

R.H. Reussner et al. (Eds.): Architecting Systems, LNCS 3938, pp. 103 – 119, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Taxonomy on Component-Based Software Engineering
Methods

Christian Bunse1, Felix C. Freiling2, and Nicole Levy3

1 Fraunhofer Institut Experimentelles Software Engineering, Fraunhoferplatz 1,
67663 Kaiserslautern, Germany

Christian.Bunse@iese.fraunhofer.de
2 Universität Mannheim, Informatik 1, 68131 Mannheim, Germany

3 PRiSM, University of Versailles, 45 Av. Des Etats-Unis,
78035 Versailles, Cedex, France

Abstract. The component paradigm promises to address many of the productiv-
ity and quality problems currently faced by the software industry. However, its
correct application requires systematic, methodological support. A wide range
of theoretical and practical methods have been developed in the context of the
component paradigm. A taxonomy of these methods can provide a tool for in-
creasing the understanding of the ways in which component-based development
is currently addressed and directions for future development. This paper
outlines a taxonomy based on the fundamental criteria and definitions, and pro-
vides examples to justify this classification. It can therefore serve as a first ori-
entation for new researchers interested in the area of component-based software
engineering.

1 Introduction

Software is of growing importance in human society since it is contained at the core
of nearly any modern product or service. However, the development processes of
such software is undergoing a tremendous change due to market requirements for
time-to-market and cost. This has been the major reason for the development of object
technology and subsequently component-based software engineering techniques.
These promise that software systems can be created with significantly less effort than
in traditional approaches, simply by assembling the appropriate prefabricated parts. In
popular computer terminology this is captured by the “plug and play” metaphor. As
soon as the relevant parts have been “plugged” together, they should be able to “play”
with each other in the resulting system.

To obtain the goals of the component paradigm, systematic methodological support
is required. For this reason, over the years there has been a vast amount of research
and development which incrementally established a large body of knowledge, known
as Component-based Software Engineering (CBSE). Unfortunately, the number of
available approaches is rapidly growing, and often developers are disoriented and
unable to select and adopt the appropriate tools that can best facilitate their work.

This paper offers a coherent and comprehensive view of methods and technologies
supporting CBSE activities. According to [14] any attempt to provide an abstract view

104 C. Bunse, F.C. Freiling, and N. Levy

of a complex and composite entity is inevitably exposed to risks: on the one hand, it is
possible to oversimplify or confuse different issues and topics; on the other, there is a
risk of providing a flat presentation with limited insight and abstraction. The approach
presented in this paper is pragmatic, and tries to attempt to find a reason-able and
useful compromise between these two opposite forces.

The paper is organized as follows. Section 2 shortly sketches existing approaches
to the classification of software engineering methods. Section 3 illustrates the classifi-
cation scheme that has been adopted in this paper by defining the basic terms, provid-
ing characterization criteria, briefly discussing the chosen approach, and introducing a
simple approach for visualizing and analyzing the results. Section 4 describes the
main existing methods that support and guide component-based software develop-
ment activities. However, these only represent a small sample of the existing methods.
Section 5 presents the results of applying the proposed taxonomy and briefly sketches
some important topics that will likely have an impact to future research on metho-
dological support for component-based software development. Finally, Section 6
proposes some concluding remarks.

2 Related Work

The field of software development methodologies is large and still rapidly growing.
For example a popular link-list [7] contains links to more than 50 different method-
ologies. Even if the focus is narrowed to methods suitable for component-based de-
velopment, the number of methods is still remarkably large. Therefore, several at-
tempts have been made in the past to provide an overview of the field, the goal being
threefold:

1. To inform those interested in understanding the technology (e.g., [7]).
2. To justify avoidance or acceptance of the technology (e.g., [11], [13], [17]).
3. To reveal open research issues (e.g., [4], [14]).

Unfortunately, these surveys are either outdated and/or address the field of (object-
oriented) software development in general. No surveys, specifically targeted at open
research issues, are currently available which present an in-depth analysis of compo-
nent-based software development methods. This might be due to the fact that objec-
tively evaluating methodologies is a difficult and complex task because of several
reasons:

1. Comparing methodologies is often like comparing apples and oranges (e.g., differ-
ences in terminology which have a significant impact on the appropriateness and
application).

2. Many methods are targeted or strongly influenced by specific context constraints
(e.g., programming languages). Thus, the evaluation of methods requires an under-
standing of the target platform for which the methodology is intended.

3. Certain methodologies assume a "greenfield" development context (i.e., the project
is separate, stand-alone, and has no need to integrate with existing applications).
This assumption removes certain constraints the methodology may have to deal
with [4].

