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Abstract 

Component-based software engineering is a 

powerful paradigm for building large applications. 

However, our experience with building application of 

components is that the existing advanced component 

models (such as those offering component nesting, 

behavior specification and checking, dynamic 

reconfiguration to some extent, etc.) are subject to a 

lot of limitations and issues which prevent them from 

being accepted more widely (by industry in particular). 

We claim that these issues are specifically related to 

(a) the lack of support for dynamic reconfigurations of 

hierarchical architectures, (b) poor support for 

modeling and extendibility of the control part of a 

component, and (c) the lack of support for different 

communication styles applied in inter-component 

communication. In this paper, we show how these 

problems can be addressed and present an advanced 

component system SOFA 2.0 as a proof of the concept. 

This system is based on its predecessor SOFA, but it 

incorporates a number of enhancements and 

improvements. 

1. Introduction 

Over the past few years, the component-based de-

velopment (CBD) [25] has been recognized as a viable 

way of building software systems. Although there are 

many different views on what a component is and what 

its features are, common consensus regards a compo-

nent as a black-box entity with well defined interfaces 

and behavior, and emphasizes, as one of the key fea-

tures, its reusability in different contexts without any 

need of knowing or modifying component’s internals. 

From a design view, components – especially hierar-

chical ones – can be viewed as gray-box/glass-box 

entities with the internal structure visible as a set of 

communicating subcomponents. 

The set of rules defining components’ creation, 

composition, life-cycle, and other features are usually 

referred to as a component model. The reification of a 

component model in a particular implementation (and 

runtime environment) is called component sys-

tem/platform. As there is no general agreement on de-

tailed features of components, we assume the concept 

of component is to be always interpreted only within a 

particular component model. 

The idea of component-based development has al-

ready taken shape in a number of component systems – 

both industrial and academic. The industrial systems 

(represented mainly by EJB [9] and CCM [18]) are 

oriented on providing a stable and mature runtime, 

even at the cost of sacrificing the option of building 

component hierarchies and other advanced features 

(such as multiple communication styles, behavior de-

scription, etc.). On the other hand, the academic com-

ponent models provide a rich set of features, especially 

allowing for powerful design with the help of hierar-

chical architectures, behavior specification, different 

communication styles, etc. Their main flaw typically 

lies in the insufficient runtime support – many of the 

academic systems are only design-oriented, without 

any sort of runtime environment [3,15]. 

In our view, the reason for such a big gap between 

the industrial models and academic component models 

lies in the fact that it is very difficult to properly bal-

ance the semantics of advanced features, so that they 

can be well grasped at design time, and correctly and 

flawlessly employed at runtime. 

Newer than CBD, but quickly spreading are 

service-oriented architectures (SOA). SOA-based sys-



tems are already commonly used in industry (e.g., 

WebServices [26]). In our view, the reason for the 

success of SOA lies in the fact that SOA in a sense lies 

halfway between the simple flat industrial component 

models and the hierarchical and complex academic 

component models. A service in SOA has also well 

defined interfaces and a new service can be built by 

reusing some of the existing services. However, SOA 

lacks a first-class concept of nested service. New ser-

vices are formed by specifying the interplay of services 

being reused, without any hierarchical nesting (as op-

posed to CBD). Since there is no strong concept of 

encapsulation (typically achieved by nesting), it is very 

difficult to deploy and reuse a service in different 

contexts. 

1.1. Goals and structure of the paper 

In this paper, we use our experience with designing 

and implementing the SOFA component system 

[21,24] and also our experience with building compo-

nent applications for the SOFA and Fractal [4] compo-

nent systems [8]. 

The goals of the paper are twofold: First, we ana-

lyze strong and weak points of component systems 

based on a hierarchical component model, and after-

wards, we describe a new component system (SOFA 

2.0) featuring a hierarchical component model and 

many other novel advanced features based on the les-

sons we learned with writing non-trivial applications 

for SOFA and Fractal. SOFA 2.0 aims at balancing 

these features and integrating them to form a coherent 

model, which can be also consistently reified at run-

time. 

