
A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 388–417, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

15   CoCoME in SOFA* 

Tomáš Bureš1,2, Martin Děcký1, Petr Hnětynka1, Jan Kofroň1,2, Pavel Parízek1, 
František Plášil1,2, Tomáš Poch1, Ondřej Šerý1, and Petr Tůma1 

1 Department of Software Engineering 
Faculty of Mathematics and Physics, Charles University 

Malostranské náměstí 25, Prague 1, 11800, Czech Republic 
{tomas.bures,martin.decky,petr.hnetynka,jan.kofron, 

pavel.parizek,frantisek.plasil,tomas.poch, 
ondrej.sery,petr.tuma}@dsrg.mff.cuni.cz 

2 Institute of Computer Science, Academy of Sciences of the Czech Republic 
Pod Vodárenskou věží, Prague 8, 18000, Czech Republic  

{bures,kofron,plasil}@cs.cas.cz 

Abstract. This chapter presents our solution to the CoCoME assignment that is 
based on the SOFA 2.0 (SOFtware Appliances) hierarchical component model. 
The solution involves (i) modeling architecture in SOFA meta-model, (ii) speci-
fication of component behavior via extended behavior protocols, (iii) checking 
behavior compliance of components, (iv) verification of correspondence be-
tween selected component Java code and behavior specification, (v) deploy-
ment to SOFA run-time environment (using connectors that support RMI and 
JMS), and (vi) modeling of performance and resource usage via layered queue-
ing networks. We faced several issues during implementation of the CoCoME 
assignment in SOFA 2.0. Most notably, the architecture was modified in order 
to improve clarity of the design – in particular, the hierarchical bus was re-
placed by two separate buses and the Inventory component was restructured. 
Extended behavior protocols for all the components are based on the provided 
plain-English use cases, the UML sequence diagrams, and the reference Java 
implementation (the assignment does not include a complete UML behavior 
specification e.g. via activity diagrams and state charts). 

15.1   Introduction 

15.1.1   Goals and Scope of the Component Model 

SOFA 2.0 [9] is a component model employing hierarchically composed components. 
It is a direct successor of the SOFA component model [24], which has provided the 
following features: ADL-based design, behavior specification using behavior proto-
cols [25], automatically generated connectors supporting seamless and transparent 
distribution of applications, and distributed runtime environment with dynamic update 
of components. 
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From its predecessor, SOFA 2.0 has inherited the core component model, which is 
enhanced in the following way: (i) the component model is defined by means of its 
meta-model; (ii) it allows for dynamic reconfiguration of component architecture and 
for accessing components under the SOA concepts; (iii) via connectors, it supports 
not only plain method invocation, but in fact any communication style [8]; (iv) it 
clearly separates and makes extensible the control (extra-functional) part of compo-
nent implementations. Similar to its predecessor, SOFA 2.0 is not only a tool for 
modeling, but it provides a complete framework [28] supporting all the stages of an 
application lifecycle from development to execution. 

In SOFA 2.0, a component is primarily treated as a black-box with well-defined in-
terfaces and exists at design time, deployment time, and run time. Components are 
defined using their frame and architecture. A frame provides a black-box view of a 
component via defining component’s interfaces. An architecture implements at least 
one frame and defines internal structure of the component, i.e. subcomponents and 
their composition. Semantics of the composition is defined via Extended Behavior 
Protocols; SOFA 2.0 also supports divide and conquer via interface specification. 

The component specification is separated from the implementation and is defined 
using models (based on the SOFA 2.0 meta-model). Extra functional properties (EFP) 
are specified by separate annotations and resource model. 

Component behavior is specified using Extended Behavior Protocols (EPB). EBPs 
allow to model and verify the behavior compliance and LTL-X properties. The verifi-
cation tools can verify the component architecture independently from the implemen-
tation, and the relation of the model and implementation. 

Deployment-related features are specified separately from the architecture specifi-
cation in a deployment plan. 

15.1.2   Modeled Cutout of CoCoME 

We model (and verify) nearly all aspects of the CoCoME example; regarding EFPs, 
however, we do not model other properties than resource and performance related. 

To allow modeling of the example in SOFA 2.0, we have introduced minor changes 
to the original architecture. In particular, these include replacement of buses, introduc-
ing Enterprise server, and restructuring StoreServer. We verify behavior compliance of 
all components of the example and the results of performance prediction are compared 
with benchmarks of the reference implementation. For fully automatic behavior verifi-
cation, we use a tool chain consisting of EBP to Promela translator and the Spin model 
checker; for performance prediction we use the Carleton LQN solver. 

15.1.3   Benefit of the Modeling 

The biggest advantages of our approach are namely (i) behavior verification, (ii) per-
formance and resource usage performance prediction at design time, and (iii) the 
potential of checking whether a given use case is really implemented. 

On the other hand, our approach cannot treat behavior that cannot be modeled by a 
regular language (e.g. recursion). Together with the manual preparation of the re-
source usage model, this remains the weakest part of our approach for now. 
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Usage of SOFA 2.0 and the verification and prediction tools and approaches is 
quite easy; an average computer science student takes approximately five days to 
learn about SOFA 2.0 itself and another five days to write behavior specification of 
simple components. 

15.1.4   Effort and Lessons Learned 

We have spent approximately 10 person-months to model the CoCoME example (we 
treat nearly all its aspects). Besides the modeling itself, this includes also modifica-
tions of the prototype implementation and collection of performance data on the pro-
totype, required for comparison with the performance modeling results. 

Major lessons learned from the modeling effort include the number of details that 
need to be covered to model a project in its entirety, as opposed to modeling only 
selected aspects. Having the fully modeled CoCoME example at hand is also ex-
tremely useful for further research into what other properties can be modeled and 
checked. 

The chapter continues as follows. Section 2 provides an in-depth description of 
SOFA 2.0, as well as a brief comparison of SOFA 2.0 and other contemporary com-
ponent models. In Section 3, we present our modeling of the CoCoME example in 
SOFA 2.0 and Section 4 provides short note about used transformation. In Section 5, 
we analyze modeling results while Section 6 presents used tools and achieved results. 
Section 7 concludes the paper. 

15.2   Component Model 

15.2.1   Static View 

SOFA 2.0 uses a hierarchical component model with connectors, which are also first-
class entities like components. The component model is defined using a meta-model 
[22]. In comparison to an ADL-based component model definition (like in the previ-
ous SOFA version), or even just plain language description, such an approach has 
many advantages like support of MDD, the possibility of automated generation of 
meta-data repositories with a standard interface, a standard format for data exchange 
among repositories, support for automated generation of model editors, etc. As the 
particular technology for defining the meta-model and generating a meta-data reposi-
tory, we have been using EMF [10]. The meta-model is depicted in Appendix A; a 
brief description of main entities of the meta-model follows (a more complete de-
scription is available in [9]). 

The NamedEntity and VersionedEntity classes1 are reused multiple times in the 
meta-model. All other classes featuring a name inherit from NamedEntity. The Ver-
sionedEntity class further extends NamedEntity by adding a version (the versioning 
model used in SOFA is described in [9]). 

A black-box view of a component is defined by the Frame class (it inherits from 
the VersionedEntity). The provided, resp, required, interfaces of a frame are modeled 
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by the provideInterface, resp. requiredInterface, association with the Interface class, 
which is further associated with the InterfaceType class defining the real type of the 
interface. Also, Frame is associated with the Property class, which defines the name-
value properties used to parameterize components (these values are specified at the 
deployment time). 

A gray-box view of a component is defined by the Architecture class. The compo-
nent’s architecture implements at least one frame captured by the association between 
the Frame and Architecture classes (the option of multiple frames for an architecture 
allow for taking different views on the component behavior) and contains subcompo-
nents and connections among them. If the architecture is empty, then the component 
is primitive and is directly implemented. Architectures can also add other properties 
(again captured via the association with the Property class), and/or can expose  
subcomponents’ properties as their own (captured by the association with the 
MappedProperty class). 

Connections among subcomponents are realized via connectors. At the meta-model 
level, connectors are just links among components’ interfaces and they are captured 
by the Connection and Endpoint classes. The communication style of a connector and 
its non-functional features, which it has to provide at runtime (like secure connection, 
etc.) are defined by the Feature class, which is associated with Interface. 