 A Taxonomy on Component-Based Software Engineering Methods 105

4. The completeness of various methodologies varies drastically (i.e., some methods
simply describe a process, others present a graphical notation, while still others
combine both graphics and a process). The depth and completeness of each of
these components varies significantly from method to method.

Thus, on the one hand, an in-depth comparison or survey requires an understanding
of the culture underlying a particular development approach. However, on the other
hand, before such a comparison may start a general taxonomy is needed to classify
existing methods. First applications of such a taxonomy may already reveal some
open research issues, but only an in-depth examination may reveal limitations and
restrictions of methods and can be used as a basis for a research agenda in compo-
nent-based software development.

3 Taxonomy

The goal of this paper is to present a taxonomy for classifying component-based de-
velopment methods as a basis for further analysis. Each method presented in this and
the following sections can be regarded as an attempt for formalizing the process of
software development following specific principles. The taxonomy is based on ex-
perience, user needs, and the published state of the art/practice. In addition, following
[4], as technology changes, methods will evolve. Consequently, a taxonomy flexible
enough to capture the dynamic nature of development methods must avoid rigid and
precise definitions. Its structure, will depend more on judgment than on scientific
objectivity [4]. This means that the taxonomy will remain partly subjective.

3.1 Definitions

Component-based software development methods aim at enabling humans to perform
software engineering processes to produce software products that are of value to their
customers. Thus, the integration of people, processes and products is a key enabler
and has to be reflected in a taxonomy of such methods. However, although terms like
method, process, or product are widely used in software engineering there are many
conflicting definitions. In the following we define the major terms used in the context
of this chapter.

• Method: Following [21] a method is a systematic approach for developing a
product which provides a definition of the activities to be performed and the
artifacts (requirements specification, design, etc.) to be developed. In other
words, a method is a codified set of practices (i.e., a series of steps, to build
software) that may be repeatable carried out to produce software, and which
are accompanied by additional material such as templates, tools, best-practice
know-how, etc. In this sense, a method can be seen as a combination of consis-
tent process and product models, enriched by experience.

• Process model: In general, a process model describes the tasks that are under-
taken within a software project, and it shows how and what information needs
to be communicated between tasks [6]. Typically, a process model is instanti-
ated from a software life-cycle model (e.g., waterfall) and can be used to

106 C. Bunse, F.C. Freiling, and N. Levy

expose the manner in which the defined development activity is going to be
conducted. In the context of component-based software development, the
process defines basic development steps as well as the composition of compo-
nents, their quality, assurance, and deployment.

• Product Model: In general, the Product Model is the entire product informa-
tion resource that describes the product completely and unambiguously.
According to [21], a software product model includes any of the artifacts gen-
erated during a software project: those that are delivered (e.g., manuals or
code) and those that are usually not delivered (e.g., specifications, design,
etc.). For each of these there can be a variety of models (including notations)
that characterize attributes of the product. In general, product models can be
broken down into several categories, with static (i.e., based on static properties
or structure) and dynamic models (i.e., based on the execution behavior) being
the most important ones. Together they provide a comprehensive view of a
software product. In the context of component-based software development,
products are viewed as a composition of components, whereby some compo-
nents are atomic and some are composed of simpler components. In addition,
software components of various kinds exhibit tangible properties that impact
the quality of software.

• Framework: In object-oriented systems a framework represents a set of classes
that embodies an abstract design for solutions to a number of related problems
[21]. Transferred to the component-based development, a framework can be
viewed as a collection of components with extension and composition mecha-
nisms regarding a certain type of application

3.2 Criteria

Software development is a complex task which requires experience and knowledge.
In order to systematically obtain valuable results it therefore has to be based on solid
methodological grounds. It is simply impossible to develop component-based systems
effectively by simply “writing code”. In this sense the term “component-based soft-
ware engineering methods” means all concepts, notations, guidelines, and techniques
that can be used in creating better and more effective software systems. Many of these
are embedded in or supported by a specific technology (e.g., design and coding tool-
sets). In other cases, methods are just concepts and knowledge that software develop-
ers have to in their daily work.

According to [14] methods include four different entities: principles, development
techniques, meta-methods, as well as styles and patterns. Principles are essential in-
gredients of all software engineering methods and include concepts such as modular-
ity, flexibility, robustness, interoperability, and quality. In order to obtain modularity
other principles (e.g., information hiding, hierarchical decomposition, cohesion and
decoupling) have to be in place. Flexibility in turn, also known as design for change,
requires properties like extensibility, and scalability. Quality is represented by princi-
ples such as usability, reliability, or efficiency.

Software development activities are carried out according to a number of different
development techniques. They can be roughly organized in three classes:

 A Taxonomy on Component-Based Software Engineering Methods 107

• Informal approaches are not based on any formal syntax or semantics. They
simply state a number of guidelines and principles that should be followed in
software development activities.