The structure of the paper is as follows. On the ba-

sis of the SOFA component system, Section 2 analyzes 

the main limitations of the contemporary component-

based systems with a hierarchical component model 

and Section 3 presents the SOFA 2.0 design and imple-

mentation. Section 4 contains evaluation and related 

work, while Section 5 concludes the paper. 

2. Issues of hierarchical components 

SOFA is a typical academic component based sys-

tem. It uses a hierarchical component model with com-

ponents being either primitive or composite. A com-

posite component is built of other components, while a 

primitive one contains no subcomponents. A compo-

nent is described by its frame and architecture. Frame 

is a black-box view of a component. It defines the 

component’s provided and required interfaces. Archi-

tecture is a gray-box view of a component; it imple-

ments the component’s frame by specifying the sub-

components and their interconnections on the first 

level of nesting. Components are interconnected via 

bindings among interfaces. All bindings are furnished 

via connectors [6], which are first class entities (like 

components). Behavior of SOFA components can be 

captured formally via behavior protocols [22]. 

Runtime structure of a component is composed of a 

control part, which consists of the component man-

ager, and a functional part, which in the case of a 

primitive component consists of code of the compo-

nent and, in the case of a composite component, of 

other subcomponents. 

Development lifecycle of a SOFA component is 

quite similar to other component systems. First, an 

ADL specification has to be written. The specification 

is then used to generate skeletons of the component 

implementation. The developer implements the primi-

tive components and inserts them into a repository. In 

order to launch a component-based application, it is 

necessary to prepare a deployment plan, where com-

ponents are assigned to particular host computers and 

resources are allocated. Finally, according to this plan, 

the application is deployed and launched. 

Although SOFA has been a very innovative and 

promising platform for building large software sys-

tems, its usage revealed several limitations and obsta-

cles. Interestingly, these issues are not SOFA-specific, 

since other component systems suffer of similar prob-

lems, namely (1) a limited support for dynamic recon-

figurations, (2) no structure of the control part of a 

component and (3) unbalanced support for multiple 

communication styles. In the rest of this section, we 

describe each of them in more detail. 

2.1. Dynamic reconfigurations 

By dynamic reconfiguration we mean a runtime 

modification of the application architecture, i.e., add-

ing and removing components at runtime, passing ref-

erences to components, etc. The problem of dynamic 

reconfigurations lies in the fact that it is very difficult 

to describe the dynamicity of an application at design 

time. A naive solution to the problem by forbidding 

dynamic reconfiguration is not feasible, since dynamic 

changes of an architecture are inherent to many appli-

cations [16]. The other extreme – neglecting dynamic 

reconfigurations at design time and allowing for arbi-

trary ones at runtime – is not appropriate either. It 

leads to an uncontrolled modification of the architec-

ture (evolution gap [11]), which is inherently error-

prone. Thus, it is a necessity to reflect runtime recon-

figuration at the design time. Also, based on our ex-

perience with non-trivial case studies, we regard this 



issue to be one of the primary hindrances of the wider 

usage of hierarchical component models. 

2.2. Control part of components 

In addition to business interfaces (i.e., the 

“classical” provided and required interfaces), compo-

nents usually feature control interfaces. From archi-

tectural view, these are the provided interfaces, which 

correspond to non-functional features of components, 

i.e., life-cycle management, reconfiguration, intro-

spection, etc – controllers in general. Even though the 

functionality implemented by controllers does not have 

to be explicitly accessible via public component inter-

faces, it is typically present in all component systems. 

Since controllers provide access to non-functional 

aspects of components, they should not be freely ac-

cessible from the code of components (i.e., the appli-

cation’s business logic) – controllers are intended to be 

used by runtime environment and administration and 

deployment tools. However, our experience with non-

trivial component applications indicates that the code 

implementing component’s business logic should be 

aware of the fact that it is a part of the component and 

it should have means to access some limited and spe-

cifically tailored functionality of the component’s 

controllers (e.g., accessing component properties, sig-

nalizing a quiescent state during dynamic update). 

The existing component models having support for 

controllers (such as Fractal) do not further elaborate on 

structuring and extending the controllers. However, we 

claim (and our experience confirms so) that explicit 

modeling of the control part and a simple extension 

mechanism may be of a great asset, especially when 

trying to extend the core functionality of the runtime 

environment [17]. 

