
A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 388–417, 2008.
© Springer-Verlag Berlin Heidelberg 2008

15 CoCoME in SOFA*

Tomáš Bureš1,2, Martin Děcký1, Petr Hnětynka1, Jan Kofroň1,2, Pavel Parízek1,
František Plášil1,2, Tomáš Poch1, Ondřej Šerý1, and Petr Tůma1

1 Department of Software Engineering
Faculty of Mathematics and Physics, Charles University

Malostranské náměstí 25, Prague 1, 11800, Czech Republic
{tomas.bures,martin.decky,petr.hnetynka,jan.kofron,

pavel.parizek,frantisek.plasil,tomas.poch,
ondrej.sery,petr.tuma}@dsrg.mff.cuni.cz

2 Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věží, Prague 8, 18000, Czech Republic

{bures,kofron,plasil}@cs.cas.cz

Abstract. This chapter presents our solution to the CoCoME assignment that is
based on the SOFA 2.0 (SOFtware Appliances) hierarchical component model.
The solution involves (i) modeling architecture in SOFA meta-model, (ii) speci-
fication of component behavior via extended behavior protocols, (iii) checking
behavior compliance of components, (iv) verification of correspondence be-
tween selected component Java code and behavior specification, (v) deploy-
ment to SOFA run-time environment (using connectors that support RMI and
JMS), and (vi) modeling of performance and resource usage via layered queue-
ing networks. We faced several issues during implementation of the CoCoME
assignment in SOFA 2.0. Most notably, the architecture was modified in order
to improve clarity of the design – in particular, the hierarchical bus was re-
placed by two separate buses and the Inventory component was restructured.
Extended behavior protocols for all the components are based on the provided
plain-English use cases, the UML sequence diagrams, and the reference Java
implementation (the assignment does not include a complete UML behavior
specification e.g. via activity diagrams and state charts).

15.1 Introduction

15.1.1 Goals and Scope of the Component Model

SOFA 2.0 [9] is a component model employing hierarchically composed components.
It is a direct successor of the SOFA component model [24], which has provided the
following features: ADL-based design, behavior specification using behavior proto-
cols [25], automatically generated connectors supporting seamless and transparent
distribution of applications, and distributed runtime environment with dynamic update
of components.

* This work was partially supported by the Grant Agency of the Czech Republic project

201/06/0770, the results will be used in the ITEA/EUREKA project OSIRIS Σ!2023.

 CoCoME in SOFA 389

From its predecessor, SOFA 2.0 has inherited the core component model, which is
enhanced in the following way: (i) the component model is defined by means of its
meta-model; (ii) it allows for dynamic reconfiguration of component architecture and
for accessing components under the SOA concepts; (iii) via connectors, it supports
not only plain method invocation, but in fact any communication style [8]; (iv) it
clearly separates and makes extensible the control (extra-functional) part of compo-
nent implementations. Similar to its predecessor, SOFA 2.0 is not only a tool for
modeling, but it provides a complete framework [28] supporting all the stages of an
application lifecycle from development to execution.

In SOFA 2.0, a component is primarily treated as a black-box with well-defined in-
terfaces and exists at design time, deployment time, and run time. Components are
defined using their frame and architecture. A frame provides a black-box view of a
component via defining component’s interfaces. An architecture implements at least
one frame and defines internal structure of the component, i.e. subcomponents and
their composition. Semantics of the composition is defined via Extended Behavior
Protocols; SOFA 2.0 also supports divide and conquer via interface specification.

The component specification is separated from the implementation and is defined
using models (based on the SOFA 2.0 meta-model). Extra functional properties (EFP)
are specified by separate annotations and resource model.

Component behavior is specified using Extended Behavior Protocols (EPB). EBPs
allow to model and verify the behavior compliance and LTL-X properties. The verifi-
cation tools can verify the component architecture independently from the implemen-
tation, and the relation of the model and implementation.

Deployment-related features are specified separately from the architecture specifi-
cation in a deployment plan.

15.1.2 Modeled Cutout of CoCoME

We model (and verify) nearly all aspects of the CoCoME example; regarding EFPs,
however, we do not model other properties than resource and performance related.

To allow modeling of the example in SOFA 2.0, we have introduced minor changes
to the original architecture. In particular, these include replacement of buses, introduc-
ing Enterprise server, and restructuring StoreServer. We verify behavior compliance of
all components of the example and the results of performance prediction are compared
with benchmarks of the reference implementation. For fully automatic behavior verifi-
cation, we use a tool chain consisting of EBP to Promela translator and the Spin model
checker; for performance prediction we use the Carleton LQN solver.

15.1.3 Benefit of the Modeling

The biggest advantages of our approach are namely (i) behavior verification, (ii) per-
formance and resource usage performance prediction at design time, and (iii) the
potential of checking whether a given use case is really implemented.

On the other hand, our approach cannot treat behavior that cannot be modeled by a
regular language (e.g. recursion). Together with the manual preparation of the re-
source usage model, this remains the weakest part of our approach for now.

390 T. Bureš et al.

Usage of SOFA 2.0 and the verification and prediction tools and approaches is
quite easy; an average computer science student takes approximately five days to
learn about SOFA 2.0 itself and another five days to write behavior specification of
simple components.

15.1.4 Effort and Lessons Learned

We have spent approximately 10 person-months to model the CoCoME example (we
treat nearly all its aspects). Besides the modeling itself, this includes also modifica-
tions of the prototype implementation and collection of performance data on the pro-
totype, required for comparison with the performance modeling results.

Major lessons learned from the modeling effort include the number of details that
need to be covered to model a project in its entirety, as opposed to modeling only
selected aspects. Having the fully modeled CoCoME example at hand is also ex-
tremely useful for further research into what other properties can be modeled and
checked.