• Semi-formal approaches are techniques that include some more formal con-
cepts. Typically, they exploit notations that do have syntax, but lack formal
semantics.

• Formal approaches not only exploit formal notations but also use formal
semantics based on mathematics and logic.

Strongly related to the formality of a method is the level of abstraction it typically
operates on. On a rough scale three different levels (i.e., low, medium, and high) can
be distinguished, corresponding to the level of detail typically obtained in different
life-cycle phases (e.g., high corresponds to the requirements/analysis phase whereby
low corresponds to the implementation phase.).

Another important property, especially in the area of component-based develop-
ment, is the underlying development strategy of a method. Here we simply can distin-
guish between top-down and bottom-up strategies or a mixture of these two. In the
component domain the strategy describes in which order components are specified
and assembled.

The goal of each method is to support humans in developing a product. However,
software systems are diverse in nature and have specific needs concerning methodo-
logical support. Therefore it is important to know which properties of a system are
addressed. Here we can distinguish between system properties such as support for
functional and non-functional properties, or development properties such as process
and product.

Finally, it is important to mention the domain a method is targeted at. A method
domain represents a scientific classification of software systems [26] which are tar-
geted by a method, and should not be confused with the application domain of a sys-
tem (e.g., logistics). Typically different domains have specific requirements concern-
ing documentation, modeling languages, standards, and concepts. Following the SEI
classification schema [26], domains can roughly be organized in the following
groups:

• General – This group contains those methods which are more a process
framework than a concrete method (e.g., Unified Process) and which
claim to support software development in every domain.

• Artificial Intelligence – Systems concerned with basic models of behavior
and the building of virtual and actual machines to simulate animal and
human behavior.

• Information Systems – Systems concerned with file systems, database sys-
tems, and database models.

• Human-Computer Interaction – Systems concerned with user interfaces,
computer graphics, and hypertext/hypermedia.

• Numerical and Symbolic Computing – Systems concerned with methods
for efficiently and accurately using computers to solve equations for
mathematical models.

108 C. Bunse, F.C. Freiling, and N. Levy

• Computer Simulation – Systems concerned with the basic aspects of
|modeling and simulation (i.e., statistical models, queuing theory, variable
generation, discrete simulation, etc.).

• Real-Time Systems – Systems concerned with knowledge about the devel-
opment of real-time and embedded software systems (e.g., automotive).

In summary, Fig. 1 presents an overview on the proposed taxonomy for component-
based software engineering methods.

Component-based
Software Engineering

Methods

Principles Formality

Domain

Modularity Robustness Flexibility Quality Interoperability Informal Semi-Formal Formal

General
Artificial

Intelligence
Database
Systems

Human-Computer
Interaction

Numerical and
Symbolic Computing

Computer
Simulation

Real-Time
Systems

Supported Properties

System Development

Functional Product

Non-Functional
Process

Information Hiding

Cohesion

Decoupling

Scalability

Extensibility

Usability

Reliability

Efficiency

Strategy

Top-Down Bottom-Up

Abstraction Level

High

Medium

Low

Hybrid

Component-based
Software Engineering

Methods

Principles Formality

Domain

Modularity Robustness Flexibility Quality Interoperability Informal Semi-Formal Formal

General
Artificial

Intelligence
Database
Systems

Human-Computer
Interaction

Numerical and
Symbolic Computing

Computer
Simulation

Real-Time
Systems

Supported Properties

System Development

Functional Product

Non-Functional
Process

Information Hiding

Cohesion

Decoupling

Scalability

Extensibility

Usability

Reliability

Efficiency

Strategy

Top-Down Bottom-Up

Abstraction Level

High

Medium

Low

Hybrid

Fig. 1. CBSE Taxonomy

3.3 Applying the Taxonomy

In the previous subsections, basic definitions and criteria have been given to charac-
terize component-based software development methods. Together these define the
dimensions of the taxonomy and provide a schema to characterize every available
method. However, it is important to stress that the taxonomy should not be consid-
ered exhaustive or a finished work. In the first instance, it deliberately did not address
all possible aspects of component-based development. In the second instance, the
taxonomy itself is subject to continuous evolution, since the elements that it classifies
continue to evolve, due to scientific and technological advances in the field. In the
following it is discussed how to apply the taxonomy to position some concrete
methods, and how to draw conclusions and recommendations from the collected data.

 A Taxonomy on Component-Based Software Engineering Methods 109

In principle, the taxonomy will be applied to the methods presented in section four.
These methods have been selected because of their different nature and coverage of
the field. As such, this should also be reflected in their comparison based on the
taxonomy. This comparison can then be used to identify to which extent the methods
complement each other. Another typical use of the taxonomy is to compare methods
that share the same or a similar purpose. This allows the identification of differences,
strengths and weaknesses.

