IStoreQueryIf_ 1.queryStockItem 2*
)
+
(# Fig. 21
IStoreQueryIf_1.queryStoreById_2;
!StoreQueryIf_1.queryAllStockItems_2
)
+
(# Fig. 23
!StoreQueryIf_1.queryStockItemById_ 2
)
+
(
IStoreQueryIf_1.queryLowStockItems_2
)

+

(

CoCoME in Fractal

!StoreQueryIf_1.queryProducts_2
)
)
) *
|
(
?MoveGoodsIf.queryGoodAmount {
!|PersistenceQueryIf_1.getPersistenceContext_3;
!StoreQueryIf_1.queryProductById_3*

+

?MoveGoodsIf.sendToOtherStore({
!PersistenceQueryIf_1.getPersistenceContext_3;
!StoreQueryIf_1.queryStockItem_ 3*

}

)*

?MoveGoodsIf.acceptFromOtherStore({
!PersistenceQueryIf_1.getPersistenceContext_4;
!StoreQueryIf_1.queryProductById_4%*

}*

387

	CoCoME in Fractal
	Introduction
	Goals and Scope of the Component Model
	Modeled Cutout of CoCoME
	Benefit of the Modeling
	Effort and Lessons Learned
	Structure of the Chapter

	Component Model
	Static View (Metamodel)
	Behavioral View
	Deployment View

	Modeling the CoCoMe
	Static View
	Behavioral View
	Deployment View
	Implementation View
	Specification of Selected Components

	Transformations
	Analysis
	Tools and Results
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