The chapter continues as follows. Section 2 provides an in-depth description of
SOFA 2.0, as well as a brief comparison of SOFA 2.0 and other contemporary com-
ponent models. In Section 3, we present our modeling of the CoCoME example in
SOFA 2.0 and Section 4 provides short note about used transformation. In Section 5,
we analyze modeling results while Section 6 presents used tools and achieved results.
Section 7 concludes the paper.

15.2 Component Model

15.2.1 Static View

SOFA 2.0 uses a hierarchical component model with connectors, which are also first-
class entities like components. The component model is defined using a meta-model
[22]. In comparison to an ADL-based component model definition (like in the previ-
ous SOFA version), or even just plain language description, such an approach has
many advantages like support of MDD, the possibility of automated generation of
meta-data repositories with a standard interface, a standard format for data exchange
among repositories, support for automated generation of model editors, etc. As the
particular technology for defining the meta-model and generating a meta-data reposi-
tory, we have been using EMF [10]. The meta-model is depicted in Appendix A; a
brief description of main entities of the meta-model follows (a more complete de-
scription is available in [9]).

The NamedEntity and VersionedEntity classes1 are reused multiple times in the
meta-model. All other classes featuring a name inherit from NamedEntity. The Ver-
sionedEntity class further extends NamedEntity by adding a version (the versioning
model used in SOFA is described in [9]).

A black-box view of a component is defined by the Frame class (it inherits from
the VersionedEntity). The provided, resp, required, interfaces of a frame are modeled

1 Like other elements in the meta-model, they are meta-classes but for better readability we

omit the meta- prefix of meta-classes, meta-associations, etc. in the rest of the paper.

 CoCoME in SOFA 391

by the provideInterface, resp. requiredInterface, association with the Interface class,
which is further associated with the InterfaceType class defining the real type of the
interface. Also, Frame is associated with the Property class, which defines the name-
value properties used to parameterize components (these values are specified at the
deployment time).

A gray-box view of a component is defined by the Architecture class. The compo-
nent’s architecture implements at least one frame captured by the association between
the Frame and Architecture classes (the option of multiple frames for an architecture
allow for taking different views on the component behavior) and contains subcompo-
nents and connections among them. If the architecture is empty, then the component
is primitive and is directly implemented. Architectures can also add other properties
(again captured via the association with the Property class), and/or can expose
subcomponents’ properties as their own (captured by the association with the
MappedProperty class).

Connections among subcomponents are realized via connectors. At the meta-model
level, connectors are just links among components’ interfaces and they are captured
by the Connection and Endpoint classes. The communication style of a connector and
its non-functional features, which it has to provide at runtime (like secure connection,
etc.) are defined by the Feature class, which is associated with Interface.

The dynamic reconfigurations [15] are allowed through well-defined reconfigura-
tion patterns. Currently, SOFA 2.0 supports three patterns: factory pattern, removal
pattern, and utility interface pattern. The factory pattern allows adding new compo-
nents to the architecture at runtime; the removal pattern is complementary to the for-
mer and allows removing components at runtime. In the meta-model, the Factory
class (which inherits from Annotation) can be used to mark an interface that it can
create new component instances. The last pattern on the list introduces the concept of
utility interfaces (in the meta-model the connectionType attribute of the Interface),
which stems from SOA and allows accessing interfaces across the component
boundaries (orthogonally to component hierarchy). In more detail, a provided utility
interface can be accessed by any component at any level of nesting or from a com-
pletely different application (even non-component based), and the reference to such
an interface can be freely passed among components. Thus, it serves as a generally
accessible service. In a similar vein, a required utility interface can be connected
across the application hierarchy. The concept of utility interfaces combines the ad-
vantages of component-based design and SOA.

15.2.2 Behavior View

For modeling behavior of SOFA 2.0 components, Extended Behavior Protocols
(EBP) [16] are used; they have been derived from the original behavior protocols [2]
by addition of enumeration data types and synchronization of multiple events [16].

Behavior protocols describe the behavior of software components as a set of traces
of events appearing on component interfaces (method calls requests and returns from
the calls (responses)). A behavior protocol is an expression built up from event tokens
combined by classical regular (‘;’, ‘+’, ‘*’) and the operator expressing parallel com-
position by event interleaving (‘|’). For parallel composition, there is also another

392 T. Bureš et al.

operator ∇ (consent), which allows to detect communication errors as explained fur-
ther in this section. As an example, consider the following protocol:

(?i.open ; (?i.read + ?i.write)* ; ?i.close) | ?ctrl.status*

This behavior protocol generates the set of those traces starting with the open method
and ending with the close method on the i interface with an arbitrary sequence of repeat-
ing the read and write methods on the same interface between them. The traces may be
interleaved with an arbitrary number of the status method calls on the ctrl interface. As
an aside, syntactically, this protocol is composed by means of the abbreviations 8-10
mentioned below.

The Extended Behavior Protocols (EBP) are able to describe the derived behavior
more precisely than BP, since method parameters and local variables (e.g. for captur-
ing component modes [12]) become a part of the specification.

A frame protocol is associated with each component frame; it describes the be-
havior of the component as the sequence of events appearing on the component
frame. Furthermore, the architecture protocol is a parallel composition of frame pro-
tocols of the first-level-of-nesting subcomponents of a composite component.

