
Automated Synthesis of Connectors for

Heterogeneous Deployment

Tomáš Bureš
Charles University

Faculty of Mathematics and Physics
Department of Software Engineering
Distributed Systems Research Group

Malostranske namesti 25
118 00 Prague 1, Czech Republic
bures@nenya.ms.mff.cuni.cz

http://nenya.ms.mff.cuni.cz/

August 16, 2005

Abstract

Although component based engineering has alredy become a widely
accepted parading, easy combining components from different component
system in one application is still beyond possibility. In our long-term
project we are trying to address this problem by extending OMG D&C
based deployment. We rely on software connectors as special entities mod-
eling and realizing component interactions. However, in order to benefit
from connectors, we have to generate them automatically at deployment
time with respect to high-level connection requirements. In this paper we
show how to create such a connector generator for heterogeneous deploy-
ment.

1 Introduction and motivation

In the recent years, the component based programming became a widely ac-
cepted paradigm for building large-scale applications. There are a number of
business (e.g., EJB, CCM, .NET) and academic (e.g., SOFA[12], Fractal[11],
C2[10]) component models varying in maturity and features they provide. Al-
though the basic idea of component based programming (i.e., composing appli-
cations from encapsulated components with well defined interfaces) is the same
for all component systems, combining components for different component sys-
tems in one application is still beyond possibility. The main problems hindering
this free composition of components comprise different deployment processes
(e.g., different deployment tools), different ways of component interconnections
(e.g., different middleware), and compatibility problems (e.g., differect compo-
nent lifecycle and type incompatibilities). To allow for freely and uniformly
composing, deploying, and running applications composed from components of

1



Figure 1: An example of heterogeneous component-based application

different component systems (as depicted in Figure 1) is the aim of heteroge-
neous deployment.

In our recent work we have used OMG D&C [13] as a basis for unified de-
ployment. OMG D&C defines a deployment of homogeneous application in
a platform independent way. It describes processes and artifacts used in the
deployment. OMG D&C follows the MDA paradigm; thus, the platform in-
dependent description of deployment is transformed to a particular platform
specific model (e.g., deployment for CCM). In order to allow for the heteroge-
neous deployment, we have extended the OMG D&C model to make it capable
of simultaneously handling components from different component systems [9],
and we have introduced the concept of software connectors [3] to the OMG D&C
model to take responsibility for component interactions [5].

Connectors being first class entities capturing communication among com-
ponents (see Figure 2) help us at design time, to formally model intercomponent
communication, and at runtime, to implement the communication. Connectors
seamlessly address distribution (e.g. using a particular middleware). They also
provide a perfect place for adaptation (for overcoming incompatibilities resulting
from different component systems) and value added services (e.g. monitoring).
Important feature of connectors is that an implementation of a particular con-
nector is prepared as late as at deployment time, which allows us to tailor the
connector implementation to specifics of a particular deployment node.

The fact that connectors are prepared at deployment time, however, brings a
problem of their generation. They cannot be provided in a final form in advance.
Forcing a developer to be present at deployment stage to tailor connectors to
a particular component application and deployment nodes is not feasible ei-
ther. Our solution to this problem is to benefit from the domain specificity of
connectors and to create a connector generator which would synthesize connec-
tors automatically (i.e., without human assistance) with respect to a high-level

2



Figure 2: Using connector to interconnect components

connector specification. As the specification we take connection requirements,
which are associated with bindings in OMG D&C component architecture (e.g.,
a requirement stating that a connection should be secure with a key no weaker
than 128-bits). In our case the the connection requirements are expressed as a
set of name-value pairs (e.g., minimal key length→ 128). Also, the connector
synthesis reflects particular target deployment environment (e.g., if both the
components connected by the binding required to be secure reside on one com-
puter, then the security is assure even without encryption). The description of
the environment is taken from OMG D&C target data model.

