
SOFA 2.0: Balancing Advanced Features in a Hierarchical

Component Model

Tomáš Bureš
2,3

, Petr Hnětynka
1,2

, František Plášil
2,3

1

Performance Engineering Lab
2

Department of SW Engineering
3

Academy of Sciences

 School of Computer Science Faculty of Mathematics Institute of Computer Science

 and Informatics and Physics Czech Republic

 University College Dublin Charles University in Prague

 Ireland Czech Republic

{bures, hnetynka, plasil}@nenya.ms.mff.cuni.cz

Abstract

Component-based software engineering is a

powerful paradigm for building large applications.

However, our experience with building application of

components is that the existing advanced component

models (such as those offering component nesting,

behavior specification and checking, dynamic

reconfiguration to some extent, etc.) are subject to a

lot of limitations and issues which prevent them from

being accepted more widely (by industry in particular).

We claim that these issues are specifically related to

(a) the lack of support for dynamic reconfigurations of

hierarchical architectures, (b) poor support for

modeling and extendibility of the control part of a

component, and (c) the lack of support for different

communication styles applied in inter-component

communication. In this paper, we show how these

problems can be addressed and present an advanced

component system SOFA 2.0 as a proof of the concept.

This system is based on its predecessor SOFA, but it

incorporates a number of enhancements and

improvements.

1. Introduction

Over the past few years, the component-based de-

velopment (CBD) [25] has been recognized as a viable

way of building software systems. Although there are

many different views on what a component is and what

its features are, common consensus regards a compo-

nent as a black-box entity with well defined interfaces

and behavior, and emphasizes, as one of the key fea-

tures, its reusability in different contexts without any

need of knowing or modifying component’s internals.

From a design view, components – especially hierar-

chical ones – can be viewed as gray-box/glass-box

entities with the internal structure visible as a set of

communicating subcomponents.

The set of rules defining components’ creation,

composition, life-cycle, and other features are usually

referred to as a component model. The reification of a

component model in a particular implementation (and

runtime environment) is called component sys-

tem/platform. As there is no general agreement on de-

tailed features of components, we assume the concept

of component is to be always interpreted only within a

particular component model.

The idea of component-based development has al-

ready taken shape in a number of component systems –

both industrial and academic. The industrial systems

(represented mainly by EJB [9] and CCM [18]) are

oriented on providing a stable and mature runtime,

even at the cost of sacrificing the option of building

component hierarchies and other advanced features

(such as multiple communication styles, behavior de-

scription, etc.). On the other hand, the academic com-

ponent models provide a rich set of features, especially

allowing for powerful design with the help of hierar-

chical architectures, behavior specification, different

communication styles, etc. Their main flaw typically

lies in the insufficient runtime support – many of the

academic systems are only design-oriented, without

any sort of runtime environment [3,15].

In our view, the reason for such a big gap between

the industrial models and academic component models

lies in the fact that it is very difficult to properly bal-

ance the semantics of advanced features, so that they

can be well grasped at design time, and correctly and

flawlessly employed at runtime.

Newer than CBD, but quickly spreading are

service-oriented architectures (SOA). SOA-based sys-

tems are already commonly used in industry (e.g.,

WebServices [26]). In our view, the reason for the

success of SOA lies in the fact that SOA in a sense lies

halfway between the simple flat industrial component

models and the hierarchical and complex academic

component models. A service in SOA has also well

defined interfaces and a new service can be built by

reusing some of the existing services. However, SOA

lacks a first-class concept of nested service. New ser-

vices are formed by specifying the interplay of services

being reused, without any hierarchical nesting (as op-

posed to CBD). Since there is no strong concept of

encapsulation (typically achieved by nesting), it is very

difficult to deploy and reuse a service in different

contexts.

1.1. Goals and structure of the paper

In this paper, we use our experience with designing

and implementing the SOFA component system

[21,24] and also our experience with building compo-

nent applications for the SOFA and Fractal [4] compo-

nent systems [8].