As an example frame protocol, consider the following specification of the Light-
Display component. In the example, the behavior specification of the component is
divided into three parts: (1) type definitions (types), (2) local variable definitions
(vars), and (3) behavior definition (behavior) containing an extended behavior
protocol (the entities introduced in (1) and (2) are employed here).

 component LightDisplay {

 types {
 states = {LIGHT_ENABLED, LIGHT_DISABLED}

 }

 vars {

 states state = LIGHT_ENABLED
 }

 behavior {

 ?LDispCtrlEventHandlerIf.onEvent(EVENT ExpModeEnabledEvent){
 state <- LIGHT_ENABLED
 }*

 |
 ?LDispCtrlEventHandlerIf.onEvent(EVENT ExpModeDisableEvent){
 state <- LIGHT_DISABLED
 }*

 }
}

Extended behavior protocol is an expression defining the set of allowed sequences of
events (method call requests and responses) appearing on the frame of a component.
It is formed using event tokens, operators, and control statements. Event tokens are of
seven forms:

1. ?interface.method(type1 arg1, type2 arg2, ...)↑
2. ?interface.method(val1, val2, ...)↑

 CoCoME in SOFA 393

3. ?interface.method↓
4. !interface.method(val1, val2, ...) ↑
5. !interface.method↓
6. @multisynchronization_event
7. local_var <- symbolic_value

Furthermore, the following abbreviations are defined:
8. ?interface.method(...) for ?interface.method(...)↑ ; !interface.method↓
9. !interface.method(...) for !interface.method(...)↑ ; ?interface.method↓
10. ?interface.method(...) {expr} for
 ?interface.method(...)↑ ; expr; !interface.method↓

The event tokens (1) – (10) represent primitive terms, which can be combined into
expressions via the operators: ‘;’ (sequencing), ‘+’ (alternative), ‘*’ (repetition), and
‘|’ (parallel composition) as in the example above.

Each of the event tokens (1) – (7) represents an atomically occurring event (events
do not overlap). The event token (1) stands for accepting a method call request (↑)
and assigning the values provided by the caller to variables arg1 of type1, arg2 of
type2, etc. The event token (2) is similar to (1), but it represents acceptance of a
method call request only if it has been emitted with parameter the values val1, val2,
etc. The event token (3) denotes an event representing acceptance of a response (↓)
from a method call. The event token (4) stands for emitting a method call request
providing val1, val2, ... as the parameters – the type of each parameter must corre-
spond to the values declared at the callee (server) side. The event token (5) denotes
emitting of a method call response event. The multisynchronization event (6), e.g.
@x, is a blocking event taking place only if the all protocols in a parallel composition
which contain @x are able to execute it at once. Then, it is executed as a single event
atomically and simultaneously by all the protocols. The event token (7) denotes the
event of assignment of a value to the local variable. The last two event tokens are not
associated with a method call events.

Additionally, the behavior of a component may depend on the value of a local
variable or a parameter via using the switch statement. The semantics of the switch
statement is the same as in common programming languages. As an example, con-
sider the following specification fragment:

switch (local_var) {
 value1: { protocol1 }
 value2: { protocol2 }
}

Finally, a while loop can be used for modeling finite repetitions that are done while
a condition holds. The syntax of a while cycle follows:

while (local_var == value) {
 repeated-part
}

Another protocol operator ∇ (consent) is a specific parallel composition which,
in addition to classical event interleavings and joining two complementary events (?x

394 T. Bureš et al.

and !x) into a single internal τ-event (visible but no more composable with another
event), detects the following communication errors:

(i) bad activity – the inability of components to accept an emit event at the time the
event is emitted;

(ii) no activity – deadlock.

The divergence composition error, detected in the original behavior protocols, is
omitted here because of two reasons. (i) Its implementation is of a very high com-
plexity, and (ii) our experience shows that it occurs very rarely.

Having all components of an application specified using extended behavior proto-
cols, two types of component compliance relations can be verified:

1) Horizontal compliance captures the correctness of communication among proto-
cols of first-level-of-nesting subcomponents of a composite component, i.e., the ab-
sence of errors inside of an architecture protocol.

2) Vertical compliance captures the compliance of a composite component and its
subcomponents, i.e., verifies the component frame against architecture protocols.

15.2.3 Deployment View

The SOFAnode is a distributed runtime environment, which consist of a single re-
pository and set of deployment docks. The repository serves as storage for both com-
ponent meta-data and code and is generated from the meta-model. The deployment
dock is a container inside which the components are instantiated and running.

From the implementation view, components have two parts – functional and con-
trol. While the functional part provides the business functionality of a component and
is directly implemented or in the case of a composite component composed of sub-
components, the control part controls the non-functional features (like managing life-
cycle and bindings, intercepting calls, etc.) of a component and is composed of so
called micro-components [19]. Micro-components allow for a modular fully extensi-
ble way to build the control part of a component; individual extensions are applied as
aspects (using AOP techniques). Also, micro-components can expose themselves via
control interfaces.

A SOFA application has the following lifecycle. First, a developer creates new
components and uploads them to the repository and/or reuses already existing compo-
nents from the repository. The next stage is assembly, where subcomponents defined
using frames are “refined” by corresponding architectures. The assembly process
starts with the top-level component (which represents the whole application) and
recursively continues till primitive architectures. Finally, the assembled application
can be deployed and launched. A deployer (i.e. a person responsible for deploying)
chooses and assigns components of the application to particular deployment docks in
the SOFAnode and sets values for components’ properties. Also at this stage, the
deployer can choose which control aspects have to be applied in the application. As a
next part of the deployment process, connectors are generated. The connector gen-
erator [8] takes as an input the “development-time” connectors (edges with non-func-
tional properties and communication style assigned – see 2.1) and current assignment
of components to docks and automatically generates the code of these connectors,
which transparently connects the components and have all required properties.