2 Goals and structure of the text

In this work we present our approach to automated connector synthesis for het-
erogeneous deployment. We base the work on our previous experiences with
building a connector generator for SOFA component system [4]. However, the
connector generation in SOFA was not fully automatic — a connector structure
must have been precisely specified — and it did not allow for handling and
combining different component systems (i.e., it was homogeneous). This report
takes up the approach shown in [8] and improves it by modifying existing struc-
tures and techniques (e.g, the architecture of the generator, the type-system
handling) and bringing in new features (e.g., as automatic architecture resolu-
tion).

In this paper, we show how to create a connector generator that allows
for the heterogeneity and works fully automatically, generating connectors with
respect to target environment and high-level connection requirements.

The paper is structured as follows. Section 3 shows the connector model
we use. Section 4 describes the architecture of the connector generator and
discusses certain parts of it in greater detail. Section 5 presents the related
work and Section 6 concludes the paper.

3



Figure 3: A sample connector architecture

3 Connector model

Software connectors are first class entities capturing communication among com-
ponents. They are typically formalized by a connector model, which is a way
of modeling their features and describing their structure. The connector model
thus allows us to break the complexity of a connector to smaller and better
manageable pieces, which is vital for automated connector generation. In our
work we have adopted (with modifications) the connector model used in SOFA,
since it has been specially designed to allow for connector feature modeling and
code generation. In the rest of this section, we briefly describe this model along
with the modification we have made to it.

Our connector model is based on component paradigm (see Figure 3. A con-
nector is modeled as composed of connector elements. An element is specified
by element type, which on the basic level expresses the purpose of the element
and ports. Ports play the role of element interfaces. We distinguish three basic
type of ports: a) provided ports, b) required ports, and c) remote ports. Ele-
ments in a connectors are connected via bindings between pairs of ports. Based
on the type of ports connected we distinguish between a local binding (between
required-provided or provided-required ports) and a remote binding (between
two remote ports). Local bindings are realized via a local (i.e., inside one ad-
dress space) call. Remote bindings are realized via a particular middleware (e.g.,
RMI, JMS, RTP, etc.). Since it is not possible to easily capture the direction of
the data flow on a remote binding (i.e., who acts as a client and who acts as a
server) we view these bindings as undirected (or bidirectional).

On the top-level a connector is captured by a connector architecture, which
defines the first level of nesting. All inter-element bindings in a connector ar-
chitecture are remote. Thus, elements in a connector architecture encapsulate

4



Figure 4: Specification of formal signatures of ports on an element.

all the code which runs in one particular address space. Alternatively, we call
these elements on the first level of nesting connector units.

Elements in an architecture are implemented using primitive elements and
composite elements. A primitive element is just code (or rather a code template
as we will se later). Apart from code, a composite element consists also of an
element architecture. Binding between sub-elements in an element architecture
may be only local. Thus, an element cannot be split among more address spaces.

Figure 3 gives an example of a connector realizing a remote procedure call.
The top-level connector architecture is in Figure 3a. It divides a connector to
one server unit and a number of client units. An implementation of the client
unit is given in Figure 3b. It implements the client unit as a composite element
consisting of an adaptor (which is an element realizing simple adaptations in
order to overcome minor incompatibility problems) and a stub. Notice that the
stub exposes on the left-hand side a provided interface (i.e., local) and on the
right hand side it exposes a remote interface, which is use to communicate with a
skeleton on the other side using a particular middleware. An implementation of
the server unit (in Figure 3c) comprises a logging element (which is responsible
for call monitoring), a synchronizer (which is an element realizing a particular
threading model), and element called skeleton collection. The architecture of
the skeleton collection element is given in Figure 3d. Its purpose is to group a
number of skeletons implementing different middleware protocols, and thus to
allow the connector to support different middleware on the server side.

A concrete connector is thus built by selecting a connector architecture and
recursively assigning element implementations (either primitive or composite).
The resulting prescription stating what connector architecture and what element
implementations is called a connector configuration.