The goals of the paper are twofold: First, we ana-

lyze strong and weak points of component systems

based on a hierarchical component model, and after-

wards, we describe a new component system (SOFA

2.0) featuring a hierarchical component model and

many other novel advanced features based on the les-

sons we learned with writing non-trivial applications

for SOFA and Fractal. SOFA 2.0 aims at balancing

these features and integrating them to form a coherent

model, which can be also consistently reified at run-

time.

The structure of the paper is as follows. On the ba-

sis of the SOFA component system, Section 2 analyzes

the main limitations of the contemporary component-

based systems with a hierarchical component model

and Section 3 presents the SOFA 2.0 design and imple-

mentation. Section 4 contains evaluation and related

work, while Section 5 concludes the paper.

2. Issues of hierarchical components

SOFA is a typical academic component based sys-

tem. It uses a hierarchical component model with com-

ponents being either primitive or composite. A com-

posite component is built of other components, while a

primitive one contains no subcomponents. A compo-

nent is described by its frame and architecture. Frame

is a black-box view of a component. It defines the

component’s provided and required interfaces. Archi-

tecture is a gray-box view of a component; it imple-

ments the component’s frame by specifying the sub-

components and their interconnections on the first

level of nesting. Components are interconnected via

bindings among interfaces. All bindings are furnished

via connectors [6], which are first class entities (like

components). Behavior of SOFA components can be

captured formally via behavior protocols [22].

Runtime structure of a component is composed of a

control part, which consists of the component man-

ager, and a functional part, which in the case of a

primitive component consists of code of the compo-

nent and, in the case of a composite component, of

other subcomponents.

Development lifecycle of a SOFA component is

quite similar to other component systems. First, an

ADL specification has to be written. The specification

is then used to generate skeletons of the component

implementation. The developer implements the primi-

tive components and inserts them into a repository. In

order to launch a component-based application, it is

necessary to prepare a deployment plan, where com-

ponents are assigned to particular host computers and

resources are allocated. Finally, according to this plan,

the application is deployed and launched.

Although SOFA has been a very innovative and

promising platform for building large software sys-

tems, its usage revealed several limitations and obsta-

cles. Interestingly, these issues are not SOFA-specific,

since other component systems suffer of similar prob-

lems, namely (1) a limited support for dynamic recon-

figurations, (2) no structure of the control part of a

component and (3) unbalanced support for multiple

communication styles. In the rest of this section, we

describe each of them in more detail.

2.1. Dynamic reconfigurations

By dynamic reconfiguration we mean a runtime

modification of the application architecture, i.e., add-

ing and removing components at runtime, passing ref-

erences to components, etc. The problem of dynamic

reconfigurations lies in the fact that it is very difficult

to describe the dynamicity of an application at design

time. A naive solution to the problem by forbidding

dynamic reconfiguration is not feasible, since dynamic

changes of an architecture are inherent to many appli-

cations [16]. The other extreme – neglecting dynamic

reconfigurations at design time and allowing for arbi-

trary ones at runtime – is not appropriate either. It

leads to an uncontrolled modification of the architec-

ture (evolution gap [11]), which is inherently error-

prone. Thus, it is a necessity to reflect runtime recon-

figuration at the design time. Also, based on our ex-

perience with non-trivial case studies, we regard this

issue to be one of the primary hindrances of the wider

usage of hierarchical component models.

2.2. Control part of components

In addition to business interfaces (i.e., the

“classical” provided and required interfaces), compo-

nents usually feature control interfaces. From archi-

tectural view, these are the provided interfaces, which

correspond to non-functional features of components,

i.e., life-cycle management, reconfiguration, intro-

spection, etc – controllers in general. Even though the

functionality implemented by controllers does not have

to be explicitly accessible via public component inter-

faces, it is typically present in all component systems.

Since controllers provide access to non-functional

aspects of components, they should not be freely ac-

cessible from the code of components (i.e., the appli-

cation’s business logic) – controllers are intended to be

used by runtime environment and administration and

deployment tools. However, our experience with non-

trivial component applications indicates that the code

implementing component’s business logic should be

aware of the fact that it is a part of the component and

it should have means to access some limited and spe-

cifically tailored functionality of the component’s

controllers (e.g., accessing component properties, sig-

nalizing a quiescent state during dynamic update).