 CoCoME in SOFA 395

All the deployment information (i.e. assignment of components to particular docks,
connectors and other information mentioned in the paragraph above together with a
reference to the application architecture) is stored in a deployment plan, which serves
as a recipe for launching the application. Note that besides driving the application
launch process, the deployment plan is also used for performance modeling.

At runtime, code of the components is automatically obtained by deployment
docks from the repository. SOFA also supports versioning of components; every
component can exist in multiple versions and these can be simultaneously used (if
desired) even in a single application and/or deployed in a single dock.

15.2.4 Performance View

Previously described views can be used individually or in combination with other
views to reason about properties such as security, quality of service, etc. Some models
can be derived directly from the behavior model, but to describe quality of service
needed e.g. for service level agreements, a separate performance model is needed. The
reasoning about service times and related properties cannot be based simply on the
output of the behavior model (such as the number of method invocations) – it has to
take into account the real execution time.

In general, the performance modeling process deals with predicting common per-
formance attributes, such as roundtrip and throughput. Here, however, we consider
precise prediction of individual performance attributes to be a secondary goal. Our
primary goal is using the performance modeling process to predict how the perform-
ance attributes change when the scale of the application changes. This choice of pri-
orities is motivated by perceived practical relevance of the results – when building an
application, if it turns out that its real throughput differs from the predicted one by a
constant, it is often possible to adjust the real throughput simply by installing more
powerful hardware – but when the difference impacts scalability, no such adjustment
is possible.

Typical approaches to performance modeling of component systems [32, 33] start
with the behavior model of the system. This model is transformed into one of the well
known formal performance models such as Layered Queueing Networks (LQN) [31] or
Stochastic Petri Nets (SPN) [13]. The performance model is then populated by the per-
formance attributes of the primitive components and solved to predict the performance.

A problem of this approach is that the performance attributes of the primitive com-
ponents may change when the primitive components are composed, simply because
the composed components share resource such as processor cores or memory caches.
The typical approaches tackle this problem by including the resources in the perform-
ance model, which requires detailed knowledge of shared resources and in the end
leads to excessively complex models [12].

To keep the performance model simple while taking into account the effect of shared
resources, we have adopted an iterative approach, in which the usage of shared resources
forms a basis for calculating the performance attributes of the primitive components. The
performance attributes are fed to the performance model, which predicts the performance
but also provides feedback to adjust resource usage. The entire cycle is repeated until
stable resource usage and performance results are obtained.

396 T. Bureš et al.

When building the resource usage model, we have to take into account that even
though it is the primitive components that consume resources, the fact that resources
are consumed in the first place is not caused by the individual primitive components,
but by the interaction of multiple primitive components.

Most primitive components are passive and consume resources only when some of
their methods are invoked and only as much as those invocations dictate. In the re-
source usage model, we capture this behavior by annotating invocations with resource
demand hints, which carry information related to resource usage, and by annotating
components with resource usage rules, which describe how to calculate resource
usage from resource demand hints. The choice of the annotations depends on the
resources whose usage impacts performance, and can be determined by prior experi-
ence or by benchmarking experiments with primitive components.

The allocation of resources in a specific usage scenario whose performance is to be
modeled is described by the deployment model, which assigns the components to the
deployment docks and connects the components using the connectors, all at the level
of individual instances. In the scenario, the interaction of primitive components can
be captured by event traces generated from EBP. These event traces are used to direct
the propagation of resource demand hints to components whose resource usage rules
should apply.

To summarize, our performance view models the performance aspects of both
component interaction and resource usage. As the output of the performance model-
ing process, we not only predict the common performance attributes such as roundtrip
and throughput, but especially predict the trends of how these attributes change when
the scale of the application changes.

15.2.5 Comparison with Other Component Models

Darwin [18] is a classical component model based on an architecture description
language. It has influenced almost all of other component models. It employs hierar-
chical components without connectors and allows for describing dynamic architec-
tures, but in a quite limited way and without any possibility to control the dynamic
reconfiguration. Also, it is mainly just a specification language (ADL), not providing
any runtime environment; at the same time, it includes the option to specify behavior
of primitive components by means of finite state processes (FSP) [17]. Behavior
specification of composite component is constructed as a parallel composition of the
behaviors of subcomponents.

Another classical ADL is Wright [4]. It also uses hierarchical component but with
connectors. Even more, it allows describing behavior of components and connectors
formally using a CSP-like notation. But like Darwin, it is just a specification language
without any runtime support.

The contemporary industry-supported component models like EJB [30] and
CORBA Component Model [21], are just flat component models (no hierarchical
component composition) and focus mainly on providing a stable and mature runtime
environment. An exception is Koala [23] developed by Philips – it uses a hierarchical
component model also significantly inspired by Darwin. It aims at being a develop-
ment platform for embedded software for TVs, set-top-boxes, etc. Koala strongly

 CoCoME in SOFA 397

focuses on component design and optimizations of an architecture; the Koala com-
piler (a tool which from ADL generates skeletons of implementations) allows for
removing unused components and further architectural optimization. But the runtime
options are quite limited, since the model is targeted to an embedded environment.

Fractal [7] is a component model very close to SOFA 2.0; it defines a number of
abstractions and their interfaces in support of their existence at run-time (there are
several Fractal implementations). Fractal defines a hierarchical component model
without connectors (if the connectors are required, the Fractal specification instructs
to simulate them using components which, however, leads to rather unclean architec-
tures, mixing different levels of abstractions). Like SOFA, Fractal also separates func-
tional and control parts of components. In addition, it supports shared components,
i.e. a single component is subcomponent of several composite components. Such an
approach allows for easy managing of dynamic reconfigurations but it breaks compo-
nent encapsulation. An integral part of Fractal is Fractal ADL, which is an XML-
based language for designing components and architectures; its usage is optional
though since components can be built at runtime using Fractal API. Even though
Fractal does not provide any formal behavioral descriptions of components, there are
two projects adding it [1].