2.3. Multiple communication styles 

Communication style is a paradigm which compo-

nents use for communication. The idea of different 

communication styles was coined in [23]. There, every 

architectural style gives a specific semantics to the 

concepts of component and connector (e.g., in pipe-

and-filter architectural pattern, we interpret filter proc-

esses as components and Unix-like pipes as connec-

tors). In order to support different architectural styles 

in component systems, we have to generalize the con-

cept of component binding and explicitly capture it by 

a first class entity – connector. The communication 

style then defines the functionality of each connector. 

In SOFA, we have distinguished four communication 

styles – method invocation, message passing, stream-

ing, and distributed shared memory [6]. 

The advantage of supporting different architectural 

styles lies not only in easier and more comprehensible 

design, but it even manifests itself at runtime: From the 

knowledge of the communication style, the inter-

component communication can be optimized by 

choosing an appropriate middleware (e.g., CORBA for 

remote method invocation, TCP/IP for bi-directional 

streaming, etc.) for each binding. 

Communication style strongly influences the way 

components can be bound together, allowing even for 

connecting a required interface to another required 

interface (e.g., in the case of TCP/IP streaming). Thus, 

without an explicit support for communication styles, 

it is very difficult to model different architectural 

styles and benefit at runtime from their knowledge at 

design time. When such support is not present, compo-

nents with middleware functionality have to be typi-

cally employed (e.g., a component implementing a 

TCP/IP socket), which however spoils the design by 

mixing business and communication logic and makes 

other features (e.g., behavior checking or dynamic 

update) very complicated. 

Although these results of the software architecture 

research have been around for a number of years, they 

have not been sufficiently adopted by the major com-

ponent based systems (e.g., EJB, CCM, Fractal), which 

still rely only on remote method invocation and op-

tionally, also on message passing (e.g., CCM). From 

this point of view, SOFA has been an innovative com-

ponent system. However, still the support for multiple 

communication styles is unbalanced in SOFA and not 

well integrated with other SOFA abstractions. 

3. SOFA 2.0 

In this section, we provide a detailed description of 

the SOFA 2.0 component system and its component 

model. This new component system is based on our 

experience with SOFA. In SOFA 2.0, we introduce the 

new concepts which we felt were missing in SOFA 

(e.g., the dynamic reconfiguration, explicit controller) 

and we have also improved several concepts already 

existing in the original SOFA (e.g., multiple communi-

cation styles, deployment). 

On the other hand, the main concepts and general 

design of the SOFA system remained the same. The 

first-class entities are still components and connectors; 

and SOFA 2.0 still employs a hierarchical component 

model. 

In the original SOFA system, the semantics of key 

abstractions was defined together with the ADL lan-

guage specification. In the SOFA 2.0 system, however, 

we use a meta-model based definition. More specifi-



cally, we use the MOF technology [20] for designing 

the component model (a meta-model in the terms of 

MOF). Such approach has many advantages – auto-

mated generation of a repository with standardized 

interface, standardized XML-based interchange for-

mat, support for automated generation of models’ edi-

tors, etc. (for details please refer to [12]). This meta-

model directly serves for component’s specification 

(i.e., it is on the same level as ADL). The specification 

is then used at development time for generating code 

skeletons for primitive components, at the deployment 

time to prepare a deployment plan, and at execution 

time to actually set up an application. 

As an implementation language for generated code 

fragments and implementation of primitive compo-

nents, we use Java since it provides a rich set of ad-

vanced features (e.g., easy dynamic class-loading, in-

trospection, etc.). However, the meta-model and SOFA 

2.0 abstractions are programming language 

independent. 

3.1. SOFA 2.0 component model 

In this section, we describe the meta-model of 

SOFA 2.0 components. Throughout the text, the terms 

in italic are elements of the meta-model (its complete 

diagram is in Appendix A). 

3.1.1. Common elements. There are several com-

mon elements (NamedEntity, VersionedEntity, and 

Version) used thorough the whole meta-model. We 

start the overview of the meta-model by a short de-

scription of these elements. 

The NamedEntity class
1

 is used as an ancestor of all 

elements having a name (the name attribute). 