3.4 Presentation

The goal of a taxonomy is not only to provide a comprehensive overview (e.g., in
form of tables) but also to identify white-spots and areas where future work should
take place. The latter requires a simple and easy to compare representation of the
collected and characterized data. This can be achieved by the application of radar or
spider-web charts (see Fig. 2 for an example). These are not only useful to look at
several different factors related to one item, but also to overlay several of them to
have a quick overview on multiple items.

Principles

Formality

PropertiesStrategy

Abstraction

OMT KobrA Unified Process

Fig. 2. Spider-Web Chart Example

Spider-web charts have multiple axes along which data can be plotted. A point
close to the center on any axis indicates a low value, and a point near the edge a high
value. Within this paper we define a general spider-web chart which has an axis for
each taxonomy criteria. The single values are then plotted along these axes and con-
nected by a single line, resulting in an individual shape for each characterized method.
By placing the single charts on top of each other a common method chart is created
which allows to quickly identifying white-spots and areas which warrant future
research.

110 C. Bunse, F.C. Freiling, and N. Levy

4 Methods for Component-Based Software Development

4.1 First Generation Object-Oriented Methods

Almost all modern software development approaches have roots in the first generation
of object-oriented methods. The explosion in the number of object-oriented methods
in the early 1990's, and the subsequent cross-fertilization of ideas, makes it very diffi-
cult to trace the precise influence and contribution of each method. Other well known
first generation methods such as Shlaer/Mellor [28], Objectory [18], Booch [5] and
Coad/Yourdon [9] are not discussed explicitly because their influence has been less
direct. Since they were developed relatively early in the history of object technology,
none of these methods directly considers components, design patterns and product
lines. Nevertheless, they all embody important ideas that can be helpful in using these
technologies.

4.1.1 OMT
Probably the single most influential method in the evolution of object-oriented devel-
opment methods is the OMT (Object Modeling Technique) method developed by
Rumbaugh et al. [25]. Many of its ideas have been adopted in ensuing generations of
methods and notations. Its two most significant legacies are the UML [23], whose
notational concepts are primarily based on OMT and its approach to analysis. In de-
tail, OMT identifies three distinct but overlapping models to be generated during the
development of a system:

• Object Model, which identifies the user visible data abstractions that the sys-
tem manipulates, and the relationships between them.

• Dynamic Model, which describes the dynamic behavior of the system in
terms of states, events and object interactions.

• Functional Model, which shows the computations or data transformation per-
formed by the system.

The analysis phase is followed by a design phase in which the system is divided into
subsystems and algorithms are designed for the methods of the identified classes.
Although it is the strongest part of the method, OMT's analysis approach has one
major weakness. The functional model is difficult to be kept consistent with the other
analysis models. In practice, therefore, OMT users often ignore this model. The de-
sign process is the major shortcoming of OMT as a general purpose method. It is
much less well defined than the analysis process, and lacks any kind of support for
incremental development.

4.1.2 Fusion
Fusion [10] is a descendent of OMT, which fixed some of the problems with OMT's
analysis approach, and significantly enhanced the design process. Fusion also pointed
the way towards increased rigor and prescriptiveness in object-oriented development.

The analysis phase adopts the same three basic viewpoints as OMT, but with
slightly different models and terminology. One of the main innovations was to require
that textual operation schemata describe the effects of system operations in terms of
the concepts in the object model. This improved the presentation of the functional

 A Taxonomy on Component-Based Software Engineering Methods 111

model and introduced a set of consistency rules between the functional and object
model.

The other main contribution of Fusion was the use of interaction modeling. It
showed that the design process could be organized in a highly systematic fashion
based on the elaboration and documentation of interaction scenarios on an operation-
by-operation basis. The basic idea in the Fusion design phase is to create a collabora-
tion diagram that documents how each system operation is realized in terms of lower
level interactions. Unfortunately, Fusion suffers from the same problem as OMT in
having a "flat" waterfall-based process model.

4.1.3 ROOM
The Real-Time Object-Oriented Modeling (ROOM) [27] method views software
systems based on the concept of interacting processes. The basic building blocks of
ROOM, known as actors, are active "logical machines", rather than simple ADTs, and
typically encapsulate an active thread or process as well as state information. At the
language level they therefore correspond to active constructs such as tasks in Ada or
threads in Java.

Although ROOM was published before component-based development became a
buzzword and dedicated component technologies (e.g., JavaBeans) became available, it
contains all the basic characteristics of a classic run-time component model. Actors
represent self-contained, autonomous components that can be realized as hardware
elements as well as software elements, ports represent independently defined interfaces
that allow components to be connected together in arbitrary configurations, and bind-
ings represent concrete connectors that link components together to solve particular
problems.