The dynamic reconfigurations [15] are allowed through well-defined reconfigura-
tion patterns. Currently, SOFA 2.0 supports three patterns: factory pattern, removal 
pattern, and utility interface pattern. The factory pattern allows adding new compo-
nents to the architecture at runtime; the removal pattern is complementary to the for-
mer and allows removing components at runtime. In the meta-model, the Factory 
class (which inherits from Annotation) can be used to mark an interface that it can 
create new component instances. The last pattern on the list introduces the concept of 
utility interfaces (in the meta-model the connectionType attribute of the Interface), 
which stems from SOA and allows accessing interfaces across the component 
boundaries (orthogonally to component hierarchy). In more detail, a provided utility 
interface can be accessed by any component at any level of nesting or from a com-
pletely different application (even non-component based), and the reference to such 
an interface can be freely passed among components. Thus, it serves as a generally 
accessible service. In a similar vein, a required utility interface can be connected 
across the application hierarchy. The concept of utility interfaces combines the ad-
vantages of component-based design and SOA. 

15.2.2   Behavior View 

For modeling behavior of SOFA 2.0 components, Extended Behavior Protocols 
(EBP) [16] are used; they have been derived from the original behavior protocols [2] 
by addition of enumeration data types and synchronization of multiple events [16]. 

Behavior protocols describe the behavior of software components as a set of traces 
of events appearing on component interfaces (method calls requests and returns from 
the calls (responses)). A behavior protocol is an expression built up from event tokens 
combined by classical regular (‘;’, ‘+’, ‘*’) and the operator expressing parallel com-
position by event interleaving (‘|’). For parallel composition, there is also another 
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operator ∇ (consent), which allows to detect communication errors as explained fur-
ther in this section. As an example, consider the following protocol: 

 

(?i.open ; (?i.read + ?i.write)* ; ?i.close) | ?ctrl.status* 
 

This behavior protocol generates the set of those traces starting with the open method 
and ending with the close method on the i interface with an arbitrary sequence of repeat-
ing the read and write methods on the same interface between them. The traces may be 
interleaved with an arbitrary number of the status method calls on the ctrl interface. As 
an aside, syntactically, this protocol is composed by means of the abbreviations 8-10 
mentioned below. 

The Extended Behavior Protocols (EBP) are able to describe the derived behavior 
more precisely than BP, since method parameters and local variables (e.g. for captur-
ing component modes [12]) become a part of the specification. 

A frame protocol is associated with each component frame; it describes the be-
havior of the component as the sequence of events appearing on the component 
frame. Furthermore, the architecture protocol is a parallel composition of frame pro-
tocols of the first-level-of-nesting subcomponents of a composite component. 

As an example frame protocol, consider the following specification of the Light-
Display component. In the example, the behavior specification of the component is 
divided into three parts: (1) type definitions (types), (2) local variable definitions 
(vars), and (3) behavior definition (behavior) containing an extended behavior 
protocol (the entities introduced in (1) and (2) are employed here). 

 

 component LightDisplay { 
 

  types { 
 states = {LIGHT_ENABLED, LIGHT_DISABLED} 

  } 
  
  vars { 

 states state = LIGHT_ENABLED 
  } 

 
  behavior { 

 ?LDispCtrlEventHandlerIf.onEvent(EVENT ExpModeEnabledEvent){ 
  state <- LIGHT_ENABLED 
 }* 

   | 
 ?LDispCtrlEventHandlerIf.onEvent(EVENT ExpModeDisableEvent){ 
  state <- LIGHT_DISABLED 
 }* 

  } 
} 
 

Extended behavior protocol is an expression defining the set of allowed sequences of 
events (method call requests and responses) appearing on the frame of a component. 
It is formed using event tokens, operators, and control statements. Event tokens are of 
seven forms: 

1. ?interface.method(type1 arg1, type2 arg2, ...)↑ 
2. ?interface.method(val1, val2, ...)↑ 
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3. ?interface.method↓ 
4. !interface.method(val1, val2, ...) ↑ 
5. !interface.method↓ 
6. @multisynchronization_event 
7. local_var <- symbolic_value 
 

Furthermore, the following abbreviations are defined:  
8. ?interface.method(...)     for ?interface.method(...)↑ ; !interface.method↓  
9. !interface.method(...)     for !interface.method(...)↑ ; ?interface.method↓ 
10. ?interface.method(...) {expr} for  
    ?interface.method(...)↑ ; expr; !interface.method↓ 
 

The event tokens (1) – (10) represent primitive terms, which can be combined into 
expressions via the operators: ‘;’ (sequencing), ‘+’ (alternative), ‘*’ (repetition), and 
‘|’ (parallel composition) as in the example above.  

Each of the event tokens (1) – (7) represents an atomically occurring event (events 
do not overlap). The event token (1) stands for accepting a method call request (↑) 
and assigning the values provided by the caller to variables arg1 of type1, arg2 of 
type2, etc. The event token (2) is similar to (1), but it represents acceptance of a 
method call request only if it has been emitted with parameter the values val1, val2, 
etc. The event token (3) denotes an event representing acceptance of a response (↓) 
from a method call. The event token (4) stands for emitting a method call request 
providing val1, val2, ... as the parameters – the type of each parameter must corre-
spond to the values declared at the callee (server) side. The event token (5) denotes 
emitting of a method call response event. The multisynchronization event (6), e.g. 
@x, is a blocking event taking place only if the all protocols in a parallel composition 
which contain @x are able to execute it at once. Then, it is executed as a single event 
atomically and simultaneously by all the protocols. The event token (7) denotes the 
event of assignment of a value to the local variable. The last two event tokens are not 
associated with a method call events. 

Additionally, the behavior of a component may depend on the value of a local 
variable or a parameter via using the switch statement. The semantics of the switch 
statement is the same as in common programming languages. As an example, con-
sider the following specification fragment: 
 

switch (local_var) { 
 value1: { protocol1 } 
 value2: { protocol2 } 
} 

 

Finally, a while loop can be used for modeling finite repetitions that are done while 
a condition holds. The syntax of a while cycle follows: 

 

while (local_var == value) { 
 repeated-part 
} 
 

Another protocol operator ∇ (consent) is a specific parallel composition which,  
in addition to classical event interleavings and joining two complementary events (?x 
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and !x) into a single internal τ-event (visible but no more composable with another 
event), detects the following communication errors: 

 

(i) bad activity – the inability of components to accept an emit event at the time the 
event is emitted; 

(ii) no activity – deadlock. 
 

The divergence composition error, detected in the original behavior protocols, is 
omitted here because of two reasons. (i) Its implementation is of a very high com-
plexity, and (ii) our experience shows that it occurs very rarely. 

Having all components of an application specified using extended behavior proto-
cols, two types of component compliance relations can be verified: 

 

1) Horizontal compliance captures the correctness of communication among proto-
cols of first-level-of-nesting subcomponents of a composite component, i.e., the ab-
sence of errors inside of an architecture protocol. 

2) Vertical compliance captures the compliance of a composite component and its 
subcomponents, i.e., verifies the component frame against architecture protocols. 

15.2.3   Deployment View 

The SOFAnode is a distributed runtime environment, which consist of a single re-
pository and set of deployment docks. The repository serves as storage for both com-
ponent meta-data and code and is generated from the meta-model. The deployment 
dock is a container inside which the components are instantiated and running. 

From the implementation view, components have two parts – functional and con-
trol. While the functional part provides the business functionality of a component and 
is directly implemented or in the case of a composite component composed of sub-
components, the control part controls the non-functional features (like managing life-
cycle and bindings, intercepting calls, etc.) of a component and is composed of so 
called micro-components [19]. Micro-components allow for a modular fully extensi-
ble way to build the control part of a component; individual extensions are applied as 
aspects (using AOP techniques). Also, micro-components can expose themselves via 
control interfaces. 