VersionedEntity serves as a base-class for all entities, 

which may exist in several versions distinguished by a 

version number (via the class Version). Due to space 

constraints, we do not elaborate in this paper on the 

actual versioning scheme used in SOFA 2.0 and leave 

the Version class unspecified (for more details on ver-

sioning in SOFA please refer to [13]).  

3.1.2. Component frame. The core element of the 

component frame abstraction is the Frame class, which 

defines the black-box view of a component. The pro-

vided and required interfaces of the frame are defined 

via Frame’s associations with the Interface class. This 

class defines the name of an interface (by inheriting 

from NamedEntity), the type of the interface (by refer-

                                                           

1

 NamedEntity (like all other element of the meta-model) is a meta-

class and as such it should be marked with meta- prefix. However, 

for the sake of better readability we omit this prefix in the text. 

ring to InterfaceType). The InterfaceType class is a 

separately defined element (i.e., it exists in a model by 

its own) defining the type of the interface by the means 

of signature, which is a reference to an interface defi-

nition in an underlying language (Java in our case). 

Moreover, it inherits from VersionedEntity to allow 

versioning of interfaces. The class Interface contains 

binding-oriented attributes connectionType, and 

isCollection. The connectionType attribute can be 

either normal or utility – it determines whether an in-

terface can be used in the utility reconfiguration pat-

tern (Sect. 3.2.1). The isCollection attribute captures 

the cardinality of an interface – either the interface can 

participate in just a single binding or in a number of 

bindings (cardinality multiple). Interface further 

defines communicationStyle and communication-

Features (represented by the Feature class). A com-

munication style (see Sect. 2.3) denotes the 

communication paradigm (e.g., method invocation, 

streaming, etc.) that is expected by the associated 

component. Communication features then allow fur-

ther refining of the communication style by specifying 

non- and extra-functional properties (e.g., that sensi-

tive data are transmitted, etc.). The communication 

style and communication features are used at deploy-

ment time as a source of information for the connector 

generator (Sect. 3.2.3). Finally, an interface can be 

annotated by sub-classes of Annotation – particularly 

by the Factory annotation, meaning that the interface is 

a factory dynamically creating new components (Sect. 

3.2.1). 

The remaining elements associated with the Frame 

class are Annotation and Property. Through 

Annotation – particularly the TopLevel annotation, a 

frame can be marked as the top-level frame in the ap-

plication (representing the whole application). 

Property allows to define the configuration properties 

of a component, which can be set up at deployment 

time. 

3.1.3. Component architecture. The frame of a 

component is implemented by an Architecture, which 

represents a gray-box view of the component. A single 

frame can be implemented by several architectures, 

and also a single architecture can implement several 

frames. It is similar to object-oriented programming, 

where a single class can implement several interfaces. 

Thus the Architecture class features the 

subcomponent association with Subcomponent-

Instance. If the set of subcomponents is empty, then 

the architecture refers to a primitive component (di-

rectly implemented in a programming language). In the 

opposite case, each SubcomponentInstance refers ei-

ther to the Frame or to another Architecture (in the 



meta-model, this fact is emphasized by the comment 

with the xor label). By referring to another architec-

ture, complex architectures can be built, specifying 

multiple levels of architecture nesting (as opposed to 

the original SOFA). 

Connections among subcomponents are repre-

sented by the Binding class, or, more specifically, by 

one of its subclass – Delegation, Subsumption, and 

Connector. 

The first two classes allow “forwarding” of com-

ponent interfaces to subcomponents. Delegation con-

nects a provided interface of the component to one of 

its subcomponent's provided interface and Subsump-

tion connects a subcomponent's required interface to a 

required interface of the component. The last class – 

Connector – represents a connection between two or 

more subcomponents. In all three cases, a particular 

connection is described via the appropriate combina-

tion of endpoints – the ComponentInterfaceEndpoint, 

which is a plain connection end pointing to the com-

ponent interface and SubcomponentInterfaceEndpoint, 

which is a connection end pointing to the subcompo-

nent interface. The important aspect of this meta-model 

is that it allows plain connections not only between the 

provided and required interfaces but also provided-to-

provided and required-to-required connections. This 

feature helps smoothly integrate of multiple communi-

cation styles. 