Like SOFA, the Fractal implementations (e.g., Julia, AOkell [26]) also provide
complete environments for not only designing and modeling components, but also
executing applications composed of them.

Both SOFA 2.0 and most of the Fractal implementations are built over the Java
platform, being conceptually just code libraries. A different approach is taken by the
ArchJava [3] and Java/A [5] component models, which modify the Java language by
introducing new constructs for creating components. According to their authors, this
approach prevents uncontrolled architecture modifications at runtime (“architecture
erosion”). Nevertheless, the SOFA runtime (and also the Fractal implementations)
prevents this completely.

15.3 Modeling the CoCoME

15.3.1 Static View

The architecture applied to the SOFA component model is based on the original ar-
chitecture as defined in the CoCoME assignment. The modifications include (i) re-
placement of the hierarchical bus by two separated buses, (ii) interfaces and bindings
necessary for the UC8 implementation, and (iii) restructuring of the Inventory com-
ponent. All these modifications are justified and explained below.

As to (i), the hierarchical bus in the CashDesk was replaced by buses CashDesk-
Line and CashDeskBus, since this modification better reflects the orthogonal activi-
ties of CashDeskApplication and Coordinator with respect to other components in the
CashDesk devices (Figure 1). This also elegantly reflects the fact that the number of
instances of CashDesk and cashDeskChannel has to be the same, which is impossible
to capture by the UML diagram from the CoCoME assignment (Figure 12, in the
assignment). The direction of communication with buses is determined by their push
semantics.

398 T. Bureš et al.

Fig. 1. SOFA architecture of the CoCoME assignment

As for (ii), this change relates to the Inventory component. The most visible modi-
fication here is the introduction of enterprise server and store server as explicit entities
in support of UC8 implementation (EnterpriseServer and StoreServer components
were brought up). According to the deployment diagram in the CoCoME assignment,
the enterprise server is just a simplification of the store server, but UC8 requires addi-
tional functionality to capture transportation among different stores. This functionality
is implemented by the EnterpriseServer component, in particular by its internal com-
ponent ProductDispatcher. The rest of EnterpriseServer uses the same components as
StoreServer which corresponds to the original idea of component reuse.

Finally, the modification (iii) comprises the replacement of two composite compo-
nents TradingSystem::Inventory::Application and TradingSystem::Inventory::GUI by
two other composite components – StoreApplication and ReportingApplication. The
new componens group the primitive components in orthogonal way. The modification
was motivated by the fact that Store and Reporting, the two internal components of
the GUI (resp. Application) component are independent and communicate only with

 CoCoME in SOFA 399

the corresponding component from the Application (resp. GUI) component over the
binding from the higher level of the hierarchy (Figure 2 – there is no binding among
the primitive components Store and Reporting). The fact that the behavior of Store
and Reporting is orthogonal is much better captured by the modification shown in
Figure 1. Here, the design functionality is covered by the components StoreApplica-
tion and ReportingApplication, each of them composed of two communicating sub-
components – one reflecting GUI and the second the business logic. This way, the
communication between StoreGUI and StoreLogic is hidden within the StoreApplica-
tion component. Similar argument holds for ReportingApplication. Since the Data
component provides interfaces needed by both StoreApplication and ReportingAppli-
cation, it is on the same level of nesting. Finally, the Database component from the
CoCoME assignment is not in the diagram, as it is accessed via JDBC, not the SOFA
framework. Since this is another level of abstraction it is not modeled in the diagram.

15.3.2 Behavioral View

Although the design of SOFA 2.0 supports different behavior specification backends,
the default specification language is EBP (Extended Behavior Protocols) already
described in Sect. 2.2. When specifying Trading System using EBP, the basic
decision is whether to base the specification on the CoCoME assignment UML speci-
fication or rather on the reference implementation. On one hand, the CoCoME assign-
ment UML specification does not constitute an unambiguous complete specification.
The sequence diagrams specify only individual runs of the application, in contrast to
the overall behavioral interplay of components. Unfortunately, other UML means for
behavior specification (collaboration diagrams, activity diagrams, state charts) are not
used. Moreover, when it comes to UC8, the CoCoME assignment UML specification
is ambiguous, as the component diagrams lack interfaces for EnterpriseServer to
StoreServer communication specified in UC8. Therefore, an analysis of the reference
implementation provides additional behavioral information. On the other hand, the
reference implementation conflicts with UC1 and UC8, introducing additional ambi-
guities. In UC1, the reference implementation differs during CreditCard payment and
does not allow manual BarCode entry. UC8 is implemented as a part of UC1 ex-
ploiting direct access to the shared database).

Finally, the EBP specification is based partly on the provided use cases and se-
quence diagrams (UC3 – UC8) and partly on the reference implementation
(UC1, UC2). Additionally, the EBP specification related to UC8 is also influenced by
the architectural modifications mentioned in Sect. 3.1.

The actual EBP behavior specification is created per component at a particular
level of nesting, i.e. both primitive and composed components are annotated by their
frame protocol. This way, the EBP specification provides a better picture than the
sequence diagrams, which follow the calls ignoring the component hierarchy (i.e.
orthogonal to the hierarchy). Moreover, an EBP protocol describes the overall inter-
action, in contrast to a single application run.