A SOFA application has the following lifecycle. First, a developer creates new 
components and uploads them to the repository and/or reuses already existing compo-
nents from the repository. The next stage is assembly, where subcomponents defined 
using frames are “refined” by corresponding architectures. The assembly process 
starts with the top-level component (which represents the whole application) and 
recursively continues till primitive architectures. Finally, the assembled application 
can be deployed and launched. A deployer (i.e. a person responsible for deploying) 
chooses and assigns components of the application to particular deployment docks in 
the SOFAnode and sets values for components’ properties. Also at this stage, the 
deployer can choose which control aspects have to be applied in the application. As a 
next part of the deployment process, connectors are generated. The connector gen-
erator [8] takes as an input the “development-time” connectors (edges with non-func-
tional properties and communication style assigned – see 2.1) and current assignment 
of components to docks and automatically generates the code of these connectors, 
which transparently connects the components and have all required properties. 



 CoCoME in SOFA 395 

All the deployment information (i.e. assignment of components to particular docks, 
connectors and other information mentioned in the paragraph above together with a 
reference to the application architecture) is stored in a deployment plan, which serves 
as a recipe for launching the application. Note that besides driving the application 
launch process, the deployment plan is also used for performance modeling. 

At runtime, code of the components is automatically obtained by deployment 
docks from the repository. SOFA also supports versioning of components; every 
component can exist in multiple versions and these can be simultaneously used (if 
desired) even in a single application and/or deployed in a single dock. 

15.2.4   Performance View 

Previously described views can be used individually or in combination with other 
views to reason about properties such as security, quality of service, etc. Some models 
can be derived directly from the behavior model, but to describe quality of service 
needed e.g. for service level agreements, a separate performance model is needed. The 
reasoning about service times and related properties cannot be based simply on the 
output of the behavior model (such as the number of method invocations) – it has to 
take into account the real execution time. 

In general, the performance modeling process deals with predicting common per-
formance attributes, such as roundtrip and throughput. Here, however, we consider 
precise prediction of individual performance attributes to be a secondary goal. Our 
primary goal is using the performance modeling process to predict how the perform-
ance attributes change when the scale of the application changes. This choice of pri-
orities is motivated by perceived practical relevance of the results – when building an 
application, if it turns out that its real throughput differs from the predicted one by a 
constant, it is often possible to adjust the real throughput simply by installing more 
powerful hardware – but when the difference impacts scalability, no such adjustment 
is possible. 

Typical approaches to performance modeling of component systems [32, 33] start 
with the behavior model of the system. This model is transformed into one of the well 
known formal performance models such as Layered Queueing Networks (LQN) [31] or 
Stochastic Petri Nets (SPN) [13]. The performance model is then populated by the per-
formance attributes of the primitive components and solved to predict the performance. 

A problem of this approach is that the performance attributes of the primitive com-
ponents may change when the primitive components are composed, simply because 
the composed components share resource such as processor cores or memory caches. 
The typical approaches tackle this problem by including the resources in the perform-
ance model, which requires detailed knowledge of shared resources and in the end 
leads to excessively complex models [12]. 

To keep the performance model simple while taking into account the effect of shared 
resources, we have adopted an iterative approach, in which the usage of shared resources 
forms a basis for calculating the performance attributes of the primitive components. The 
performance attributes are fed to the performance model, which predicts the performance 
but also provides feedback to adjust resource usage. The entire cycle is repeated until 
stable resource usage and performance results are obtained. 
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When building the resource usage model, we have to take into account that even 
though it is the primitive components that consume resources, the fact that resources 
are consumed in the first place is not caused by the individual primitive components, 
but by the interaction of multiple primitive components. 

Most primitive components are passive and consume resources only when some of 
their methods are invoked and only as much as those invocations dictate. In the re-
source usage model, we capture this behavior by annotating invocations with resource 
demand hints, which carry information related to resource usage, and by annotating 
components with resource usage rules, which describe how to calculate resource 
usage from resource demand hints. The choice of the annotations depends on the 
resources whose usage impacts performance, and can be determined by prior experi-
ence or by benchmarking experiments with primitive components. 

The allocation of resources in a specific usage scenario whose performance is to be 
modeled is described by the deployment model, which assigns the components to the 
deployment docks and connects the components using the connectors, all at the level 
of individual instances. In the scenario, the interaction of primitive components can 
be captured by event traces generated from EBP. These event traces are used to direct 
the propagation of resource demand hints to components whose resource usage rules 
should apply. 

To summarize, our performance view models the performance aspects of both 
component interaction and resource usage. As the output of the performance model-
ing process, we not only predict the common performance attributes such as roundtrip 
and throughput, but especially predict the trends of how these attributes change when 
the scale of the application changes.  

15.2.5   Comparison with Other Component Models 

Darwin [18] is a classical component model based on an architecture description 
language. It has influenced almost all of other component models. It employs hierar-
chical components without connectors and allows for describing dynamic architec-
tures, but in a quite limited way and without any possibility to control the dynamic 
reconfiguration. Also, it is mainly just a specification language (ADL), not providing 
any runtime environment; at the same time, it includes the option to specify behavior 
of primitive components by means of finite state processes (FSP) [17]. Behavior 
specification of composite component is constructed as a parallel composition of the 
behaviors of subcomponents. 

Another classical ADL is Wright [4]. It also uses hierarchical component but with 
connectors. Even more, it allows describing behavior of components and connectors 
formally using a CSP-like notation. But like Darwin, it is just a specification language 
without any runtime support. 

The contemporary industry-supported component models like EJB [30] and 
CORBA Component Model [21], are just flat component models (no hierarchical 
component composition) and focus mainly on providing a stable and mature runtime 
environment. An exception is Koala [23] developed by Philips – it uses a hierarchical 
component model also significantly inspired by Darwin. It aims at being a develop-
ment platform for embedded software for TVs, set-top-boxes, etc. Koala strongly 
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focuses on component design and optimizations of an architecture; the Koala com-
piler (a tool which from ADL generates skeletons of implementations) allows for 
removing unused components and further architectural optimization. But the runtime 
options are quite limited, since the model is targeted to an embedded environment. 

Fractal [7] is a component model very close to SOFA 2.0; it defines a number of 
abstractions and their interfaces in support of their existence at run-time (there are 
several Fractal implementations). Fractal defines a hierarchical component model 
without connectors (if the connectors are required, the Fractal specification instructs 
to simulate them using components which, however, leads to rather unclean architec-
tures, mixing different levels of abstractions). Like SOFA, Fractal also separates func-
tional and control parts of components. In addition, it supports shared components, 
i.e. a single component is subcomponent of several composite components. Such an 
approach allows for easy managing of dynamic reconfigurations but it breaks compo-
nent encapsulation. An integral part of Fractal is Fractal ADL, which is an XML-
based language for designing components and architectures; its usage is optional 
though since components can be built at runtime using Fractal API. Even though 
Fractal does not provide any formal behavioral descriptions of components, there are 
two projects adding it [1]. 

Like SOFA, the Fractal implementations (e.g., Julia, AOkell [26]) also provide 
complete environments for not only designing and modeling components, but also 
executing applications composed of them. 

Both SOFA 2.0 and most of the Fractal implementations are built over the Java 
platform, being conceptually just code libraries. A different approach is taken by the 
ArchJava [3] and Java/A [5] component models, which modify the Java language by 
introducing new constructs for creating components. According to their authors, this 
approach prevents uncontrolled architecture modifications at runtime (“architecture 
erosion”). Nevertheless, the SOFA runtime (and also the Fractal implementations) 
prevents this completely. 

15.3   Modeling the CoCoME 

15.3.1   Static View 

The architecture applied to the SOFA component model is based on the original ar-
chitecture as defined in the CoCoME assignment. The modifications include (i) re-
placement of the hierarchical bus by two separated buses, (ii) interfaces and bindings 
necessary for the UC8 implementation, and (iii) restructuring of the Inventory com-
ponent. All these modifications are justified and explained below.  