The remaining characteristics of Architecture are 

the association with the Properties class, introduced to 

describe component properties at the architecture level, 

and the association with the MappedProperty class. 

This association makes subcomponents’ properties 

visible also as the properties of the parent component. 

3.2. Runtime structure 

3.2.1. Dynamic reconfiguration of components. 

By dynamic reconfiguration we mean a run time modi-

fication of an application’s architecture. A special case 

of dynamic reconfiguration is dynamic update of a 

component, i.e., replacing a particular component by 

another one having compatible interfaces. Dynamic 

update is easy to handle, because all the changes are 

local to the updated component, being thus transparent 

to the rest of the application. A dynamic update is a 

“real” dynamic reconfiguration because the new com-

ponent can have a completely different internal struc-

ture. A general dynamic reconfiguration is an arbitrary 

modification of an application architecture though. 

To prevent an uncontrolled modification of an ar-

chitecture (the evolution gap problem – Sect. 2.1), in 

SOFA 2.0, we only permit those dynamic reconfigura-

tions done in accordance to a predefined 

reconfiguration pattern. Currently, we allow the fol-

lowing three reconfiguration patterns: (i) nested fac-

tory, (ii) component removal, and (iii) utility interface. 

All these patterns and reasons for choosing them are in 

detail described in [11]. 

The most important consequence of introducing the 

utility interface concept is that it has brought some 

features of SOA systems into component-based mod-

els. Such feature integration allows taking advantages 

of both these methodologies (e.g., encapsulation and 

hierarchical components of component models and 

simple dynamic reconfiguration inherent to service-

oriented architectures). 

3.2.2. Controllers. The control part of a component 

in SOFA 2.0 is modular and extensible. The general 

idea of this approach and its application to Fractal 

component model is described in [17]. The control part 

of a component is in our approach modeled as com-

posed of microcomponents. The microcomponent 

model is a very minimalist one – it is flat (i.e., no 

nested microcomponents) featuring no connectors and 

no distribution. Additionally, to avoid recursion, a mi-

crocomponent does not have any extensible or struc-

tured control part. In principle, a microcomponent is 

just a class implementing a specified interface. 

On the top of the microcomponent model we define 

aspects as consistent extensions of the control part. An 

aspect comprises a definition of microcomponents and 

of microcomponent instantiation patterns. By applying 

a number of aspects, a control part with the desired 

functionality is obtained. The aspects to be applied are 

specified at deployment time. 

There is a core aspect in SOFA 2.0, which is pre-

sent in all controllers. This core aspect introduces the 

control interfaces of a lifecycle controller 

(starting/stopping/ updating a component) and a 

binding controller (adding/removing connections 

among components), and provides basic functionality 

of these controllers.  

3.2.3. Connectors. In SOFA 2.0 we distinguish two 

types of connectors – design and runtime. Design con-

nectors were used in the SOFA component model, 

where they take the form of hyperedges connecting 

several component interfaces. The specification of a 

design connector consists of the communication styles 

and communication-related features associated with 

each component interface involved in the communica-

tion. 

Runtime connectors are the code artifacts used at 

runtime to implement the design connectors. In our 

approach, we use a connector generator [5] to 



automatically (i.e., without human assistance) create 

runtime connectors from their design counterparts. The 

generation is performed at deployment time, just be-

fore the application is prepared to be launched. Since 

the generation is postponed to such a late stage, it 

benefits from the complete knowledge of the target 

deployment environment (i.e., capabilities of the host 

computers, capabilities of the network, etc.) so that an 

accordingly optimized connector code can be 

generated. 

3.2.4. Architecture of the runtime environment. 

A SOFA 2.0 application is executed in the distributed 

runtime environment called SOFAnode, which consists 

of a number of deployment docks. A deployment dock 

is a component container (i.e., Java virtual machine 

plus SOFA 2.0 runtime) hosted on a particular com-

puter and providing runtime functionality for executing 

components. An application can span several deploy-

ment docks within one SOFAnode. The assignment of 

components to particular deployment docks is done 

during deployment. A binding heading to an frame 

outside of a SOFAnode is possible via a utility inter-

face, which can be bound to an already running exter-

nal service or be exposed as a service (both via the 

SOA paradigm). A reference to the required service is 

supplied during deployment. 