The actors (Customer, Cashier, StockManager, and Manager) were not directly
modeled; however, their behavior is modeled as an autonomous activity of the UI
components (CashDeskGUI, CashBoxController, CardReaderController, Scanner-
Controller, StoreGUI, and ReportingGUI).

400 T. Bureš et al.

Fig. 2. Fragment of the original architecture

15.3.3 Deployment View

From the deployment point of view, the most important aspects of the CoCoME ex-
ample have been the way deployment is described and managed, and the way dis-
tribution is addressed.

With regard to the description of deployment and its management, we have bene-
fited from the full fledged deployment and runtime environment of SOFA 2.0. We
have specified the implementation artifacts and the actual placement of components in
a deployment plan. Subsequently, we used the SOFA 2.0 tools to launch deployment
docks and start the application according to the deployment plan.

The actual distribution of the application in SOFA 2.0 has been performed via con-
nectors. They encapsulate middleware and realize the distribution transparently to
component. Since they support different communication style, we were able to model
method invocations (realized by RMI in the reference architecture) as well as busses
(realized by JMS in the reference architecture).

The connectors in SOFA 2.0 are automatically generated, thus a component devel-
oper is not forced to prescribe a particular middleware during design. The choice of
middleware is performed at deployment time and it is done automatically by the con-
nector generator (by constraint programming techniques). The generator also auto-
matically creates an implementation of connectors to be used at runtime to actually
address the distribution.

15.3.4 Implementation View

The implementation in fact completely follows the original reference implementation;
several changes of the application architecture are described in Sect. 3.1. Connections
among components are implemented via connectors (Sect. 3.3).

In SOFA 2.0, an application is represented by its model. Technically, the model is
expressed a set of files containing architecture specification in SOFA 2.0 ADL. All
the ADL files related to the CoCoME in SOFA application in are available on [27].

 CoCoME in SOFA 401

Further, the ADL files are processed by the Cushion development tool (Sect. 6.3),
which validates them for syntactical correctness and semantical compliance and en-
ters the model determined by them into the SOFA repository. Moreover, Cushion also
controls verification of the component behavior specification.

15.3.5 Performance View

For our chosen approach, which iterates between modeling resource usage and mod-
eling performance, it is necessary that the resource usage model provides performance
attributes of primitive components to the performance model, and that the perform-
ance model provides feedback on resource usage to the resource usage model.

In CoCoME, we have decided to adopt LQN as the performance model – the feed-
back from LQN takes the form of queue length and processor utilization values. An-
other choice would be adopting SPN as the performance model – the feedback from
SPN would take the form of numbers of tokens in selected places. Both LQN and
SPN were reported to achieve good results when modeling enterprise information
systems [5].

Our resource usage model in CoCoME is a hybrid model that uses benchmarking
of primitive components under varying resource usage conditions to provide basic
understanding of how resource usage influences the performance attributes. Addi-
tional benchmarking under specific resource usage conditions is coupled with mod-
eling of resource usage through resource demand hints and resource usage rules to
provide input to the performance model.

Because of the presence of the resource usage model, building the performance
model does not need to go beyond the level of detail captured in the deployment plan
and the behavior model. As described below, we have built the LQN model mechani-
cally and in fact even introduced additional simplifications. We hope to eventually
generate the performance model from the deployment plan and the behavior model,
potentially simplifying it manually afterwards.

The first layer of LQN contains tasks generating the external requests on the sys-
tem. These are the customers present at each store and coming to a cash desk at a
given average rate, store managers accessing store clients for ordering stock items and
enterprise managers accessing enterprise clients for generating reports.

The requests of the customers for processing their sale are handled by the cash
desks. The multiplicity represents the number of cash desks in a store and the internal
description of the cash desk activity (a complex probabilistic behavior description)
represents the properties of a typical sale (the figures were taken from the extrafunc-
tional properties of CoCoME). The load generated by the cash desks corresponds to
UC1.

Each store also has a store client and a store server, and the system also includes an
enterprise client and an enterprise server. All these tasks serve the purpose of gen-
erating disruptions of the standard load by the other use cases.

The database task represents the server part of the architecture which is actually
performing the data lookups and is the place where resources are shared. The utiliza-
tion of the processor running the database task represents the amount of concurrency.

402 T. Bureš et al.

The most challenging issue with using LQN was the representation of multiple
stores. A trivial approach – using just the multiplicity of tasks – might not be appro-
priate because the multiplicity does not model the queueing in a realistic way, but it
has the semantics of choosing any of the available cash desk by any customer regard-
less of the store he or she is in.

Our choice was to create all the separate instances of stores and cash desks inside
them individually. Moreover, the LQN model is created by a generator script which
can be thus seen as a meta-model. One instance of the model is shown on Figure 3.

Our benchmarking of primitive components under varying resource usage condi-
tions has suggested that the resource whose sharing affects the performance attributes
most significantly is – perhaps not surprisingly – memory of the StoreApplication and
Data components. For sake of brevity, we limit ourselves to these components, which
are in fact pivotal to the usage scenario most relevant to customers (UC 1).

The implementation of StoreApplication uses Hibernate, which caches data sepa-
rately for each transaction. The memory usage of StoreApplication therefore grows
linearly (i) with the number of transactions executing simultaneously and (ii) with the
size of the data fetched in each transaction. Neither the number of simultaneous trans-
actions nor the size of fetched data is limited - the former depends on the number of
invocations coming to StoreApplication over RMI, which uses a thread pool of unlim-
ited size, while the latter depends on the number of items in queries executed by
StoreApplication, which can span all application data.