The main problem with ROOM is its lack of integration with data-modeling. Al-
though ROOM defines an advanced and highly systematic way of using state machine
diagrams, it makes little use of the core object modeling concepts such as associa-
tions, attributes and multiplicities etc. and gives little indication of how they fit in.
This is a symptom of the fact that ROOM is more process (i.e., thread) oriented than
data oriented.

4.1.4 HOOD
The Hierarchical Object-Oriented Design (HOOD) method [16] is largely limited to
the European Space Agency (HOOD's creator) and its contractors. However, it has
powerful and unique concepts not found in any other methods.

HOOD views a system as a community of objects organized in terms of two hier-
archies: the seniority and the usage hierarchy. The first reflects the containment of
objects within one another, and always yields a tree structure. The second reflects the
usage of one object by another, in the sense of a client-server relationship. The key
idea is to organize the development steps around the containment hierarchy (or sen-
iority hierarchy). The overall development approach is thus one of recursive, top-
down refinement in which progressively smaller objects are identified, modeled and
implemented.

4.1.5 OORAM
OORAM [24] introduced some important ideas relating to the way in which systems
can be modeled. The key innovation is to focus on roles throughout the modeling

112 C. Bunse, F.C. Freiling, and N. Levy

process as a way of tying different perspectives of a system together. A role essen-
tially defines how a client object sees a server object, including its operations, behav-
ior and needs.

Unfortunately the overall lifecycle process adopted in OORAM is essentially a wa-
terfall model, although there is a high level of iteration within the major phases such
as analysis and design. Object containment and hierarchical development play no part
in the process, and thus it is essentially a "flat" method like OMT and Fusion.

4.2 Component-Oriented Methods

In view of the importance of the component paradigm, most modern methods aim to
accommodate them in one form or another, but generally components are viewed as
just a convenient implementation tool rather than an integral part of the overall soft-
ware development cycle. In the last few years, however, methods have emerged
which orient the whole development process around components and view them as
richer abstractions than just binary code modules.

4.2.1 Catalysis
Catalysis [12] was one of the first methods developed specifically to leverage the
UML [23] in connection with component based development, and embraces many of
the other reuse technologies (i.e., architectural styles, design patterns and frame-
works). The method either introduced or popularized many of the ideas that today are
considered natural ingredients of component-based development, and several of these
have been explicitly adopted in the UML.

Catalysis uses an iterative and incremental process based on cleanly defined abstrac-
tion and refinement mechanisms. These mechanisms are applied throughout system
development from early analysis to implementation and set up the basis for recursive
relationships between models, which then support forward- and re-engineering of
systems. Catalysis makes use of the UML [23] with strong semantic consistency and
completeness criteria based on a small set of ’core’ constructs.

4.2.2 KobrA
The KobrA method [1], developed at Fraunhofer IESE, propagates the use of compo-
nents throughout all phases of the software life cycle. This goal is achieved by inte-
grating the three most important software-engineering paradigms today: Components,
Product Lines, and Model Driven Architectures (MDA). In addition, the KobrA
method comes equipped with powerful means to achieve continuous, model-driven
quality assurance. So far the KobrA method has only mainly been developed for sys-
tem engineering in the domain of ERP systems. A common problem in all compo-
nent-based development methods is their complete lack of capability to support the
non-functional requirements.

4.2.3 MARMOT
MARMOT (Method for Component-Based Real-Time Object-oriented Development
and Testing) [22], a descendant of KobrA, is specifically geared towards embedded
and real-time system development in an object and component-oriented context. It
subsumes the powerful principles of the KobrA, but provides additional features, that

 A Taxonomy on Component-Based Software Engineering Methods 113

are particularly important in embedded, real-time application construction. MARMOT
is based upon fundamental principles (i.e., software/hardware integration, aspect-
orientation, real-time specification and scheduling, etc.) that are fully in line with the
KobrA method’s meta-model.

4.2.4 Select Perspective
Select Perspective [2] emphasizes the importance of business process modeling as the
starting point of development, and follows a clean process that transforms system-
independent business processes into implementation-oriented models of the system of
interest in a step-by-step way. This includes the explicit identification of components,
as well as the potential integration of legacy systems.

Select Perspective is particularly rich in practical recommendations and guidelines.
It defines most of the essential ingredients needed for component-based development
in the early stages of the software life cycle, and provides some useful guidelines for
their application. Unlike other methods, it also explains the role that component tech-
nology can play in integrating legacy systems into new applications, and suggests
how this can be achieved. However, its main weakness is that it is not always clear
which aspects of the underlying business objects are being described by which mod-
els. In other words, the distribution of the information describing a business object is
somewhat arbitrary.