The implementation of a component is formed by a 

number of Java classes realizing its functional part and 

the microcomponents of its control part (see 

Sect. 3.2.2). If the component is composite, its imple-

mentation is composed just of classes realizing micro-

components. 

Apart from the deployment docks, a SOFAnode 

contains also a repository, which holds components’ 

description (i.e., information about component frames, 

architectures, and interface types) and their imple-

mentations (i.e., the code of primitive and composite 

components and the generated code of connectors). 

Thus, the repository is used throughout the whole ap-

plication lifecycle as the central source of components’ 

descriptions as well as a code base. 

4. Evaluation and related work 

Evaluation: The paper presents the new version of 

the SOFA component system, called SOFA 2.0. This 

new version aims at removing several limitations of 

the original version of SOFA – mainly the lack of sup-

port of dynamic reconfigurations of an architecture, 

well-structured and extensible control part of a com-

ponent, and multiple communication styles among 

components. 

The newly designed dynamic reconfiguration strat-

egy is based on asking compliance with well defined 

reconfiguration patterns. These patterns also include 

the utility interface pattern, which brings into a com-

ponent-based system several features of SOA. In an 

extreme case, provided most of the “components” are 

external services, it allows almost general dynamic 

reconfiguration. The control part of a component is 

composed of microcomponents, which allows smooth 

and simple extensibility of the control functionality of 

the component. The support for multiple communica-

tion styles is available not only at design time but also 

at runtime. All the proposed enhancements are based 

on our experience with non-trivial component applica-

tions [8] developed for the SOFA and Fractal compo-

nent systems. 

In our view, an important step towards evaluating 

component systems has been taken by Lau et al. [14]. 

They define a taxonomy of component models using 

the criteria of component composition at different 

stages of component lifecycle (design and deployment 

in particular). This taxonomy is used to classify a 

number of existing component systems.  The original 

version of SOFA has been classified as belonging to 

the most advanced category (together with Koala and 

KobrA) mostly due its ability to (i) compose compo-

nents at design time, (ii) store composed components 

in a repository, and (iii) reuse the stored components 

(including composite ones) in further compositions. 

The only flaw ascribed to the original SOFA is its in-

ability of composition at deployment time. But in our 

view and also according to [19], no composition 

should happen at deployment time (only assigning 

components to concrete nodes, allocating resources, 

etc.). The “deployment time” phase described in [14] 

in fact corresponds to runtime phase, during which we 

address the composition by using the patterns for dy-

namic reconfiguration. Thus, in this view, SOFA 2.0 

meets all the criteria imposed by [14]. 

Related work: Below is an overview of component 

systems and models, which are contemporarily used 

and/or developed. We describe each of them together 

with its advantages and drawbacks. At the end of this 

survey, we also briefly focus on the area of SOA sys-

tems and their relation to component models. 

The CORBA Component Model (CCM) [18] and 

Enterprise Java Beans (EJB) [9] are representatives of 

the industrial component systems employing flat com-

ponent model. CCM components’ interfaces are di-

vided into provided and required ones; in addition, 

interfaces for synchronous and asynchronous invoca-

tions are distinguished. Components are defined in 

IDL (Interface Description Language), but IDL does 

not provide any support for describing component 



composition/architecture. EJB components are defined 

directly in Java. They do not have explicitly specified 

required interfaces. Every EJB component type has a 

home interface, through which new components can be 

created. A similar concept in CCM is called factory 

interface. Both these interfaces can be seen as control-

ler interfaces. In addition, CCM components can have 

attributes, which are named values exposed via getter 

and setter methods and primarily intended for compo-

nent parameterization. These attributes can be seen as 

determining alternatives of the control functionality of 

the component. In both systems, these control inter-

faces are specified firmly, not being extensible in any 

way. 

Fractal [4] uses also a component model with hier-

archically nested components. In Fractal, each compo-

nent can have multiple control interfaces. The number 

and types of the control interfaces depend on the con-

figuration of a run-time environment. Each component 

is divided into two parts – control part and content. 