Fig. 3. Simplified LQN model for UC1

The implementation of Data uses Derby, which keeps separate context for each
connection and caches pages for all transactions together. The memory usage of Data
therefore grows linearly (i) with the number of connections opened simultaneously
and (ii) with the size of the data cached for all transactions. The number of connec-
tions opened simultaneously is limited, as each instance of StoreApplication uses
Hibernate, which has a connection pool of limited size. Similarly, the size of the data
cached for all transactions is limited, as Derby uses a page cache of limited size.

The above description forms the basis for the resource usage rules of the Store-
Application and Data components. We get the complete resource usage rules by adding

 CoCoME in SOFA 403

the information on static memory consumption, collected through benchmarking, and
the information on the number of concurrent invocations, collected from the per-
formance model in the iteration loop:

memStoreApplication = base_usage + sum_per_invocation_type (aver-
age_number_of_concurrent_invocations_of_this_type * query_size_per_invocation *
memory_usage_per_unit_query_size)

memdata = base_usage + min(average_number_of_connectionsStoreApplication, connec-
tion_pool_limit) * #StoreApplications * memory_usage_per_connection +
min(page_cache_size_limit, database_size_in_items *
page_cache_occupation_per_item)

The resource demand hints used along the event trace, supply us with the query
size per invocation, which is one for getProductWithStockItem queries and average
shopping cart size for bookSale updates. The resource demand hints can be deduced
from the complete event trace of UC1, which was generated from the behavior proto-
cols. The key resource demand hints are the query and update sizes per invocations –
one item for getProductWithStockItem queries and average shopping cart size for
bookSale updates. The resource demand hints are associated individually with all
relevant invocations along the event trace.

We have also determined the effect of memory usage on performance attributes by
benchmarking, which shows that there are two milestones in memory usage that im-
pact the roundtrip time as the performance attribute of choice. First, the duration of
queries depends on whether the queries are satisfied from the page cache. We ap-
proximate this behavior by adjusting the mean roundtrip time of queries with the
probability that a query is satisfied from the page cache:

P(query_cached) = min(1, max_cache_size / data_size)
Tquery = Tquery_cached * P(query_cached) + Tquery_from_disk * (1 – P(query_cached))

Second, the duration of all operations depends on whether the memory used by the
operations has been paged out and therefore needs paging in. To approximate this
behavior, we would need to know (among other things) the memory access patterns of
individual operations, which would make the model too complex. We therefore sim-
plify the model by taking the sizes of the individual components to be correlated with
the sizes of their memory access patterns (we can afford to do this especially because
with any but insignificant amount of swapping, the system becomes overloaded – the
estimate of the very onset of swapping, rather than exact performance under swap-
ping, is therefore of interest):

P(swapping_needed) = occupied_physical_memory / occupied_virtual_memory
Toperation = Toperation_without_swapping + Tswapping_overhead * operation_component_size *
P(swapping_needed)

Other milestones in memory usage that could potentially impact the roundtrip time
are situations when the processor cache becomes exhausted and situations when the
file cache becomes exhausted. On contemporary processors, the size of the processor
cache is way below the memory usage of CoCoME, diminishing the importance of
the first milestone. Similarly, as the memory usage increases, the size of the file cache
decreases way below the size of the page cache, diminishing the importance of the
second milestone.

404 T. Bureš et al.

15.3.6 Specification of CashDeskApplication

To give a rough idea about the resulting behavior specification, frame protocols of
CashDeskApplication and CashDeskBus in EBP formalism (Sect. 3.7) – being proba-
bly the two most interesting components from the behavioral point of view – are pre-
sented below (the rest of EBPs can be found in the appendix and on [27]).

As the state transitions of the CashDeskApplication component can be easily ex-
pressed as a state chart (states representing different phases during a single sale), it is
very important that the behavior specification were as easy to comprehend as the state
chart, while containing additional information on the method calls interplay. In this
respect, the frame protocol of CashDeskApplication shown bellow satisfies this re-
quirement and shows how EBP can cope with specifying this kind of behavior.

Since EBP can explicitly model component’s internal state (via local state vari-
ables), expressing CashDeskApplication’s behavior is straightforward, as can be seen
on the CashDeskApplication frame protocol; here, the interface and method names
are shorten for the sake of brevity. In our view, having the states explicitly expressed
in the behavior specification of a component and revealing it to the outer world con-
tributes to the clarity of the EBP specification.

component CashDeskApplication {
 types {
 states = { INITIALIZED, SALE_STARTED, SALE_FINISHED,
 PAYING_BY_CREDITCARD, CREDIT_CARD_SCANNED,
 PAYING_BY_CASH, PAID }
 }
 vars { states state = INITIALIZED }

 behavior {
 (
 ?CDAppEvHandler.onEvent(SaleStarted) {
 switch (state) {
 INITIALIZED:
 { state <- SALE_STARTED }
 default:
 { NULL }
 }
 } +
 ?CDAppEvHandler.onEvent(ProductBarcodeScanned) {
 switch (state) {
 SALE_STARTED: {
 !CDConnector.getProductWithStockItem;
 (
 !CDAppEvDisp.send(ProductBarcodeNotValid) +
 !CDAppEvDisp.send(RunningTotalChanged)
)}
 default:
 { NULL }
 }
 } +