Connectors are in a sense entities very similar to components, however, there
are a few basic differences between components and connectors: a) Connectors
are typically span different address spaces and deal with middleware, while
component (at least the primitive ones) reside in one address space only. b)
Connectors have a different lifecycle to components — remote links between
connector units have to be established before a connector can be put between
components, and connectors may appear at runtime as component references
are passed around. c) Connectors are in fact templates, which are later adapted
to a particular component interface (as opposed to components which have fixed
business interfaces).

In our model we do not only view connectors as whole as templates, but we
view also connector elements as templates. Thus, an adaptation of a connector
implies adaptation of all elements inside a connector1.

1Although this approach is more tedious, it allows us to perform static invocation inside
the connector; as opposed to having elements with general interfaces and being forced to

5



As elements are templates, their signatures are variable, typically with some
restrictions and relations to other ports of an element. To capture the restric-
tions and relations, we use interface variables and functions. An example is
given if Figure 4. The skeleton element has two ports call and line. The RMI
implementation of the skeleton element as depicted in the example prescribes no
restriction on the call-port. The actual signature2 of the call-port is assigned to
the interface variable Itf . The formal signature of the line-port is more com-
plicated. It expresses the fact the original interface Itf is accessible via RMI.
It uses the variable Itf to refer to the actual signature of the call-port and two
functions rmi server and rmi iface. The rmi iface function changes the inter-
face Itf by adding neccessary features so that the interface can be used by RMI
— it modifies the interface to extend java.rmi.Remote and changes the signa-
ture of every method in the interface to throws java.rmi.RemoteException.
The rmi server function expresses that the interface it takes as a parameter
is accessible remotely via RMI. Notice that we do not use the functions only
to capture changes in the interface itself (e.g., rmi iface), but also to assign a
semantics (e.g., rmi server).

To perform the adaptation of a connector to a particular component inter-
face we need to know the actual signature of each element port of every element
inside the connector. To realize this, we assign the adjoining components’ in-
terfaces to respective interfaces of the connector and let the interface propagate
through the elements inside the connector. The result of this process is shown
in Figure 5. The ′Service v1′ and ′Service v2′ in the example are names of a
sample component interfaces; the java iface function returns an interface iden-
tified by a name. The adaptor element in the example solves incompatibilities
between the two interfaces.

4 Connector generator

The connector model we have presented in the previous section very clearly out-
lines how connectors are generated — we synthesize a connector configuration
and we assemble and adapt a connector accordingly. From the implementation
point of view this is, however, more complicated.

An important fact to note is that we are not actually interested in building
a connector as whole. Rather we want to build a server part and different client
parts separately, as it better corresponds to the lifecycle and evolution of an
application. Thus, in the rest of the text we focus on generation of connector
units.

We have designed the connector generator from a few interoperating com-
ponents (see Figure 6). The generation manager orchestrates the connector
generation. The architecture resolver is responsible for creating a connector
configuration with respect to high-level connection requirements and a target

perform dynamic invocation. The main benefit of static invocation over the dynamic one is
better performance.

2When necessary we distinguish in this text between formal port signature and actual
port signature. By formal signatures we mean the interface variables and restrictions as
declared in an element implementation represented as a template. By actual signatures we
mean the interfaces as values which are assigned to element ports and to which the element
implementation is adapted. The terminology is in some sense similar to formal and actual
arguments known from programming languages.

6



Figure 5: An example of interface propagation thorough a connector.

deployment environment (as described in Section 1). The element generator
adapts element templates to particular interfaces and creates builder code for
composite element architectures. Since we are interested only in connector units
which are modeled also as elements, we can perform all the code generation only
with help of the element generator. The connector template repository holds
connector architectures and element implementations (i.e., code templates and
composite element architectures). It is used by the architecture resolver to cre-
ate a connector configuration and by the element generator to retrieve code
templates to be adapted. The connector artifact cache is a repository where
adapted elements are stored and from which they can be reused when needed
next time. It addresses the problem that the code generation tends to be slow.
Finally, the type system manager is a responsible for providing unified access
to type-information originating from different sources and being in different
format.