The existing component models having support for

controllers (such as Fractal) do not further elaborate on

structuring and extending the controllers. However, we

claim (and our experience confirms so) that explicit

modeling of the control part and a simple extension

mechanism may be of a great asset, especially when

trying to extend the core functionality of the runtime

environment [17].

2.3. Multiple communication styles

Communication style is a paradigm which compo-

nents use for communication. The idea of different

communication styles was coined in [23]. There, every

architectural style gives a specific semantics to the

concepts of component and connector (e.g., in pipe-

and-filter architectural pattern, we interpret filter proc-

esses as components and Unix-like pipes as connec-

tors). In order to support different architectural styles

in component systems, we have to generalize the con-

cept of component binding and explicitly capture it by

a first class entity – connector. The communication

style then defines the functionality of each connector.

In SOFA, we have distinguished four communication

styles – method invocation, message passing, stream-

ing, and distributed shared memory [6].

The advantage of supporting different architectural

styles lies not only in easier and more comprehensible

design, but it even manifests itself at runtime: From the

knowledge of the communication style, the inter-

component communication can be optimized by

choosing an appropriate middleware (e.g., CORBA for

remote method invocation, TCP/IP for bi-directional

streaming, etc.) for each binding.

Communication style strongly influences the way

components can be bound together, allowing even for

connecting a required interface to another required

interface (e.g., in the case of TCP/IP streaming). Thus,

without an explicit support for communication styles,

it is very difficult to model different architectural

styles and benefit at runtime from their knowledge at

design time. When such support is not present, compo-

nents with middleware functionality have to be typi-

cally employed (e.g., a component implementing a

TCP/IP socket), which however spoils the design by

mixing business and communication logic and makes

other features (e.g., behavior checking or dynamic

update) very complicated.

Although these results of the software architecture

research have been around for a number of years, they

have not been sufficiently adopted by the major com-

ponent based systems (e.g., EJB, CCM, Fractal), which

still rely only on remote method invocation and op-

tionally, also on message passing (e.g., CCM). From

this point of view, SOFA has been an innovative com-

ponent system. However, still the support for multiple

communication styles is unbalanced in SOFA and not

well integrated with other SOFA abstractions.

3. SOFA 2.0

In this section, we provide a detailed description of

the SOFA 2.0 component system and its component

model. This new component system is based on our

experience with SOFA. In SOFA 2.0, we introduce the

new concepts which we felt were missing in SOFA

(e.g., the dynamic reconfiguration, explicit controller)

and we have also improved several concepts already

existing in the original SOFA (e.g., multiple communi-

cation styles, deployment).

On the other hand, the main concepts and general

design of the SOFA system remained the same. The

first-class entities are still components and connectors;

and SOFA 2.0 still employs a hierarchical component

model.

In the original SOFA system, the semantics of key

abstractions was defined together with the ADL lan-

guage specification. In the SOFA 2.0 system, however,

we use a meta-model based definition. More specifi-

cally, we use the MOF technology [20] for designing

the component model (a meta-model in the terms of

MOF). Such approach has many advantages – auto-

mated generation of a repository with standardized

interface, standardized XML-based interchange for-

mat, support for automated generation of models’ edi-

tors, etc. (for details please refer to [12]). This meta-

model directly serves for component’s specification

(i.e., it is on the same level as ADL). The specification

is then used at development time for generating code

skeletons for primitive components, at the deployment

time to prepare a deployment plan, and at execution

time to actually set up an application.

As an implementation language for generated code

fragments and implementation of primitive compo-

nents, we use Java since it provides a rich set of ad-

vanced features (e.g., easy dynamic class-loading, in-

trospection, etc.). However, the meta-model and SOFA

2.0 abstractions are programming language

independent.

3.1. SOFA 2.0 component model

In this section, we describe the meta-model of

SOFA 2.0 components. Throughout the text, the terms

in italic are elements of the meta-model (its complete

diagram is in Appendix A).