4.2.5 UML Components
UML Components [8] focuses on the specification of components using the UML
[23]. The method identifies two main phases (or workflows): the requirements work-
flow which captures the basic needs that the system must fulfill in terms of use cases
and high level business classes, and the specification workflow which documents the
business types, interfaces, and components that have been chosen to satisfy these
requirements.

In essence, UML components offer a subset of Catalysis concepts but with a much
simpler, UP-flavored process. This is both its strength and weakness. On the one hand
it packages a core subset of the Catalysis concepts in a more accessible and prescrip-
tive way, but on the other, it loses some of the key ideas of Catalysis, including the
nesting of components to arbitrary depths, the recursive application of development
concepts, and the use of frameworks to package larger-grained reusable structures than
interface and components. Nevertheless, the early emphasis on the definition of com-
ponent architectures in terms of component instances and their connections, and the
enhancement of the idea of focusing diagrams on individual components or interfaces,
represent valuable insights.

4.3 Product-Line Oriented Methods

With the possible exception of Catalysis, the methods described to this point are fo-
cused on the development of single systems. The creation of system variants takes
place as part of the maintenance activity, and is generally viewed as a repeated appli-
cation of the method rather than an integral part of the method itself. With the grow-
ing recognition of the value of a product line approach to the software life cycle,
several methods have emerged in recent years that focus on product-line oriented

114 C. Bunse, F.C. Freiling, and N. Levy

software development and maintenance. Catalysis can support such an approach
thanks to its advanced framework concepts, but product-lines are not its main focus.
The product-line oriented methods vary in their degree of customizability, and the
level of abstraction at which they address the variability’s and commonalities in a
product family.

4.3.1 FODA
Feature-Oriented Domain Analysis (FODA) [19], published by the Software Engi-
neering Institute, relies on the basic idea that a domain is analyzed to identify the
features which a system in this domain must or may provide. These features are hier-
archically represented within a feature model. Features are recursively composed of
other features, with some features being optional or alternatives to other features. A
feature model thus serves as a useful input to the designers of a reference architecture
for the domain.

Unfortunately, FODA is not described in sufficient detail to be easily applied with-
out guidance. Nevertheless, the feature model is a useful way of capturing common-
ality and variability within a system family, and adds value to methods that focus on
software reuse and product lines.

4.3.2 FAST
The core of FAST [29] is the commonality analysis to identify commonalities in a
family of systems in terms of general textual statements. This is used as the basis for
"implementing the domain", which involves the creation of domain-specific lan-
guages, architectures, generators, etc. to facilitate the low-effort creation of new mem-
bers of the product family.

One problem of FAST is that it only addresses the product line issues at a very
high level of abstraction, akin to the analysis level in conventional development
methods. The critical connection to concrete implementation technologies is not di-
rectly addressed. Moreover, the guidelines provided for the domain analysis process
are vague and unprescriptive.

4.3.3 PuLSE
PuLSE [3], developed at Fraunhofer IESE, splits the life-cycle of a system into four
phases: initialization, product line infrastructure construction, usage, and evolution. It
provides technical components for the different deployment, which itself are custom-
izable to the context. Unfortunately PuLSE suffers from the same basic problem
as other approaches due to its focus on the description of family properties at a
very high-level of abstraction without giving concrete guidance on how the required
flexibility should be realized at the implementation level.

4.4 Object-Oriented Method Frameworks

Object-oriented methods have come a long way since the early approaches mentioned
above. Not only have they become more sophisticated, they have had to embrace a
significant set of new concepts, such as components, architectures, frameworks, use
cases and incremental development. One strategy for accommodating all these ideas
in a coherent way is to raise the level of abstraction in which a process is described

 A Taxonomy on Component-Based Software Engineering Methods 115

and make it more generic. This leads to methods that are compatible with a large
number of specific development strategies, but are not ready to use "out of the box".
They must consequently be tailored to the needs of specific projects. Such ap-
proaches, of which there are two main examples, are therefore often characterized as
method frameworks.

4.4.1 Unified Process
The Unified Software Development Process [20] has been developed to provide a
unified process to support the full power of the UML [23]. It can be characterized as a
component-based, use-case-driven, architecture-centric, iterative, and incremental
software development method. In principle the Unified Process iterates a series of
cycles, whereby a cycle consist of four phases: Inception, Elaboration, Construction,
and Transition. In addition, the Unified Process defines various workflows, the most
prominent being Requirements, Analysis, Design, Implementation, and Test, which
are carried out to a specific extent in each phase of a cycle. In general the Unified
Process focuses more on management (e.g., workflows planning, evaluation, business
modeling, etc.) than on technical issues, and provides most support, due to its origins
in OMT, the Booch method, and Objectory, to modeling with only a high-level
add-on for other phases of development.