The synthesis of a connector configuration performed in the architecture
resolver is discussed in more detail in Section 4.1. The element generator is
elaborated on in Section 4.2 and the issue of handling different type-systems is
explained and addressed in Section 4.3

4.1 Architecture Resolver

We have implemented the architecture resolver in Prolog. We fill the Prolog
knowledge base with predicates capturing information about architectures and
elements kept in the connector template repository. Then we use the inherent
backtracking in Prolog to traverse the search tree of various connector configu-
rations and to find the configuration satisfying our requirements.

For every element implementation in the connector template repository we
introduce to the knowledge base a predicate elem desc (see Figure 7). The
purpose of the predicate is to build a structure representing an instance of the
element in a connector configuration (we call the structure resolved element).
The resolved element contains all information required by the element gener-
ator (i.e., the name of the element implementation, which is a reference to
the element’s code template, and actual signatures of ports). In the case of a

7



Figure 6: The architecture of the connector generator.

composite element, the resolved element includes also resolved elements of the
sub-elements. Thus, the connector configuration in our approach has the form
of a set of resolved elements for the units of the connector.

The auxiliary predicates used in the elem desc predicate are in charge of
constructing the resolved element. Predicate elem decl/3 creates its basic
skeleton, predicate elem inst/7 chooses and constructs a sub-element, pred-
icates provided port/2, remote port/2 create the element ports, and predi-
cates binding/4 and binding/5 create delegation and inter-element bindings
respectively.

The elem desc predicates are built based on the information kept in repos-
itory. To partially abstract from the Prolog language and to capture the ele-
ment description in more comprehensible way, we use an XML notation which
is during resolving transformed to the Prolog predicates. An example of the
XML element description is shown in Figure 8. The XML description comprises
also parts related to code generation which are use by the element generator.
As these are not important for us now, we have omited them in the example
(marked by the three dots).

Using the elem desc predicates we are able to build a connector configu-
ration, however, what remains to ensure is that the connector configuration
specifies a working connector which respects the connection requirements. We
have formulated these concerns as three consistency requirements — a) cooper-
ation consistency, b) environment consistency, and c) connection requirements
consistency. They are reflected in the following way.

8



elem_desc(logged_client_unit, rpc_client_unit, Dock, This,
CurrentCost, NewCost) :-

elem_decl(This, logged_client_unit, rpc_client_unit),
cost_incr(CurrentCost, 0, CurrentCost0),
elem_inst(This, Dock, SE_stub, stub, stub, CurrentCost0,

CurrentCost1),
elem_inst(This, Dock, SE_logger, logger, logger,

CurrentCost1, NewCost),
provided_port(This, call),
remote_port(This, line),
binding(This, call, logger, in),
binding(This, logger, out, stub, call),
binding(This, line, stub, line).

Figure 7: Prolog predicate describing a sample client unit implementation

<element name="logged_client_unit" type="client_unit" ... >

<architecture cost="0">
<inst name="logger" type="logger"/>
<inst name="stub" type="stub"/>
<binding port1="call" element2="logger" port2="in"/>
<binding element1="logger" port1="out" element2="stub"

port2="call"/>
<binding element1="stub" port1="line" port2="line"/>

</architecture>

...

</element>

Figure 8: XML specification of a sample client unit implementation — archi-
tectural part

Cooperation consistency. It assures that elements in a connector configu-
ration can ”understand” one another. We realize this by unifying signatures
on two adjoining ports (in predicate binding). Recall that the signatures en-
code not only the actual type but also semantics (e.g., rmi server(rmi iface(
′CompIface′))).

Environment consistency. It assures that the element can work in a target
environment (i.e., it requires no library which is not present there, etc.). We
realize this by testing requirements on environment in elem desc predicate (the
description of environment capabilities is in the variable Dock).