3.1.1. Common elements. There are several com-

mon elements (NamedEntity, VersionedEntity, and

Version) used thorough the whole meta-model. We

start the overview of the meta-model by a short de-

scription of these elements.

The NamedEntity class
1

 is used as an ancestor of all

elements having a name (the name attribute).

VersionedEntity serves as a base-class for all entities,

which may exist in several versions distinguished by a

version number (via the class Version). Due to space

constraints, we do not elaborate in this paper on the

actual versioning scheme used in SOFA 2.0 and leave

the Version class unspecified (for more details on ver-

sioning in SOFA please refer to [13]).

3.1.2. Component frame. The core element of the

component frame abstraction is the Frame class, which

defines the black-box view of a component. The pro-

vided and required interfaces of the frame are defined

via Frame’s associations with the Interface class. This

class defines the name of an interface (by inheriting

from NamedEntity), the type of the interface (by refer-

1

 NamedEntity (like all other element of the meta-model) is a meta-

class and as such it should be marked with meta- prefix. However,

for the sake of better readability we omit this prefix in the text.

ring to InterfaceType). The InterfaceType class is a

separately defined element (i.e., it exists in a model by

its own) defining the type of the interface by the means

of signature, which is a reference to an interface defi-

nition in an underlying language (Java in our case).

Moreover, it inherits from VersionedEntity to allow

versioning of interfaces. The class Interface contains

binding-oriented attributes connectionType, and

isCollection. The connectionType attribute can be

either normal or utility – it determines whether an in-

terface can be used in the utility reconfiguration pat-

tern (Sect. 3.2.1). The isCollection attribute captures

the cardinality of an interface – either the interface can

participate in just a single binding or in a number of

bindings (cardinality multiple). Interface further

defines communicationStyle and communication-

Features (represented by the Feature class). A com-

munication style (see Sect. 2.3) denotes the

communication paradigm (e.g., method invocation,

streaming, etc.) that is expected by the associated

component. Communication features then allow fur-

ther refining of the communication style by specifying

non- and extra-functional properties (e.g., that sensi-

tive data are transmitted, etc.). The communication

style and communication features are used at deploy-

ment time as a source of information for the connector

generator (Sect. 3.2.3). Finally, an interface can be

annotated by sub-classes of Annotation – particularly

by the Factory annotation, meaning that the interface is

a factory dynamically creating new components (Sect.

3.2.1).

The remaining elements associated with the Frame

class are Annotation and Property. Through

Annotation – particularly the TopLevel annotation, a

frame can be marked as the top-level frame in the ap-

plication (representing the whole application).

Property allows to define the configuration properties

of a component, which can be set up at deployment

time.

3.1.3. Component architecture. The frame of a

component is implemented by an Architecture, which

represents a gray-box view of the component. A single

frame can be implemented by several architectures,

and also a single architecture can implement several

frames. It is similar to object-oriented programming,

where a single class can implement several interfaces.

Thus the Architecture class features the

subcomponent association with Subcomponent-

Instance. If the set of subcomponents is empty, then

the architecture refers to a primitive component (di-

rectly implemented in a programming language). In the

opposite case, each SubcomponentInstance refers ei-

ther to the Frame or to another Architecture (in the

meta-model, this fact is emphasized by the comment

with the xor label). By referring to another architec-

ture, complex architectures can be built, specifying

multiple levels of architecture nesting (as opposed to

the original SOFA).

Connections among subcomponents are repre-

sented by the Binding class, or, more specifically, by

one of its subclass – Delegation, Subsumption, and

Connector.

The first two classes allow “forwarding” of com-

ponent interfaces to subcomponents. Delegation con-

nects a provided interface of the component to one of

its subcomponent's provided interface and Subsump-

tion connects a subcomponent's required interface to a

required interface of the component. The last class –

Connector – represents a connection between two or

more subcomponents. In all three cases, a particular

connection is described via the appropriate combina-

tion of endpoints – the ComponentInterfaceEndpoint,

which is a plain connection end pointing to the com-

ponent interface and SubcomponentInterfaceEndpoint,

which is a connection end pointing to the subcompo-

nent interface. The important aspect of this meta-model

is that it allows plain connections not only between the

provided and required interfaces but also provided-to-

provided and required-to-required connections. This

feature helps smoothly integrate of multiple communi-

cation styles.