4.4.2 OPEN
OPEN (Object-Oriented, Process, Environment and Notation) [15] initially encom-
passed a unified notation, known as the OML as well as a process, but the former has
been subsumed by the UML standardization effort. In its current form OPEN can be
characterized as a highly generic process framework oriented towards development
with the UML.

Like the Unified Process, the generic nature of OPEN is a double edged sword. On
the one hand it means that the ideas of OPEN are applicable, when properly instanti-
ated, to a very wide range of domains. On the other hand, it means that much of the
difficulty in using the method is wrapped up in the instantiation process. Poor or in-
correct instantiation can easily lead to an incoherent process with very little chance of
success. Unfortunately, the instantiation of the OPEN process is still one of its least
well-developed parts. Also, in trying to integrate all acclaimed object-oriented tech-
niques, including components, architectural styles and design patterns, OPEN suffers
from the same "feature overload" problem as the Unified Process.

5 Results

The methods presented in the previous section represent only a small sample of all
available development methods, although the list seems to be quite complete concern-
ing component-based development. However, even this small selection shows that the
knowledge required to analyze existing methods and to identify areas for future re-
search is large and quite diverse. The taxonomy presented in Section 3 was used to
get a first overview by applying it to the methods presented in the previous section.

Instead of presenting large tables we use a two-part radar chart based on the highest
level taxonomy items (i.e., principles, formality, abstraction, strategy and properties).

116 C. Bunse, F.C. Freiling, and N. Levy

0

0,2

0,4

0,6

0,8

1
Principles

Formality

PropertiesStrategy

Abstraction

Room Hood
Catalysis Marmot
UML Components PulSE
OPEN

0

0,2

0,4

0,6

0,8

1
Principles

Formality

PropertiesStrategy

Abstraction

OMT Fusion
OORAM KobrA
Select Perspective FODA
FAST Unified Process

Fig. 3. Spiderweb - Development Methods

 A Taxonomy on Component-Based Software Engineering Methods 117

The two parts of this chart with together 15 methods are presented in Fig. 3. To obtain
values for the top-level items the following process was applied: (1) Atomic values
have been assigned a 0 if non-existent or 1 if existent. (2) For all sub-items (i.e.,
modularity) the mean of its atomic values was calculated. (3) Finally, the mean of all
sub-items for each of the top items was calculated and the visualized in the radar
chart.

For example, for the OMT method, we assigned for Formality the following val-
ues: 1 for Informal and 0 for Semi-formal and Formal. Therefore, the value assigned
to OMT for the Formality axis is the average of these 3 values, which is 0.33.

At a first glance Fig. 3 shows that the required properties, principles and strategies
for component-based development are covered. Especially component specific meth-
ods such as Catalysis or KobrA have made significant advances. However, most
methods fail when it comes to non-functional properties or support for the lower lev-
els of abstraction. The latter might be based on the fact that methods tend to focus on
the early phases of development (i.e., requirements, analysis, and design), neglecting
the link to the implementation phase. Often this link is seen as a responsibility of tools
(code generation) or developers. However, the recent advent of the Model-Driven-
Architecture (MDA) approach has shown models and code can be tightly linked and
that this not only increases development speed but also has a positive impact on the
overall quality.

Software becomes more and more prominent also in domains such as aviation,
automotive, or even consumer-electronics. However, these systems, often character-
ized as embedded systems, have specific requirements concerning safety, perform-
ance, or timing. These non-functional properties dominate the development of such
systems to a large extent. Therefore, systematic development methods have to provide
support for handling and quality assurance of such properties. In the area of compo-
nent-based development this becomes even more important. Assembling systems out
of pre-fabricated components requires mechanisms to assess specific non-functional
properties as well as actions to optimize and handle them properly.

6 Summary and Conclusions

This paper has briefly presented a taxonomy for classifying component-based soft-
ware engineering methods on a high level of abstraction. This taxonomy has then
been applied on a small selection of published methods. However, it has to be stated
that the paper focused on some key criteria in order to identify areas which warrant
future research, rather than presenting specific features of a method in detail.

In summary the taxonomy showed that methodological support for component-based
software development has made significant advances, compared to early methods, such
as OMT. However, the methods available today are no silver-bullets and sensitive
against the requirements of different domains and system types. More specifically, the
area of safety-critical systems requiring formal development and support for addressing
non-functional properties warrants future research. Another problem is the level of
detail or abstraction covered by single methods. It seems that methodological support is
missing for the lowest abstraction levels (e.g., implementation). The reason might be
that the link between models, as used in analysis and design, and the corresponding
source-code is weak. The advent of the MDA paradigm might offer a solution.

118 C. Bunse, F.C. Freiling, and N. Levy

However, it must be clear that, as in any similar effort, this is just one step forward
in a never-ending process. New results in technology development as well as in soft-
ware engineering theory require further extensions and enhancements concerning the
studied methods. Thus, the classification attempt made in this chapter may have to be
revised and, eventually, deeply changed.