As to (i), the hierarchical bus in the CashDesk was replaced by buses CashDesk-
Line and CashDeskBus, since this modification better reflects the orthogonal activi-
ties of CashDeskApplication and Coordinator with respect to other components in the 
CashDesk devices (Figure 1). This also elegantly reflects the fact that the number of 
instances of CashDesk and cashDeskChannel has to be the same, which is impossible 
to capture by the UML diagram from the CoCoME assignment (Figure 12, in the 
assignment). The direction of communication with buses is determined by their push 
semantics. 
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Fig. 1. SOFA architecture of the CoCoME assignment 

As for (ii), this change relates to the Inventory component. The most visible modi-
fication here is the introduction of enterprise server and store server as explicit entities 
in support of UC8 implementation (EnterpriseServer and StoreServer components 
were brought up). According to the deployment diagram in the CoCoME assignment, 
the enterprise server is just a simplification of the store server, but UC8 requires addi-
tional functionality to capture transportation among different stores. This functionality 
is implemented by the EnterpriseServer component, in particular by its internal com-
ponent ProductDispatcher. The rest of EnterpriseServer uses the same components as 
StoreServer which corresponds to the original idea of component reuse. 

Finally, the modification (iii) comprises the replacement of two composite compo-
nents TradingSystem::Inventory::Application and TradingSystem::Inventory::GUI  by 
two other composite components – StoreApplication and ReportingApplication. The 
new componens group the primitive components in orthogonal way. The modification 
was motivated by the fact that Store and Reporting, the two internal components of 
the GUI (resp. Application) component are independent and communicate only with 
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the corresponding component from the Application (resp. GUI) component over the 
binding from the higher level of the hierarchy (Figure 2 – there is no binding among 
the primitive components Store and Reporting). The fact that the behavior of Store 
and Reporting is orthogonal is much better captured by the modification shown in 
Figure 1. Here, the design functionality is covered by the components StoreApplica-
tion and ReportingApplication, each of them composed of two communicating sub-
components – one reflecting GUI and the second the business logic. This way, the 
communication between StoreGUI and StoreLogic is hidden within the StoreApplica-
tion component. Similar argument holds for ReportingApplication. Since the Data 
component provides interfaces needed by both StoreApplication and ReportingAppli-
cation, it is on the same level of nesting. Finally, the Database component from the 
CoCoME assignment is not in the diagram, as it is accessed via JDBC, not the SOFA 
framework. Since this is another level of abstraction it is not modeled in the diagram. 

15.3.2   Behavioral View 

Although the design of SOFA 2.0 supports different behavior specification backends, 
the default specification language is EBP (Extended Behavior Protocols) already 
described in Sect. 2.2. When specifying Trading System using EBP, the basic  
decision is whether to base the specification on the CoCoME assignment UML speci-
fication or rather on the reference implementation. On one hand, the CoCoME assign-
ment UML specification does not constitute an unambiguous complete specification. 
The sequence diagrams specify only individual runs of the application, in contrast to 
the overall behavioral interplay of components. Unfortunately, other UML means for 
behavior specification (collaboration diagrams, activity diagrams, state charts) are not 
used. Moreover, when it comes to UC8, the CoCoME assignment UML specification 
is ambiguous, as the component diagrams lack interfaces for EnterpriseServer to 
StoreServer communication specified in UC8. Therefore, an analysis of the reference 
implementation provides additional behavioral information. On the other hand, the 
reference implementation conflicts with UC1 and UC8, introducing additional ambi-
guities. In UC1, the reference implementation differs during CreditCard payment and 
does not allow manual BarCode entry. UC8 is implemented as a part of UC1 ex-
ploiting direct access to the shared database). 

Finally, the EBP specification is based partly on the provided use cases and se-
quence diagrams (UC3 – UC8) and partly on the reference implementation 
(UC1, UC2). Additionally, the EBP specification related to UC8 is also influenced by 
the architectural modifications mentioned in Sect. 3.1. 

The actual EBP behavior specification is created per component at a particular 
level of nesting, i.e. both primitive and composed components are annotated by their 
frame protocol. This way, the EBP specification provides a better picture than the 
sequence diagrams, which follow the calls ignoring the component hierarchy (i.e. 
orthogonal to the hierarchy). Moreover, an EBP protocol describes the overall inter-
action, in contrast to a single application run. 

The actors (Customer, Cashier, StockManager, and Manager) were not directly 
modeled; however, their behavior is modeled as an autonomous activity of the UI 
components (CashDeskGUI, CashBoxController, CardReaderController, Scanner-
Controller, StoreGUI, and ReportingGUI). 
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Fig. 2. Fragment of the original architecture 

15.3.3   Deployment View 

From the deployment point of view, the most important aspects of the CoCoME ex-
ample have been the way deployment is described and managed, and the way dis-
tribution is addressed.  

With regard to the description of deployment and its management, we have bene-
fited from the full fledged deployment and runtime environment of SOFA 2.0. We 
have specified the implementation artifacts and the actual placement of components in 
a deployment plan. Subsequently, we used the SOFA 2.0 tools to launch deployment 
docks and start the application according to the deployment plan.  

The actual distribution of the application in SOFA 2.0 has been performed via con-
nectors. They encapsulate middleware and realize the distribution transparently to 
component. Since they support different communication style, we were able to model 
method invocations (realized by RMI in the reference architecture) as well as busses 
(realized by JMS in the reference architecture). 

The connectors in SOFA 2.0 are automatically generated, thus a component devel-
oper is not forced to prescribe a particular middleware during design. The choice of 
middleware is performed at deployment time and it is done automatically by the con-
nector generator (by constraint programming techniques). The generator also auto-
matically creates an implementation of connectors to be used at runtime to actually 
address the distribution. 

15.3.4   Implementation View 

The implementation in fact completely follows the original reference implementation; 
several changes of the application architecture are described in Sect. 3.1. Connections 
among components are implemented via connectors (Sect. 3.3). 

In SOFA 2.0, an application is represented by its model. Technically, the model is 
expressed a set of files containing architecture specification in SOFA 2.0 ADL. All 
the ADL files related to the CoCoME in SOFA application in are available on [27]. 
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Further, the ADL files are processed by the Cushion development tool (Sect. 6.3), 
which validates them for syntactical correctness and semantical compliance and en-
ters the model determined by them into the SOFA repository. Moreover, Cushion also 
controls verification of the component behavior specification. 

15.3.5   Performance View 

For our chosen approach, which iterates between modeling resource usage and mod-
eling performance, it is necessary that the resource usage model provides performance 
attributes of primitive components to the performance model, and that the perform-
ance model provides feedback on resource usage to the resource usage model. 

In CoCoME, we have decided to adopt LQN as the performance model – the feed-
back from LQN takes the form of queue length and processor utilization values. An-
other choice would be adopting SPN as the performance model – the feedback from 
SPN would take the form of numbers of tokens in selected places. Both LQN and 
SPN were reported to achieve good results when modeling enterprise information 
systems [5]. 

Our resource usage model in CoCoME is a hybrid model that uses benchmarking 
of primitive components under varying resource usage conditions to provide basic 
understanding of how resource usage influences the performance attributes. Addi-
tional benchmarking under specific resource usage conditions is coupled with mod-
eling of resource usage through resource demand hints and resource usage rules to 
provide input to the performance model. 

Because of the presence of the resource usage model, building the performance 
model does not need to go beyond the level of detail captured in the deployment plan 
and the behavior model. As described below, we have built the LQN model mechani-
cally and in fact even introduced additional simplifications. We hope to eventually 
generate the performance model from the deployment plan and the behavior model, 
potentially simplifying it manually afterwards.  

The first layer of LQN contains tasks generating the external requests on the sys-
tem. These are the customers present at each store and coming to a cash desk at a 
given average rate, store managers accessing store clients for ordering stock items and 
enterprise managers accessing enterprise clients for generating reports. 

The requests of the customers for processing their sale are handled by the cash 
desks. The multiplicity represents the number of cash desks in a store and the internal 
description of the cash desk activity (a complex probabilistic behavior description) 
represents the properties of a typical sale (the figures were taken from the extrafunc-
tional properties of CoCoME). The load generated by the cash desks corresponds to 
UC1. 

Each store also has a store client and a store server, and the system also includes an 
enterprise client and an enterprise server. All these tasks serve the purpose of gen-
erating disruptions of the standard load by the other use cases. 