The remaining characteristics of Architecture are

the association with the Properties class, introduced to

describe component properties at the architecture level,

and the association with the MappedProperty class.

This association makes subcomponents’ properties

visible also as the properties of the parent component.

3.2. Runtime structure

3.2.1. Dynamic reconfiguration of components.

By dynamic reconfiguration we mean a run time modi-

fication of an application’s architecture. A special case

of dynamic reconfiguration is dynamic update of a

component, i.e., replacing a particular component by

another one having compatible interfaces. Dynamic

update is easy to handle, because all the changes are

local to the updated component, being thus transparent

to the rest of the application. A dynamic update is a

“real” dynamic reconfiguration because the new com-

ponent can have a completely different internal struc-

ture. A general dynamic reconfiguration is an arbitrary

modification of an application architecture though.

To prevent an uncontrolled modification of an ar-

chitecture (the evolution gap problem – Sect. 2.1), in

SOFA 2.0, we only permit those dynamic reconfigura-

tions done in accordance to a predefined

reconfiguration pattern. Currently, we allow the fol-

lowing three reconfiguration patterns: (i) nested fac-

tory, (ii) component removal, and (iii) utility interface.

All these patterns and reasons for choosing them are in

detail described in [11].

The most important consequence of introducing the

utility interface concept is that it has brought some

features of SOA systems into component-based mod-

els. Such feature integration allows taking advantages

of both these methodologies (e.g., encapsulation and

hierarchical components of component models and

simple dynamic reconfiguration inherent to service-

oriented architectures).

3.2.2. Controllers. The control part of a component

in SOFA 2.0 is modular and extensible. The general

idea of this approach and its application to Fractal

component model is described in [17]. The control part

of a component is in our approach modeled as com-

posed of microcomponents. The microcomponent

model is a very minimalist one – it is flat (i.e., no

nested microcomponents) featuring no connectors and

no distribution. Additionally, to avoid recursion, a mi-

crocomponent does not have any extensible or struc-

tured control part. In principle, a microcomponent is

just a class implementing a specified interface.

On the top of the microcomponent model we define

aspects as consistent extensions of the control part. An

aspect comprises a definition of microcomponents and

of microcomponent instantiation patterns. By applying

a number of aspects, a control part with the desired

functionality is obtained. The aspects to be applied are

specified at deployment time.

There is a core aspect in SOFA 2.0, which is pre-

sent in all controllers. This core aspect introduces the

control interfaces of a lifecycle controller

(starting/stopping/ updating a component) and a

binding controller (adding/removing connections

among components), and provides basic functionality

of these controllers.

3.2.3. Connectors. In SOFA 2.0 we distinguish two

types of connectors – design and runtime. Design con-

nectors were used in the SOFA component model,

where they take the form of hyperedges connecting

several component interfaces. The specification of a

design connector consists of the communication styles

and communication-related features associated with

each component interface involved in the communica-

tion.

Runtime connectors are the code artifacts used at

runtime to implement the design connectors. In our

approach, we use a connector generator [5] to

automatically (i.e., without human assistance) create

runtime connectors from their design counterparts. The

generation is performed at deployment time, just be-

fore the application is prepared to be launched. Since

the generation is postponed to such a late stage, it

benefits from the complete knowledge of the target

deployment environment (i.e., capabilities of the host

computers, capabilities of the network, etc.) so that an

accordingly optimized connector code can be

generated.

3.2.4. Architecture of the runtime environment.

A SOFA 2.0 application is executed in the distributed

runtime environment called SOFAnode, which consists

of a number of deployment docks. A deployment dock

is a component container (i.e., Java virtual machine

plus SOFA 2.0 runtime) hosted on a particular com-

puter and providing runtime functionality for executing

components. An application can span several deploy-

ment docks within one SOFAnode. The assignment of

components to particular deployment docks is done

during deployment. A binding heading to an frame

outside of a SOFAnode is possible via a utility inter-

face, which can be bound to an already running exter-

nal service or be exposed as a service (both via the

SOA paradigm). A reference to the required service is

supplied during deployment.