Connection requirements consistency. It assures that the connector configu-
ration reflects all connection requirements. Since some connection requirements
require the whole connector configuration to be verifiable, we do not check them
on-the-fly during building the connector configuration, but we verify them once
the configuration is complete. We realize the checking by predicates able to
test that a given connection requirement (in our case expressed as a name-value

9



nfp_mapping(This, logging, console) :-
This = element(console_log, _, _, _, _).

nfp_mapping(This, logging, Value) :-
This = element(logged_client_unit, _, _, _, _),
get_elem(This, logger, SE_Logger),
nfp_mapping(SE_Logger, logging, Value).

Figure 9: An example of predicates verifying connection requirements for a
primitive and a composite element

property) is satisfied by a particular connector configuration. In order to not
loose extensibility and maintainability, we compose the predicate from a num-
ber of predicates verifying the connection requirement for a particular element
implementation. In the case of a primitive element the connection require-
ment is verified directly. In the case of a composite element, the verification
is typically delegated to a sub-element responsible for the functionality related
to the connection requirement. If there is no predicate for the connection re-
quirement associated with the element, the verification automatically fails. The
example in Figure 9 shows the predicates for checking a ”logging” property for
a primitive element (console log in our example) and for a composite element
(logged client unit in our example).

To select the best configuration we use a simple cost function. We assign a
weight to every element implementation reflecting its complexity. The cost of
a connector configuration is then computed as a sum of weights of all element
implementations in a configuration. We then select the configuration that has
the minimal cost. To prune too expensive configurations on-the-fly already
during their building, we use the cost incr/2 predicate (as shown in Figure 7).

4.2 Code generation

The connector configuration (which is the result of the process described in the
previous section) provides us with a selection of element implementations and
prescription to which interfaces they should be adapted. The next step in the
connector generation is the actual adaptation of elements and generation of so
called element builder (i.e., a code artifact which instantiates and links elements
according to an element architecture) for each composite element.

In our approach, we generate source code and compile it to binary form (e.g.,
Java bytecode). The exact process of element’s code generation is captured by
element’s specification. An example of such specification is shown in Figure 10.
The omited parts correspond to specification of element’s architecture and sig-
natures previously shown in Figure 8.

The code generation is specified as a script of actions that have to be per-
formed. In our example the action jimpl calls the class CompositeGenerator,
which creates the source code (i.e., a Java class LoggedClientUnit) based on
the actual signature it accepts as input parameters. The CompositeGenerator
works actually as a template expander providing content for tags used in a static
part of element’s code template (in our case stored in file compound default.
template — see Figure 11). By dividing the code template to the static and the

10



<element name="logged_client_unit" ...
impl-class="LoggedClientUnit">

...

<script>
<command action="jimpl">

<param name="generator" value="org.objectweb.dsrg.
deployment.connector.generator.eadaptor.
elements.generators.CompositeGenerator"/>

<param name="class" value="LoggedClientUnit"/>
<param name="template"

value="compound_default.template" />
</command>

<command action="javac">
<param name="class" value="LoggedClientUnit"/>

</command>

<command action="delete">
<param name="source" value="LoggedClientUnit"/>

</command>

</script>

</element>

Figure 10: XML specification of a sample client unit implementation — code
generation part

dynamic part (the template expander), we can reuse one template expander for
a number of elements. Moreover, by using inheritance to implement the tem-
plate expanders and providing abstract base classes for common cases we can
keep the amount of work needed to implement a new code template reasonably
small.

4.3 Handling of different type-systems

In the context of heterogeneous deployment it is necessary to deal with multiple
type-systems simultaneously. By a type-system in this text we mean the way
of specifying types and interfaces (e.g. CORBA IDL, Java, etc.) as well as set
of types native to a particular programming language (e.g. java.util.Hashmap
in Java), component model (e.g. org.objectweb.fractal.Interface in Fractal com-
ponent model) and middleware (e.g. java.rmi.Remote in RMI). Notice that a
type-system also brings different features of interfaces and method signatures,
as well as different means of acquiring type information (e.g., using reflection in
Fractal, using TIR in SOFA, etc.).