The database task represents the server part of the architecture which is actually 
performing the data lookups and is the place where resources are shared. The utiliza-
tion of the processor running the database task represents the amount of concurrency. 
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The most challenging issue with using LQN was the representation of multiple 
stores. A trivial approach – using just the multiplicity of tasks – might not be appro-
priate because the multiplicity does not model the queueing in a realistic way, but it 
has the semantics of choosing any of the available cash desk by any customer regard-
less of the store he or she is in. 

Our choice was to create all the separate instances of stores and cash desks inside 
them individually. Moreover, the LQN model is created by a generator script which 
can be thus seen as a meta-model. One instance of the model is shown on Figure 3. 

Our benchmarking of primitive components under varying resource usage condi-
tions has suggested that the resource whose sharing affects the performance attributes 
most significantly is – perhaps not surprisingly – memory of the StoreApplication and 
Data components. For sake of brevity, we limit ourselves to these components, which 
are in fact pivotal to the usage scenario most relevant to customers (UC 1). 

The implementation of StoreApplication uses Hibernate, which caches data sepa-
rately for each transaction. The memory usage of StoreApplication therefore grows 
linearly (i) with the number of transactions executing simultaneously and (ii) with the 
size of the data fetched in each transaction. Neither the number of simultaneous trans-
actions nor the size of fetched data is limited - the former depends on the number of 
invocations coming to StoreApplication over RMI, which uses a thread pool of unlim-
ited size, while the latter depends on the number of items in queries executed by 
StoreApplication, which can span all application data. 

 

 

Fig. 3. Simplified LQN model for UC1 

The implementation of Data uses Derby, which keeps separate context for each 
connection and caches pages for all transactions together. The memory usage of Data 
therefore grows linearly (i) with the number of connections opened simultaneously 
and (ii) with the size of the data cached for all transactions. The number of connec-
tions opened simultaneously is limited, as each instance of StoreApplication uses 
Hibernate, which has a connection pool of limited size. Similarly, the size of the data 
cached for all transactions is limited, as Derby uses a page cache of limited size. 

The above description forms the basis for the resource usage rules of the Store-
Application and Data components. We get the complete resource usage rules by adding 
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the information on static memory consumption, collected through benchmarking, and 
the information on the number of concurrent invocations, collected from the per-
formance model in the iteration loop: 
 

memStoreApplication = base_usage + sum_per_invocation_type (aver-
age_number_of_concurrent_invocations_of_this_type * query_size_per_invocation * 
memory_usage_per_unit_query_size) 
 

memdata = base_usage + min(average_number_of_connectionsStoreApplication, connec-
tion_pool_limit) * #StoreApplications * memory_usage_per_connection + 
min(page_cache_size_limit, database_size_in_items * 
page_cache_occupation_per_item) 

 

The resource demand hints used along the event trace, supply us with the query 
size per invocation, which is one for getProductWithStockItem queries and average 
shopping cart size for bookSale updates. The resource demand hints can be deduced 
from the complete event trace of UC1, which was generated from the behavior proto-
cols. The key resource demand hints are the query and update sizes per invocations – 
one item for getProductWithStockItem queries and average shopping cart size for 
bookSale updates. The resource demand hints are associated individually with all 
relevant invocations along the event trace. 

We have also determined the effect of memory usage on performance attributes by 
benchmarking, which shows that there are two milestones in memory usage that im-
pact the roundtrip time as the performance attribute of choice. First, the duration of 
queries depends on whether the queries are satisfied from the page cache. We ap-
proximate this behavior by adjusting the mean roundtrip time of queries with the 
probability that a query is satisfied from the page cache: 

 

P(query_cached) = min(1, max_cache_size / data_size) 
Tquery = Tquery_cached * P(query_cached) + Tquery_from_disk * (1 – P(query_cached)) 
 

Second, the duration of all operations depends on whether the memory used by the 
operations has been paged out and therefore needs paging in. To approximate this 
behavior, we would need to know (among other things) the memory access patterns of 
individual operations, which would make the model too complex. We therefore sim-
plify the model by taking the sizes of the individual components to be correlated with 
the sizes of their memory access patterns (we can afford to do this especially because 
with any but insignificant amount of swapping, the system becomes overloaded – the 
estimate of the very onset of swapping, rather than exact performance under swap-
ping, is therefore of interest): 

 

P(swapping_needed) = occupied_physical_memory / occupied_virtual_memory 
Toperation = Toperation_without_swapping + Tswapping_overhead * operation_component_size * 
P(swapping_needed) 
 

Other milestones in memory usage that could potentially impact the roundtrip time 
are situations when the processor cache becomes exhausted and situations when the 
file cache becomes exhausted. On contemporary processors, the size of the processor 
cache is way below the memory usage of CoCoME, diminishing the importance of 
the first milestone. Similarly, as the memory usage increases, the size of the file cache 
decreases way below the size of the page cache, diminishing the importance of the 
second milestone. 
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15.3.6   Specification of CashDeskApplication 

To give a rough idea about the resulting behavior specification, frame protocols of 
CashDeskApplication and CashDeskBus in EBP formalism (Sect. 3.7) – being proba-
bly the two most interesting components from the behavioral point of view – are pre-
sented below (the rest of EBPs can be found in the appendix and on [27]). 

As the state transitions of the CashDeskApplication component can be easily ex-
pressed as a state chart (states representing different phases during a single sale), it is 
very important that the behavior specification were as easy to comprehend as the state 
chart, while containing additional information on the method calls interplay. In this 
respect, the frame protocol of CashDeskApplication shown bellow satisfies this re-
quirement and shows how EBP can cope with specifying this kind of behavior. 

Since EBP can explicitly model component’s internal state (via local state vari-
ables), expressing CashDeskApplication’s behavior is straightforward, as can be seen 
on the CashDeskApplication  frame protocol; here, the interface and method names 
are shorten for the sake of brevity. In our view, having the states explicitly expressed 
in the behavior specification of a component and revealing it to the outer world con-
tributes to the clarity of the EBP specification. 

 
component CashDeskApplication { 
  types { 
    states = { INITIALIZED, SALE_STARTED, SALE_FINISHED, 
      PAYING_BY_CREDITCARD, CREDIT_CARD_SCANNED, 
      PAYING_BY_CASH, PAID } 
  } 
  vars { states state = INITIALIZED } 
 
  behavior { 
    ( 
      ?CDAppEvHandler.onEvent(SaleStarted) { 
        switch (state) { 
          INITIALIZED: 
            { state <- SALE_STARTED } 
          default: 
            { NULL } 
        } 
      } + 
      ?CDAppEvHandler.onEvent(ProductBarcodeScanned) { 
        switch (state) { 
          SALE_STARTED: { 
            !CDConnector.getProductWithStockItem;  
            ( 
              !CDAppEvDisp.send(ProductBarcodeNotValid) + 
              !CDAppEvDisp.send(RunningTotalChanged) 
            )} 
          default: 
            { NULL } 
        } 
      } + 
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      ?CDAppEvHandler.onEvent(SaleFinished) { 
        switch (state) { 
          SALE_STARTED: 
            { state <- SALE_FINISHED } 
          default: 
            { NULL } 
          } 
        } + 
        ?CDAppEvHandler.onEvent(CashAmountEntered) { 
          switch (state) { 
            PAYING_BY_CASH: { 
              NULL + ( 
                !CDAppEvDisp.send(ChangeAmountCalculated); 
                state <- PAID 
              )} 
            default: 
              { NULL } 
          } 
        } + 
        ?CDAppEvHandlerIf.onEvent(CashBoxClosed) { 
          switch (state) { 
            PAID: { 
              !CDAppEvDisp.send(SaleSuccess); 
              !CashDeskEventDisp.send(AccountSale); 
              !CashDeskEventDisp.send(SaleRegistered); 
              state <- INITIALIZED } 
            default: 
              { NULL } 
          } 
        } + 
        ?CDAppEvHandlerIf.onEvent(CreditCardScanned) { 
          switch (state) { 
            PAYING_BY_CREDITCARD: 
              { state <- CREDIT_CARD_SCANNED } 
            CREDIT_CARD_SCANNED: 
              { state <- CREDIT_CARD_SCANNED } 
            default: 
              { NULL } 
          } 
        } + 
        ?CDAppEvHandlerIf.onEvent(PINEntered) { 
          switch (state) { 
            CREDIT_CARD_SCANNED: {  
              !BankIf.validateCard; ( 
              !CDAppEvDisp.send(InvalidCreditCard) +  
              ( 
                !BankIf.debitCard; ( 
                  !CDAppEvDisp.send(InvalidCreditCard); ( 
                    NULL +  
                    state <- PAYING_BY_CREDITCARD) + ( 
                      !CDAppEvDisp.send(SaleSuccess); 
                      !CDEvDisp.send(AccountSale); 
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                      !CDEvDisp.send(SaleRegistered); 
                      state <- INITIALIZED 
                    ) 
                  ) 
                ) 
              ) } 
            default: 
              { NULL } 
          } 
        } 
      )* |  ( 
        ?CDEvHandler.onEvent(ExpressModeEnabled) { 
          !CDAppEvDisp.send(ExpressModeEnabled) 
        } 
      )* |  ( 
        ?CDAppEvHandler.onEvent(ExpressModeDisabled) 
      )* 
    } 
  } 
} 
 