The implementation of a component is formed by a

number of Java classes realizing its functional part and

the microcomponents of its control part (see

Sect. 3.2.2). If the component is composite, its imple-

mentation is composed just of classes realizing micro-

components.

Apart from the deployment docks, a SOFAnode

contains also a repository, which holds components’

description (i.e., information about component frames,

architectures, and interface types) and their imple-

mentations (i.e., the code of primitive and composite

components and the generated code of connectors).

Thus, the repository is used throughout the whole ap-

plication lifecycle as the central source of components’

descriptions as well as a code base.

4. Evaluation and related work

Evaluation: The paper presents the new version of

the SOFA component system, called SOFA 2.0. This

new version aims at removing several limitations of

the original version of SOFA – mainly the lack of sup-

port of dynamic reconfigurations of an architecture,

well-structured and extensible control part of a com-

ponent, and multiple communication styles among

components.

The newly designed dynamic reconfiguration strat-

egy is based on asking compliance with well defined

reconfiguration patterns. These patterns also include

the utility interface pattern, which brings into a com-

ponent-based system several features of SOA. In an

extreme case, provided most of the “components” are

external services, it allows almost general dynamic

reconfiguration. The control part of a component is

composed of microcomponents, which allows smooth

and simple extensibility of the control functionality of

the component. The support for multiple communica-

tion styles is available not only at design time but also

at runtime. All the proposed enhancements are based

on our experience with non-trivial component applica-

tions [8] developed for the SOFA and Fractal compo-

nent systems.

In our view, an important step towards evaluating

component systems has been taken by Lau et al. [14].

They define a taxonomy of component models using

the criteria of component composition at different

stages of component lifecycle (design and deployment

in particular). This taxonomy is used to classify a

number of existing component systems. The original

version of SOFA has been classified as belonging to

the most advanced category (together with Koala and

KobrA) mostly due its ability to (i) compose compo-

nents at design time, (ii) store composed components

in a repository, and (iii) reuse the stored components

(including composite ones) in further compositions.

The only flaw ascribed to the original SOFA is its in-

ability of composition at deployment time. But in our

view and also according to [19], no composition

should happen at deployment time (only assigning

components to concrete nodes, allocating resources,

etc.). The “deployment time” phase described in [14]

in fact corresponds to runtime phase, during which we

address the composition by using the patterns for dy-

namic reconfiguration. Thus, in this view, SOFA 2.0

meets all the criteria imposed by [14].

Related work: Below is an overview of component

systems and models, which are contemporarily used

and/or developed. We describe each of them together

with its advantages and drawbacks. At the end of this

survey, we also briefly focus on the area of SOA sys-

tems and their relation to component models.

The CORBA Component Model (CCM) [18] and

Enterprise Java Beans (EJB) [9] are representatives of

the industrial component systems employing flat com-

ponent model. CCM components’ interfaces are di-

vided into provided and required ones; in addition,

interfaces for synchronous and asynchronous invoca-

tions are distinguished. Components are defined in

IDL (Interface Description Language), but IDL does

not provide any support for describing component

composition/architecture. EJB components are defined

directly in Java. They do not have explicitly specified

required interfaces. Every EJB component type has a

home interface, through which new components can be

created. A similar concept in CCM is called factory

interface. Both these interfaces can be seen as control-

ler interfaces. In addition, CCM components can have

attributes, which are named values exposed via getter

and setter methods and primarily intended for compo-

nent parameterization. These attributes can be seen as

determining alternatives of the control functionality of

the component. In both systems, these control inter-

faces are specified firmly, not being extensible in any

way.

Fractal [4] uses also a component model with hier-

archically nested components. In Fractal, each compo-

nent can have multiple control interfaces. The number

and types of the control interfaces depend on the con-

figuration of a run-time environment. Each component

is divided into two parts – control part and content.

The content is composed of other subcomponents, or,

in the case of a primitive component, it is directly im-

plemented. The control part contains implementation

of control interfaces and other elements implementing

non-functional features.