The content is composed of other subcomponents, or, 

in the case of a primitive component, it is directly im-

plemented. The control part contains implementation 

of control interfaces and other elements implementing 

non-functional features. 

A rather different approach to component systems 

is taken by ArchJava [1] and Java/A [2]. They are both 

Java extensions introducing concepts of components, 

bindings, and architectures at the language level. Both 

of them restrict the dynamic reconfigurations to an 

extent – ArchJava by forcing the developer to enumer-

ate the “allowed” connections, and Java/A by the 

means of “architecture templates”. The common moti-

vation of ArchJava and Java/A is to address to the 

problem of architecture erosion (i.e., the decisions 

taken during development are reflected only in the 

code and not propagated back to the architecture). 

However, this problem cannot occur in SOFA 2.0 as a 

component bears its identity by referring to its archi-

tecture through the whole development lifecycle (from 

design to runtime). Thus, an attempt to instantiate a 

component, which code does not conform to its archi-

tecture, results in a failure. 

The key representatives of design-oriented compo-

nent models are Acme [10], Darwin [15] and Wright 

[3]. All of them provide an ADL language for model-

ing and analyzing component architectures.  

Acme is a generic architecture description language 

developed at Carnegie Mellon University. It aims at 

serving as a common representation of software archi-

tectures. It permits integration of diverse collections of 

independently developed architectural analysis tools. 

Acme is supports four distinct aspects of architecture - 

structure, properties, design constraints, and types and 

styles. From the structural point of view, architectures 

in Acme can be nested and connectors are regarded as 

first-class entities. The properties provide a way of 

associating auxiliary information defining the run-time 

semantics of a system, interaction protocols, schedul-

ing constraints, resource consumption, etc. The design 

constraints determine how an architectural design is 

permitted to evolve at runtime. To specify the con-

straints, a language based on first order predicate logic 

is used. Eventually, the types and styles aspect provide 

means to package the above mentioned specifications 

into families of systems (e.g., pipe and filter family). 

Darwin uses a component model with hierarchi-

cally nested components, with provided and required 

interfaces. Connections among components are plain 

bindings; no connectors are considered. Darwin allows 

dynamic reconfiguration via lazy and direct dynamic 

instantiation of components. As to the lazy dynamic 

instantiation, a component with a provided interface is 

not instantiated until the first usage of such an inter-

face. Direct dynamic instantiation allows defining ar-

chitectures that dynamically evolve in an arbitrary way 

but new connections are not explicitly captured on the 

architecture level. 

Wright also uses a component model with nested 

components. A component specification is composed 

of two parts – interface and computation; interface 

further consists of ports (a port is an interface as un-

derstood in other component models). Ports define 

separate interactions in which the component will par-

ticipate and computation, defined in a CSP-like nota-

tion, defines the behavior of the component. Intercon-

nections among component interfaces are made 

through connectors. A connector is formed of a glue 

and roles. The roles are the endings of the connector 

that are directly tied to component interfaces; the glue 

describes the behavior of the connector as sequences 

of events and its roles together. Like computation, glue 

is also described in a CSP-like notation. 

Though powerful in design, none of Acme, 

Darwin, or Wright specifies any runtime environment 

for component execution. 

Software services [26] and SOA are concepts very 

similar to components and CBD. Software services are 

specified as business interface descriptions (there are 

no control interfaces). Moreover, the distinguishing of 

multiple communication styles is not an issue, since 

the services are supposed to be accessed via messag-

ing. Also, for SOA systems, dynamic reconfiguration 

is not an issue either because an application composed 

of services does not employ any rigid architecture and 

the composition of services (the service interplay) is 

rather specified per request; the specification is typi-



cally based on approaches like coordination languages 

[27] and routing of messages [7]. 

5. Conclusion 

In this paper, we have shown the limitations of 

contemporary component-based systems and have pre-

sented a new version of the SOFA component system 

– SOFA 2.0 – that aims at targeting all these limita-

tions. The artculation of the limitations is based on our 

experience with building large components applica-

tions. Currently, we are in the process of implementing 

SOFA 2.0; we have already specified all the necessary 

meta-models and are implementing the SOFA 2.0 run-

time. A working implementation is expected within 

several months. 
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