The EBP specification above consists of (1) definition of types via enumerating 
their values, (2) definition of component’s local variables, the state variable repre-
senting state of a single sale, and (3) the actual behavior. The CashDeskApplication 
accepts and publishes events from/through two buses, CashDeskBus and CashDesk-
LineBus, via its interfaces CDAppEvDisp, CDAppEvHandler, CDEvDisp, and 
CDEvHandler. Behavior of CashDeskApplication during a single sale (state tran-
stion) is specified in the first and longest one of three parallel subprotocols, separated 
by the parallel operator “|”. The other two subprotocols specify switching on and off 
the express mode as a reaction on the ExpressModeEnable and ExpressModeDisable 
events.  

In more detail, the first subprotocol specifies different reactions, note the alterna-
tive operator “+”, on sale-related events depending on the actual event received from 
the CashDeskBus (e.g. SaleStarted as a parameter of the onEvent method). 
The reaction then typically depends on the current state, stored in the state local 
variable (the switch statement), and consists of communication over the buses 
and/or switching transition to another state using the assignment statement “<-”. 

15.3.7   Specification of Component CashDeskBus 

The second EBP snippet is protocol of the CashDeskBus component. The component 
implements a classical publisher-subscriber pattern, i.e. the message publishing method 
send() blocks until all subscribers receive the published message via the onEvent() 
method. 

The key feature of the CashDeskBus component is that it synchronizes delivery of 
notification messages with next event acceptance, i.e. a notification message is deliv-
ered to all subscribers before another event message is accepted. To model this be-
havior, a technique which resembles the way a mutual exclusion is expressed in Petri 
nets. There is an auxiliary component Token which repeatedly (and sequentially) 
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produces tokens via the Helper.token method. The CashDeskBus accepts the 
token and, while still “holding it” (until return from the Helper.token method), 
CashDeskBus distributes the corresponding notification message to all subscribers. 
This way, processing of other messages is blocked until the token is released. As a 
technicality, the CashDeskBus protocol can always accept the token when there are 
no event messages to accept. 

 
component Token { 
  behavior { 
    !Helper.token* 
  } 
} 
 
component CashDeskBus { 
  behavior { 
    ?CashBoxControllerEvDisp.send(CashAmountEntered) { 
      ?Helper.token { 
        !CDAppEvHandler.onEvent(CashAmountEntered) | 
        !PrinterControllerEvHandler.onEvent(CashAmountEntered) | 
        !CDGUIEvHandler.onEvent(CashAmountEntered) 
      } 
    }* 
    | 
    ?CashBoxControllerEvDisp.send(CashBoxClosed) { 
      ?Helper.token { 
        !CDAppEvHandler.onEvent(CashBoxClosed) | 
        !PrinterControllerEvHandler.onEvent(CashBoxClosed) 
      } 
    }* 
    | 
    ?CardReaderControllerEvDispatcher.send(CreditCardScanned) { 
      ?Helper.token { 
        !CDAppEvHandler.onEvent(CreditCardScanned) 
      } 
    }* 
    | 
    . . . 
    | 
    ?Helper.token* 
  } 
} 
 

It is fair to say that the presented technique takes advantage of the fact that notifi-
cation messages are handled synchronously with event acceptance. In contrast, if the 
handling was asynchronous (i.e. message buffering was necessary), the modeling 
would be much harder (and obviously impossible for unbounded buffer). 

15.4   Transformations 

The modeling process of SOFA can be viewed as a series of transformations. The 
most notable transformations include the deployment process, which represents a 



408 T. Bureš et al. 

transformation from the component model into the deployment plan, and the perform-
ance modeling process, which represents a transformation from the deployment plan 
and the behavior model into the resource usage model, and a transformation from the 
component model and the behavior model into the performance model. 

The transformation from the component model into the deployment plan is mostly 
done manually, with some parts which can be automated. The decisions are particu-
larly based on information like geographical properties of the deployment instance, 
hardware configuration, which is available, etc. Partial automation can be achieved by 
defining well-known deployment patterns in the component model (e.g. if some com-
ponents are connected with a connector representing a bus, they should be deployed 
in the same deployment dock). This transformation is one-way. 

The creation of the performance and resource models starts with a decision what 
use cases of the modeled system are actually interesting. This heavily depends on the 
SLA and QoS expectations of the real implementation (e.g. the real time duration of 
some use cases might be of very low importance for the service customers). Also 
some components from the component model can be manually eliminated or merged 
for the purpose of performance and resource modeling, when it is clear that their per-
formance impact is either negligible (which is assumed) or fatal (which would make 
the performance model instantly useless). 

After this selection and elimination, the performance model is derived automati-
cally from the component model (components becoming tasks of the performance 
model) and behavior model (the behavior describes both the methods of the tasks and 
the kind and probability of their interaction). The decisions and transformation can be 
done iteratively when the performance model is too complex (difficult to solve) or 
oversimplified (captures only trivial interaction). 

After the manual decisions on the importance have been made, the transformation 
from the deployment plan and behavior model into resource usage model can be also 
automatic. Basically the assignment of the tasks to processing units directly reflects 
the assignment of components to deployment docks. The behavior description is used 
to distinguish different types of processing units – tasks which act as pure clients 
(generating load) use unlimited processing units (with unbounded parallelism), whilst 
other tasks use processing units with a given multiplicity (which is derived from the 
number of instances of the given component in the deployment plan). This transfor-
mation is usually one-way. 

15.5   Analysis 

15.5.1   Compliance Both Vertical and Horizontal 

Both the vertical and the horizontal compliance verification is done using a tool chain. 
The parts of the chain are EBP2PR (Extended Behavior Protocols to Promela Transla-
tor) and Spin [29] (described in detail in Sect. 6). Basically, the EBP2PR tool trans-
lates the specification in EBP into the Promela language. After that, this output is 
verified by the Spin model checker. Here, each EBP is modeled as a Promela process 
and the absence of communication errors is transformed (by a technical trick) into 
absence of deadlocks. 
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The tool chain was applied to the frame protocols associated with all of the com-
ponents in the CoCoME application (Figure 1). The data on the time the tool chain 
spent on verification in this process is available at the project web site [27]. For illus-
tration, Tab.1 below provides data on the time spent on the verification of the hori-
zontal compliance of the CashDeskApplication and CashDeskBus frame protocols. In 
the first column, the size of the state space generated by the frame protocols’ compo-
sition is shown. The other columns show the time spent in particular parts of the veri-
fication process – EBP2PR is the time required for transformation of the specification 
in EBP into Promela, Verification represents the time Spin spent on the verification 
process. As the composition of the CashDeskApplication and CashDeskBus frame 
protocols generates the most demanding state space in the context of the CoCoME 
application, the total time spent on behavior verification of the other parts of the ap-
plication was shorter. 

This particular horizontal compliance verification was performed on the following 
hardware and software configuration: PC 2x Intel Core2 Duo (dual core) processor 
with 4 MiB L2 cache and 4 GiB operational memory running the Linux (kernel ver-
sion 2.6.19), and Spin version 4.2.9. 