A rather different approach to component systems

is taken by ArchJava [1] and Java/A [2]. They are both

Java extensions introducing concepts of components,

bindings, and architectures at the language level. Both

of them restrict the dynamic reconfigurations to an

extent – ArchJava by forcing the developer to enumer-

ate the “allowed” connections, and Java/A by the

means of “architecture templates”. The common moti-

vation of ArchJava and Java/A is to address to the

problem of architecture erosion (i.e., the decisions

taken during development are reflected only in the

code and not propagated back to the architecture).

However, this problem cannot occur in SOFA 2.0 as a

component bears its identity by referring to its archi-

tecture through the whole development lifecycle (from

design to runtime). Thus, an attempt to instantiate a

component, which code does not conform to its archi-

tecture, results in a failure.

The key representatives of design-oriented compo-

nent models are Acme [10], Darwin [15] and Wright

[3]. All of them provide an ADL language for model-

ing and analyzing component architectures.

Acme is a generic architecture description language

developed at Carnegie Mellon University. It aims at

serving as a common representation of software archi-

tectures. It permits integration of diverse collections of

independently developed architectural analysis tools.

Acme is supports four distinct aspects of architecture -

structure, properties, design constraints, and types and

styles. From the structural point of view, architectures

in Acme can be nested and connectors are regarded as

first-class entities. The properties provide a way of

associating auxiliary information defining the run-time

semantics of a system, interaction protocols, schedul-

ing constraints, resource consumption, etc. The design

constraints determine how an architectural design is

permitted to evolve at runtime. To specify the con-

straints, a language based on first order predicate logic

is used. Eventually, the types and styles aspect provide

means to package the above mentioned specifications

into families of systems (e.g., pipe and filter family).

Darwin uses a component model with hierarchi-

cally nested components, with provided and required

interfaces. Connections among components are plain

bindings; no connectors are considered. Darwin allows

dynamic reconfiguration via lazy and direct dynamic

instantiation of components. As to the lazy dynamic

instantiation, a component with a provided interface is

not instantiated until the first usage of such an inter-

face. Direct dynamic instantiation allows defining ar-

chitectures that dynamically evolve in an arbitrary way

but new connections are not explicitly captured on the

architecture level.

Wright also uses a component model with nested

components. A component specification is composed

of two parts – interface and computation; interface

further consists of ports (a port is an interface as un-

derstood in other component models). Ports define

separate interactions in which the component will par-

ticipate and computation, defined in a CSP-like nota-

tion, defines the behavior of the component. Intercon-

nections among component interfaces are made

through connectors. A connector is formed of a glue

and roles. The roles are the endings of the connector

that are directly tied to component interfaces; the glue

describes the behavior of the connector as sequences

of events and its roles together. Like computation, glue

is also described in a CSP-like notation.

Though powerful in design, none of Acme,

Darwin, or Wright specifies any runtime environment

for component execution.

Software services [26] and SOA are concepts very

similar to components and CBD. Software services are

specified as business interface descriptions (there are

no control interfaces). Moreover, the distinguishing of

multiple communication styles is not an issue, since

the services are supposed to be accessed via messag-

ing. Also, for SOA systems, dynamic reconfiguration

is not an issue either because an application composed

of services does not employ any rigid architecture and

the composition of services (the service interplay) is

rather specified per request; the specification is typi-

cally based on approaches like coordination languages

[27] and routing of messages [7].

5. Conclusion

In this paper, we have shown the limitations of

contemporary component-based systems and have pre-

sented a new version of the SOFA component system

– SOFA 2.0 – that aims at targeting all these limita-

tions. The artculation of the limitations is based on our

experience with building large components applica-

tions. Currently, we are in the process of implementing

SOFA 2.0; we have already specified all the necessary

meta-models and are implementing the SOFA 2.0 run-

time. A working implementation is expected within

several months.