In order to make the generator independent of different type-systems we have
separated the functionality regarding types to a separate component (i.e., type
system manager). We have identified actions the generator performs on types
during connector generation and tailored the type system manager interface

11



package %PACKAGE%;

import org.objectweb.dsrg.deployment.connector.runtime.*;

public class %CLASS% implements ElementLocalServer,
ElementLocalClient, ElementRemoteServer,
ElementRemoteClient {

protected Element[] subElements;
protected UnitReferenceBundle[] boundedToRemoteRef;

public %CLASS%() {
}

%INIT_METHODS%

}

Figure 11: A static part of element’s code template — file
compound default.template

accordingly. Fortunatelly, all the actions concerning types are not numerous
and are well-defined. In fact, apart from passing types around (for which just a
super-class or an super-interface for all types is needed) only the following two
actions are required from the type system manager.

1. We need to build a type based on a symbolic specification. In other words,
we have to implement the type functions (e.g., java iface, rmi iface,
etc.). This comprises the following actions:

(a) creating a type (e.g., using reflection on a Java interface, getting a
type from TIR)

(b) mapping a type to a different type-system (e.g. CDL interface to
Java interface)

(c) modifying an interface (e.g., modifying the signature of each method
in an interface to throw java.rmi.RemoteException)

2. We need to test whether an interface is a sub-type of another interface.

Thus, we have created a simple abstract type model to allow for passing
accessing and passing the types in an uniform way (see Figure 12). Abstract
types are reified using concrete classes brought by plug-ins for particular type-
systems (see Figure 13 showing how Java-types were implemented).

Moreover to allow for item #1 (building types) we implement a type-factory
which using type-system plug-ins builds required types based on the symbolic
type specification builds the types. The item #2 (sub-type relation) is imple-
mented as a method present in the InterfaceDef interface in the abstract type
model.

12



<< interface >>
Type

+ getIdentification ():SymbolicTypeSpecifier
+ getTypeSytemName ():String
+ getTypeFactory ():TypeFactoryInst
+ realize ():void

<< interface >>
InterfaceDef

+ getParamInterfaces ():InterfaceDef[]
+ getReturnInterface ():InterfaceDef[]
+ isSubtypeOf (iface :InterfaceDef ):boolean

<< interface >>
ArrayDef

+ getElementType ():Type

<< interface >>
PrimitiveDef

Figure 12: The abstract type model.

<< interface >>
ArrayDef

<< interface >>
InterfaceDef

<< interface >>
PrimitiveDef

JavaArrayJavaClass JavaPrimitiveJavaInterface

Figure 13: The Java reification of the abstract type model.

5 Related work

To our knowledge there is no work directly related to our approach, however,
there are a number of projects partially related at least in some aspects.

Middleware bridging. An industry solution to connect different component
models (or rather middleware they use) is to employ middleware bridges (e.g.
BEA WebLogic, Borland Janeva, IONA Orbix and Artix, Intrinsyc J-Integra,
ObjectWeb DotNetJ, etc.). A middleware bridge is usually a component dele-
gating calls between different component models using different middleware. In
this sense, it acts as a special kind of connector. However, middleware bridges
are predominantly proprietary and closed solution, allowing to connect just two
component models for which a particular bridge was developed and often work-
ing in one direction only (e.g. calling .NET from Java).

13



Modelling connectors. A vast amount of research has been done in this
area. There are a number of approaches how to describe and model connectors
(e.g., [1], [14], [7]). Save the [1] which is able to synthesize mediators assur-
ing that a resulting system is dead-lock free, the mentioned approaches are not
generally concerned with code generation. That is why we have used our own
connector model, which has been specifically designed to allow for code gener-
ation. Also, we are rather interested in rich functionality than formal proving
that a connector has specific properties; thus, at this point we do not associate
any formal behavior with a connector.

Configurable middleware. In fact connectors provide configurable communi-
cation layer. From this point of view, the reflective middleware (e.g., OpenORB
[2]) being built from components is a very similar approach to our. The main
distinction between the reflective middleware and connectors is the level of ab-
straction. While the reflective middleware deals with low-level communication
services and provides a middleware API, connectors stand above the middleware
layer. They aim at interconnecting components in a unified way and for this
task transparently use and configure a middleware (e.g., OpenORB).