Table 1. The result of vertical compliance verification of the CashDesk component 

# of states EBP2PR [s] Verification [s] Total time [s] 

3 335 950 41.5 46.1 95,6 

 
Vertical compliance evaluation starts with inversion of the frame protocol of the 

composite component (the emitting and accepting events are swapped, e.g. !i.a↑ is 
replaced by ?i.a↑ and vice versa). Via the consent operator, the actual vertical com-
pliance is verified by composing the inverted frame protocol with the architecture 
protocol capturing the composed behavior of the subcomponents; as an aside, this 
way vertical compliance is converted into horizontal compliance [2]. The complete 
data on verification are listed on [27]. 

15.5.2   Verification of Code against Frame Protocols 

Checking of horizontal and vertical compliance makes sense only if implementation of 
each primitive component in a particular architecture obeys (is compliant with) the com-
ponent’s frame protocol. In order to check this property, we apply the technique of code 
model checking to individual primitive components. However, an isolated primitive 
component cannot be checked by a typical code model checker (like Java PathFinder), 
since such a component does not form a complete Java program required by a model 
checker – an environment that forms a complete program together with the component is 
needed. The environment is constructed from its behavior specification (component’s 
inverted frame protocol) in such a way that forces the model checker to verify all reason-
able control-flow paths in the component’s implementation.  

Although the well-known problem of state explosion is partially mitigated by ap-
plication of model checking to a single component (having a smaller state space than 
the whole application), still the technique has very high time and space complexity 



410 T. Bureš et al. 

since it exhaustively verifies all possible runs of the code; for highly parallel compo-
nents, model checking may even be infeasible. In such a case, we recommend to use 
run-time checking to check the property of obeying a frame protocol at least partially 
(i.e. not exhaustively).  

15.5.3   Run Time Checking against Code 

The basic idea of run-time checking is to monitor method call-related events on the 
component’s external interfaces at run-time and check whether the trace composed 
from the events is specified by the component’s frame protocol. Since run-time 
checking can verify only a single trace recorded during a single run of an application 
and is therefore not exhaustive, an error (violation of a frame protocol) may not be 
detected for many runs of the application; in this respect, the technique of run-time 
checking is similar to testing. 

15.5.4   Performance Analysis 

The basis for our performance analysis is the CoCoME reference implementation, 
which was benchmarked to provide input for the resource usage and performance 
models. We have run several types of benchmarks on the implementation to identify 
those parts of code that have significant performance impact and resource consump-
tion. Our further reasoning about scalability was based on these benchmarks (for 
detailed benchmark results, see [27]). 

We have focused our analysis on a simple but practical configuration for both 
benchmarking and modeling performance, which is a repeated execution of Use 
Case 1.  While quite simple, it represents a typical load on the system generated in a 
production environment. Other use cases serve the purpose of generating disruptions 
(the Reporting components in both Enterprise and Store can submit queries that can 
trash the database cache occasionally, but it would not make sense to consider a con-
tinuous reporting use case). 

 

    a)    b)  

Fig. 4. Calculated a) throughput and b) average service time of Use Case 1 
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It is our assumption that a cash desk by itself cannot be overloaded (the throughput 
is strictly limited by the cashier interacting with the cash desk – the rate of his or her 
requests is significantly below any reasonable value which might be considered a high 
load) and its resource consumption is constant. We can therefore focus on the per-
formance of the inventory components under the aggregated load by requests gener-
ated by several cash desks in several stores. 

The results of our modeling are on Figure 4a, which shows the dependency of the 
overall enterprise throughput in terms of item queries processed per second on the 
number of stores in the enterprise, and on Figure 4b, which shows the dependency of 
the time to perform a single sale on the number of stores in the enterprise. We see that 
when the infrastructure is saturated or overloaded by requests from the cash desks, 
insufficient performance is noticeable even on the cash desk side, since the cash desks 
are unable to get answers to item queries within a reasonable time (however, the op-
erations performed in the cash desks still take the same constant time, independent on 
the state of other components). 

To evaluate the results of our modeling, we have measured the performance of the 
modeled scenario on the prototype implementation. The benchmark, as well as the 
benchmark experiments used to obtain the average durations of the atomic actions, 
have used an Intel Pentium 4 Xeon 2.2 GHz machine with 512 MB RAM running 
Fedora Core 6 and the database cache of 10000 pages for the server machine, and a 
dual Intel Core 2 Quad Xeon 1.8 GHz machine with 8 GB RAM running Fedora Core 
6 for the client machine. The relatively low amount of memory on the server machine 
was used deliberately to allow the manifestation of swapping with a reasonably small 
number of cash desks and stores. 

The results on Figure 5 suggest that our approach is reasonably precise in predict-
ing the item query throughput and single sale roundtrip values. We have also pre-
dicted getting within 10% of the maximum throughput around 2 stores, when the 
measurement shows this happening around 3 stores, and the degradation in perform-
ance due to swapping around 8 stores, when the measurement shows this happening 
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Fig. 5. Benchmarked throughput of Use Case 1 
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around 10 stores. Some difference in these results can be explained by our inability to 
determine the precise memory requirements of the individual components, something 
that is difficult to do with current tools. 

15.6   Tools and Results 

15.6.1   BP Checker 

The EBP2PR tool is used to transform the specification in EBP into Promela (input 
language of the Spin model checker). On its input, this tool accepts the frame protocol 
of a composite component and the architecture protocol capturing behavior of its 
subcomponents. The output is a corresponding Promela model. This section describes 
the transformation process in detail. 

As the semantics of the Promela language and EBP differ in many aspects (e.g. in 
handling nondeterminism), a straightforward translation of EBP into Promela is not 
possible. Therefore, the following sequence of transformations is applied: Each EBP 
on its input is first transformed into a corresponding nondeterministic finite automa-
ton (NFA) (local variables and method parameters are not considered). This NFA is 
transformed into an equivalent deterministic finite automaton (DFA) that is mini-
mized. Finally, Promela code modeling the minimal DFA is generated and the local 
variables and method parameters (ignored in the preceding steps) are added as vari-
ables of a Promela enumeration type. 

As to communication errors (bad activity and no activity), bad activity is modeled 
as Promela deadlock in the following way: Each time a Promela process (recall that 
each EBP is modeled as a Promela process) emits an event e, it first acquires a lock 
(shared variable) and then emits e. If no other process is ready to accept e, a deadlock 
occurs since, due to the lock, no other event may be either accepted or emitted before 
accepting e. Technically, an event is represented by a dedicated shared variable. No 
activity is modeled naturally as a deadlock when the lock is not acquired. 

If a communication error is discovered during the verification process, the verifi-
cation is stopped, and the Promela error trace is used to guide the Spin simulation 
(i.e., only the error trace is executed) to generate the corresponding error trace in the 
EBP. 

15.6.2   Modified JPF and BP Checker 

As indicated in Sect. 5.2, we use the technique of code model checking to verify that a 
primitive component obeys its frame protocol. Since the SOFA component model is 
strictly Java-based, we use the Java PathFinder (JPF) tool, which is a highly extensi-
ble model checker for Java byte code, in combination with the old version of behavior 
protocol checker (BPC) that supports only old behavior protocols – there is no Java-
based checker for new behavior protocols.  

Technically, JPF and BPC cooperate while traversing their own state spaces and 
since both checkers work at different levels of abstraction, we defined a mapping 
from the JPF state space into the state space of BPC to make such cooperation possi-
ble. The mapping is implemented via a JPF plug-in that traces traversal of JPF state 
space and drives BPC in traversal of its own state space; for each executed byte code 
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instruction related to method calls on the component’s external interfaces, JPF plug-in 
tells BPC what transition it has to take in its state space. If such a transition does not 
exist in the BPC state space, a violation of a frame protocol is detected and reported. 
Environment for a primitive component is constructed in a semi-automated way: (i) 
the EnvGen tool generates stub implementations of component's required interfaces 
and skeleton of a driver program, and (ii) the driver program is manually modified so 
that the environment behaves correctly (with respect to data-flow and component's 
state).. Translation of EBP into the old behavior protocols (BP) is performed in an 
automated way. EBP-specific features are translated into constructs supported by the 
old BP with the possible loss of information (some behaviors may be added). 