Acknowledgements

The authors would like to thank Vladimír Mencl

and Lucia Kapová for valuable comments and Jan

Klesnil, Ondřej Kmoch, Tomáš Kohan, and Pavel

Kotrč for contributing to meta-model design. This

work was partially supported by the Grant Agency of

the Czech Republic project 201/06/0770. The support

of the Informatics Commercialisation initiative of

Enterprise Ireland is gratefully acknowledged.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava:

Connecting Software Architecture to Implementation,

Proc. of ICSE 2002, Orlando, USA, May 2002

2. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp,

A., Wirsing, M.: A Component Model for Architectural

Programming, Proc. of FACS'05, Macao, Oct 2005

3. Allen, R.: A Formal Approach to Software Architecture,

PhD thesis, School of Computer Science, Carnegie

Mellon University, 1997

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V.,

Stefani, J. B.: An Open Component Model and Its

Support in Java, Proc. of CBSE’04, Edinburgh, UK,

May 2004

5. Bureš, T.: Automated Synthesis of Connectors for

Heterogeneous Deployment, Tech. Rep. No. 2005/4,

Dep. of SW Engineering, Charles University, Prague,

Aug 2005

6. Bureš, T., Plášil, F.: Communication Style Driven

Connector Configurations, In Software Engineering

Research and Applications, LNCS3026, 2004

7. Chappell, D. A., Enterprise Service Bus, O'Reilly

Media, Jun 2004

8. Component Reliability Extensions for Fractal

Component Model,

http://kraken.cs.cas.cz/ft/public/public_index.phtml

9. Enterprise Java Beans specification, version 2.1, Sun

Microsystems, Nov 2003

10. Garlan, D., Monroe, R. T., Wile, D.: Acme:

Architectural Description of Component-Based

Systems, Foundations of Component-Based Systems,

Cambridge University Press, 2000

11. Hnětynka, P., Plášil, F.: Dynamic Reconfiguration and

Access to Services in Hierarchical Component Models,

Accepted for publication in Proc. of CBSE 2006,

Vasteras near Stockholm, Sweden, Jun 2006

12. Hnětynka, P., Píše, M.: Hand-written vs. MOF-based

Metadata Repositories: The SOFA Experience, Proc. of

ECBS 2004, Brno, Czech Republic, May 2004

13. Hnětynka, P., Plášil, F.: Distributed Versioning Model

for MOF, Proc. of WISICT’04, Cancun, Mexico, Jan

2004

14. Lau, K.-K., Wang, Z.: A Taxonomy of Software

Component Models, Proc. of EUROMICRO-SEAA’05,

Porto, Portugal, Sep 2005

15. Magee, J., Kramer, J.: Dynamic Structure in Software

Architectures, Proc. of FSE’4, San Francisco, USA, Oct

1996

16. Medvidovic, N.: ADLs and dynamic architecture

changes, Joint Proc. SIGSOFT’1996 Workshops, ACM

Press, New York, USA, Oct 1996

17. Mencl, V., Bureš, T.: Microcomponent-Based

Component Controllers: A Foundation for Component

Aspects, Proc. of APSEC 2005, Dec 2005

18. OMG: CORBA Components, v 3.0, OMG document

formal/02-06-65, Jun 2002

19. OMG: Deployment and Configuration of Component-

based Distributed Applications Specification, OMG

document ptc/ 05-01-07, Jan 2005

20. OMG: MOF 2.0 Core, OMG document ptc/06-01-01,

Jan 2006

21. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP:

Architecture for Component Trading and Dynamic

Updating, Proc. of ICCDS’98, Annapolis, USA, May

1998

22. Plášil, F., Višňovský, S.: Behavior Protocols for

Software Components, IEEE Transactions on Software

Engineering, vol. 28, no. 11, Nov 2002

23. Shaw, M., Garlan, D.: Software Architecture:

Perspectives on an Emerging Discipline, Prentice Hall,

1996

24. SOFA prototype, http://sofa.objectweb.org/

25. Szyperski, C.: Component Software: Beyond Object-

Oriented Programming, 2nd edition, Addison-Wesley,

Jan 2002

26. WebServices, http://www.w3.org/2002/ws/

27. Wells, G.: Coordination Languages: Back to the Future

with Linda, Proc. of WCAT’05, Glasgow, UK, Jul 2005

Appendix A