Following [14] it must be stated, that software engineering is a dynamic and chal-
lenging discipline, where novel approaches and technologies emerge as our under-
standing of software increases and deepens. Thus the classification of methods is an
essential aid to researchers and practitioners.

References

1. Atkinson, C., Bayer, J., Bunse, C. et al. Component-Based Product Line Engineering with
UML. Pearson, 2001.

2. Aonix A.: Service and component based development: using the select perspective. Addi-
son-Wesley Longman Publishing Co, Inc., Boston, MA, 2003 ACM Computing Reviews 9
(2003)

3. Authors: Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,
DeBaud, J.M., Proceedings of the Fifth ACM SIGSOFT Symposium on Software Reus-
ability (SSR'99), (Los Angeles, CA, USA), May 1999, pp. 122-131

4. Blum, B.I., A Taxonomy of Software Development Methods, Communication of the ACM
Vol 37, No. 11, 1994

5. Booch. B., Object Oriented Analysis and Design with Applications. Benjamin/Cummings,
Redwood City, California, 2nd edition, 1994.

6. Bunse, C., von Knethen, A., Vorgehensmodelle Kompakt, Spektrum Verlag, 2001
7. Links on Objects & Components, Pages at the WWW last visited June 2005,

http://www.cetus-links.org/
8. Cheesman, J. and Daniels, J., UML Components: A simple Process for Specifying Com-

ponent-Based Software, Addison-Wesley, 2000.
9. Coad, P., Yourdon. E., Object-Oriented Analysis. Prentice Hall, 1991.

10. Coleman, D. Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., Jeremaes, P. Ob-
ject-Oriented Development: The Fusion Method. Prentice Hall, 1993.

11. J. Cribbs, C. Roe, and S. Moon, An Evaluation of Object-Oriented Analysis and Design
Methodologies, SIGS Books, New York, New York, 1992. 75 pages.

12. D'Souza, D. F. and Wills A. C., Objects, Components and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1998.

13. R.G. Fichman and C.F. Kemerer, Object-Oriented and Conventional Analysis and Devel-
opment Methodologies: Comparison and Critique, Center for Information Systems
Research, Sloan School of Management, M.I.T., CISR WP. No. 230, 1991. 38 pages.

14. Fuggetta, A., Sfardini, L., Software Engineering Methods and Technologies, Technical
Report, Cefriel, 2004

15. Graham, I., Henderson-Sellers, B., and Younessi, H., The OPEN Process Specification,
Addison Wesley 1997.

16. HUM Working Group, HOOD User Manual, HOOD User Group, July 1994
17. Hutt, T.F. (ed.), Object Analysis and Design – Description of Methods, OMG Press, 1994
18. Jacobson, I., Christerson, M., Jonsson,P. Object-Oriented Software Engineering - A Use

Case Driven Approach, Addison-Wesley, 1992

 A Taxonomy on Component-Based Software Engineering Methods 119

19. Kang, K,C., Cohen S.G., Novak, W.E,. Peterson, A.S., Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Tech. Report CMU/SEI-90-TR-21, Software Engineering
Institute (SEI), November 1990

20. Kruchten, P. B., The Rational Unified Process. An Introduction, Addison-Wesley, 2000.
21. Marciniak, J.J. (Ed.), Encyclopedia of Software Engineering (2nd ed.), John Wiley &

Sons, 2002
22. MARMOT homepage. to be found at www.marmot-project.org, 2005.
23. Object Management Group. Unified Modeling Language Specification. 2000.
24. Reenskaug, T., Wold, P., Lehne, O., Working with Objects: The OOram Software Devel-

opment Method, Manning/Prentice Hall 1996.
25. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. Object-Oriented Model-

ing and Design. Prentice Hall, 1991.
26. Software Engineering Institute. Software Engineering Body of Knowledge Version 1.0,

available at www.sei.cmu.edu/publications/documents/99.reports/99tr004/99tr004sd.html
27. Selic, B., Gullekson, G. and Ward, P.T., Real-Time Object-Oriented Modeling, John

Wiley & Sons, 1994.
28. Shlaer, S., Mellor, S.J.. The shlaer-mellor method. Pages on the WWW which can be

found at: http://www.projtech.com/, 1998.
29. Weiss, D. M. and Lai, C. T. R., Software Product Line Engineering: A family Based Soft-

ware Engineering Process, Addison-Wesley, 1999

	Introduction
	Related Work
	Taxonomy
	Definitions
	Criteria
	Applying the Taxonomy
	Presentation

	Methods for Component-Based Software Development
	First Generation Object-Oriented Methods
	Component-Oriented Methods
	Product-Line Oriented Methods
	Object-Oriented Method Frameworks

	Results
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