Run-time checker is also based on the old Java-based version of BPC. However, in 
this case, the state space traversal in BPC is driven by run-time notification performed 
by micro-components that intercept method calls on the component’s external inter-
faces; moreover, no coordination of backtracking is needed since only a single run of 
the application is checked.  

By application of our tool to the implementation of CashDeskApplication and its 
frame protocol created according to the reference specification of UC1, we were able 
to detect the inconsistency between the reference implementation and specification of 
UC1 that is first mentioned in Sect 3.2. Detection of this inconsistency took 2 seconds 
on a 2xDualCore at 2.3GHz with 4 GB RAM PC. Code checking of CashDeskAppli-
cation against the frame protocol based on the reference implementation (i.e. with no 
UC1-related inconsistency) has not reported any error and took 14 seconds. 

Nevertheless, correctness of switching between the express and normal mode is not 
checked, since the environment is not able to find whether the application is in the 
express mode or not, and thus does not know whether it can trigger payment by credit 
card (which is being forbidden in the express mode). Moreover, we added the 
CashAmountCompleted event into the frame protocol and implementation of Cash-
DeskApplication in order to explicitly denote the moment when the cash amount is 
completely specified (originally, the CashAmountEntered event with a specific value 
of its argument was used for this purpose). Were the CashAmountCompleted event 
not added, the environment for CashDeskApplication would exercise the component 
in such a way that a spurious violation of its frame protocol would be reported by JPF. 

15.6.3   Cushion Development Support Tool 

As mentioned in Sect. 3.4, Cushion (available as a part of the SOFA 2.0 implementa-
tion [28]) is a tool supporting development of SOFA 2.0 applications. It allows adding 
new ADL specification of interfaces, frames, and architectures to the repository, re-
trieving already existing specifications from the repository for further development 
(multiple versions are supported), etc. Also, it controls behavior validation of compo-
nents. Further, Cushion serves as a build tool; it supports compilation of the code of 
primitive components, preparation of deployment plan, etc. 

By its design, Cushion is fully extensible. In fact, by itself, Cushion provides just a 
core; all the above described functionality is implemented as extensions. 

In addition to Cushion (command-line tool by nature), SOFA 2.0 application can 
be developed in a graphical development environment (designed as an Eclipse IDE 
plugin); unfortunately is has been still under the development at the time of writing, 
not being ready for a no-trivial use such as CoCoME. 
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15.7   Summary 

In this paper, we presented our experience and results of using the SOFA 2.0 compo-
nent model for specification and implementation of components of the CoCoME 
application. The architecture was modified in order to improve clarity of the design – 
in particular, the hierarchical bus was replaced by two separated buses and the In-
ventory component was restructured. All these modification, as well as the motivation 
for them, were described in Sect. 3.1. To demonstrate the modeling power of SOFA 
2.0 in terms of behavior specification at the ADL level, Extended Behavior Protocols 
described in Sect. 2.2 were used. They further extend the expressive power of Be-
havior protocols via introducing local variables of enumeration type, method pa-
rameters of these types, and add simple control structures (loop, switch, if).  By taking 
advantage of the EBP specification, the behavior compliance of communicating com-
ponents was verified (Sect. 5.1). Furthermore, compliance of a part of the implemen-
tation (the CashDeskApplication component) against its EBP specification was also 
verified. This illustrated that the question whether the implementation fulfills the 
specification in EBP can be answered in an automated way at an early stage of the 
application development. 

The deployment of the CoCoME application was done by the runtime and deployment 
environment of SOFA 2.0. Thanks to the presence of connectors in SOFA 2.0, RMI for 
remote method invocation and JMS for modeling buses could be used for implementa-
tion of the communication among components. For modeling the performance and re-
source usage, Layered Queueing Networks coupled with an extra resource usage model 
were used. Specifically, the performance of a particular enterprise under a varying spec-
trum of load conditions was modeled. By comparing the results with measurements on 
the prototype implementation, our model was shown to successfully predict changes in 
performance due to resource sharing and resource exhaustion. 

As a future work, we plan to integrate the verification tool chain into the SOFA 2.0 
framework and to predict performance of a component application by using a combi-
nation of formal methods and benchmarking. 
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Appendix A:   SOFA 2.0 Meta-model 

NamedEntity

name : String

Feature

value : String

Interface

+addFeature(name : String,value : String) : Feature
+addFactoryAnnotation(method : String,retInstance : Frame,retIface : Interface) : void

communicationStyle : String
connectionType : ConnectionType
isCollection : boolean

0..*

communicationFeature

VersionedEntity

addInfo(name : String,value : String) : Info

locked : boolean

Version

version : String
prevVersion : String

entity

version

Property

type : String

MappedProperty

subcomponentPropertyName : String

Frame

+addProvision(name : String,iface : InterfaceType,comStyle : String,conType : ConnectionType,isCol : boolean) : Interface
+addRequirement(name : String,iface : InterfaceType,comStyle : String,conType : ConnectionType,isCol : boolean) : Interface
+addProperty(name : String,type : String) : Property
+setTopLevel(topLevel : boolean) : void
+addBehavior(name : String,value : String) : Info

0..*

requiredInterface

0..*

property

0..*

providedInterface

InterfaceType

signature : String

interfaceType

Architecture

addSubcomponentByFrame(name : String,frame : Frame) : SubcomponentInstance
addSubcomponentByArch(name : String,arch : Architecture,frame : Frame) : SubcomponentInstance
addConnection() : Connection
addProperty(name : String,type : String) : Property
addMappedProperty(name : String,type : String,subcompPropName : String,subc : SubcomponentInstance) : MappedProperty

implementation : String

1..*

implements

0..*

property

0..*

mappedProperty

SubcomponentInstance

0..1

instantiatesFrame

0..*

subcomponent

0..1

instantiatesArchitecture

instance

Connection

addComponentEndpoint(ifaceName : String) : ComponentInterfaceEndpoint
addSubcomponentEndpoint(ifaceName : String,sub : SubcomponentInstance) : SubcomponentInterfaceEndpoint

0..*

connection

SubcomponentInterfaceEndpoint

interfaceName : String

subcomponent

ComponentInterfaceEndpoint

interfaceName : String

<<enumeration>>
ConnectionType

normal
utility

Annotation

0..*

annotation

0..*

annotation

<<Singleton>>
TopLevel

<<Singleton>>
Factory

method : String

returnInterface

ConnectionEndpoint

1..*

endpoint

1..* behavior

0..*

info

Info

value : String

aa+returnInstance
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Appendix B:   Specification of Selected Components 

The full version of CoCoME EBP specification is available at the SOFA CoCoME 
project web site [27]. As the space allotted for this chapter is limited, this appendix 
contains EBP specification only of selected, “representative” components CashDesk-
Line and CardReader – those which are discussed elsewhere in the text. 
 
component CashDeskLine { 
  behavior { 
    ( 
      !CDConnector1.getProductWithStockItem*; 
      ( !BankIf1.validateCard*; 
        !BankIf1.debitCard 
      )*; 
      !CDLineEvDisp1.send(AccountSale); 
      !CDLineEvDisp2.send(SaleRegistered) 
    )*  
    | 
    ( 
      !CDConnector2.getProductWithStockItem*; 
      ( 
        !BankIf2.validateCard*; 
        !BankIf2.debitCard 
      )*; 
      !CDLineEvDisp2.send(AccountSale); 
      !CDLineEvDisp2.send(SaleRegistered) 
    ) 
  } 
} 

 
component CardReader { 
  types { 
    states = {CARD_READER_ENABLED, CARD_READER_DISABLED} 
  } 
  vars { 
    states state = CARD_READER_ENABLED 
  } 
  behavior { 
    ( 
      !CardReaderControllerEvDispatcher.send(PINEntered) + 
      !CardReaderControllerEvDispatcher.send(CreditCardScanned) 
    )* 
    | 
    ?CardReaderController.onEvent(ExpressModeDisabled){ 
      state <- CARD_READER_DISABLED 
    }* 
    | 
    ?CardReaderController.onEvent(ExpressModeEnabled) { 
      state <- CARD_READER_ENABLED 
    }* 
  } 
} 
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