6 Conclusion and future work

In this paper we have shown how to synthesize connectors for the OMG D&C-
based heterogeneous deployment. We have used our experience from building
the connector generator for SOFA. However, compared to SOFA, where the
generator was only semi-automatic and homogeneous, we had to cope with the
heterogeneity (which caused the co-existence of different type-systems) and fully
automatic generation based on target environment and high-level connection
requirements.

We have created a prototype implementation of the connector generator
in Java with an embedded Prolog [6] for resolving connector configurations.
Currently we are integrating the generator with other our tools for heterogeneous
deployment. As for the future work we would like to concentrate on automatic
handling of incompatibilities between different component systems (i.e., life-
cycle incompatibilities and type incompatibilities).

References

[1] M. Autili, P. Inverardi, M. Tivoli, D. Garlan, “Synthesis of ”correct” adap-
tors for protocol enhancement in component based systems”, Proceedings
of SAVCBS’04 Workshop at FSE 2004. Newport Beach, USA, Oct 2004

[2] G. S. Blair, G. Coulson, P. Grace, “Research directions in reflective mid-
dleware: the Lancaster experience” Proceedings of the 3rd Workshop on
Adaptive and Reflective Middleware, Toronto, Ontario, Canada, Oct 2004.

[3] D. Bálek and F. Plášil, “Software Connectors and Their Role in Component
Deployment”, Proceedings of DAIS’01, Krakow, Kluwer, Sep 2001

[4] L. Bulej and T. Bureš, “A Connector Model Suitable for Automatic Gen-
eration of Connectors”, Tech. Report No. 2003/1, Dep. of SW Engineering,
Charles University, Prague, Jan 2003

14



[5] L. Bulej and T. Bureš, “Using Connectors for Deployment of Heterogeneous
Applications in the Context of OMG D&C Specification”, accepted for
publication in proceedings of the INTEROP-ESA 2005 conference, Geneva,
Switzerland, Feb 2005

[6] E. Denti, A. Omicini, A. Ricci, “tuProlog: A Light-weight Prolog for In-
ternet Applications and Infrastructures”, Practical Aspects of Declarative
Languages, 3rd International Symposium (PADL’01), Las Vegas, NV, USA,
Mar 2001, Proceedings. LNCS 1990, Springer-Verlag, 2001.

[7] J. L. Fiadeiro, A. Lopes, M. Wermelinger, “A Mathematical Semantics for
Architectural Connectors”, In Generic Programming, pp. 178-221, LNCS
2793, Springer-Verlag, 2003

[8] O. Gálik and T. Bureš, “Generating Connectors for Heterogeneous Deploy-
ment”, accepted for publication in proceedings of the SEM 2005 workshop,
Jul 2005

[9] P. Hnětynka, “Making Deployment of Distributed Component-based Soft-
ware Unified”, Proceedings of CSSE 2004 (part of ASE 2004), Linz, Austria,
Austrian Computer Society, ISBN 3-85403-180-7, pp. 157-161, Sep 2004

[10] N. Medvidovic, N. Mehta, M. Mikic-Rakic, “A Family of Software Architec-
ture Implementation Frameworks”, Proceedings of the 3rd IFIP Working
International Conference on Software Architectures, 2002

[11] ObjectWeb Consortium, Fractal Component Model,
http://fractal.objectweb.org, 2004

[12] ObjectWeb Consortium, SOFA Component Model,
http://sofa.objectweb.org, 2004

[13] Object Management Group, “Deployment and Configuration
of Component-based Distributed Applications Specification”,
http://www.omg.org/docs/ptc/03-07-02.pdf, Jun 2003

[14] B. Spitznagel and D. Garlan, “A Compositional Formalization of Connector
Wrappers”, Proceedings of ICSE’03, Portland, USA, May 2003

15