 CoCoME in SOFA 405

 ?CDAppEvHandler.onEvent(SaleFinished) {
 switch (state) {
 SALE_STARTED:
 { state <- SALE_FINISHED }
 default:
 { NULL }
 }
 } +
 ?CDAppEvHandler.onEvent(CashAmountEntered) {
 switch (state) {
 PAYING_BY_CASH: {
 NULL + (
 !CDAppEvDisp.send(ChangeAmountCalculated);
 state <- PAID
)}
 default:
 { NULL }
 }
 } +
 ?CDAppEvHandlerIf.onEvent(CashBoxClosed) {
 switch (state) {
 PAID: {
 !CDAppEvDisp.send(SaleSuccess);
 !CashDeskEventDisp.send(AccountSale);
 !CashDeskEventDisp.send(SaleRegistered);
 state <- INITIALIZED }
 default:
 { NULL }
 }
 } +
 ?CDAppEvHandlerIf.onEvent(CreditCardScanned) {
 switch (state) {
 PAYING_BY_CREDITCARD:
 { state <- CREDIT_CARD_SCANNED }
 CREDIT_CARD_SCANNED:
 { state <- CREDIT_CARD_SCANNED }
 default:
 { NULL }
 }
 } +
 ?CDAppEvHandlerIf.onEvent(PINEntered) {
 switch (state) {
 CREDIT_CARD_SCANNED: {
 !BankIf.validateCard; (
 !CDAppEvDisp.send(InvalidCreditCard) +
 (
 !BankIf.debitCard; (
 !CDAppEvDisp.send(InvalidCreditCard); (
 NULL +
 state <- PAYING_BY_CREDITCARD) + (
 !CDAppEvDisp.send(SaleSuccess);
 !CDEvDisp.send(AccountSale);

406 T. Bureš et al.

 !CDEvDisp.send(SaleRegistered);
 state <- INITIALIZED
)
)
)
) }
 default:
 { NULL }
 }
 }
)* | (
 ?CDEvHandler.onEvent(ExpressModeEnabled) {
 !CDAppEvDisp.send(ExpressModeEnabled)
 }
)* | (
 ?CDAppEvHandler.onEvent(ExpressModeDisabled)
)*
 }
 }
}

The EBP specification above consists of (1) definition of types via enumerating
their values, (2) definition of component’s local variables, the state variable repre-
senting state of a single sale, and (3) the actual behavior. The CashDeskApplication
accepts and publishes events from/through two buses, CashDeskBus and CashDesk-
LineBus, via its interfaces CDAppEvDisp, CDAppEvHandler, CDEvDisp, and
CDEvHandler. Behavior of CashDeskApplication during a single sale (state tran-
stion) is specified in the first and longest one of three parallel subprotocols, separated
by the parallel operator “|”. The other two subprotocols specify switching on and off
the express mode as a reaction on the ExpressModeEnable and ExpressModeDisable
events.

In more detail, the first subprotocol specifies different reactions, note the alterna-
tive operator “+”, on sale-related events depending on the actual event received from
the CashDeskBus (e.g. SaleStarted as a parameter of the onEvent method).
The reaction then typically depends on the current state, stored in the state local
variable (the switch statement), and consists of communication over the buses
and/or switching transition to another state using the assignment statement “<-”.

15.3.7 Specification of Component CashDeskBus

The second EBP snippet is protocol of the CashDeskBus component. The component
implements a classical publisher-subscriber pattern, i.e. the message publishing method
send() blocks until all subscribers receive the published message via the onEvent()
method.

The key feature of the CashDeskBus component is that it synchronizes delivery of
notification messages with next event acceptance, i.e. a notification message is deliv-
ered to all subscribers before another event message is accepted. To model this be-
havior, a technique which resembles the way a mutual exclusion is expressed in Petri
nets. There is an auxiliary component Token which repeatedly (and sequentially)

 CoCoME in SOFA 407

produces tokens via the Helper.token method. The CashDeskBus accepts the
token and, while still “holding it” (until return from the Helper.token method),
CashDeskBus distributes the corresponding notification message to all subscribers.
This way, processing of other messages is blocked until the token is released. As a
technicality, the CashDeskBus protocol can always accept the token when there are
no event messages to accept.

component Token {
 behavior {
 !Helper.token*
 }
}

component CashDeskBus {
 behavior {
 ?CashBoxControllerEvDisp.send(CashAmountEntered) {
 ?Helper.token {
 !CDAppEvHandler.onEvent(CashAmountEntered) |
 !PrinterControllerEvHandler.onEvent(CashAmountEntered) |
 !CDGUIEvHandler.onEvent(CashAmountEntered)
 }
 }*
 |
 ?CashBoxControllerEvDisp.send(CashBoxClosed) {
 ?Helper.token {
 !CDAppEvHandler.onEvent(CashBoxClosed) |
 !PrinterControllerEvHandler.onEvent(CashBoxClosed)
 }
 }*
 |
 ?CardReaderControllerEvDispatcher.send(CreditCardScanned) {
 ?Helper.token {
 !CDAppEvHandler.onEvent(CreditCardScanned)
 }
 }*
 |
 . . .
 |
 ?Helper.token*
 }
}

It is fair to say that the presented technique takes advantage of the fact that notifi-
cation messages are handled synchronously with event acceptance. In contrast, if the
handling was asynchronous (i.e. message buffering was necessary), the modeling
would be much harder (and obviously impossible for unbounded buffer).

15.4 Transformations

The modeling process of SOFA can be viewed as a series of transformations. The
most notable transformations include the deployment process, which represents a

408 T. Bureš et al.

transformation from the component model into the deployment plan, and the perform-
ance modeling process, which represents a transformation from the deployment plan
and the behavior model into the resource usage model, and a transformation from the
component model and the behavior model into the performance model.

The transformation from the component model into the deployment plan is mostly
done manually, with some parts which can be automated. The decisions are particu-
larly based on information like geographical properties of the deployment instance,
hardware configuration, which is available, etc. Partial automation can be achieved by
defining well-known deployment patterns in the component model (e.g. if some com-
ponents are connected with a connector representing a bus, they should be deployed
in the same deployment dock). This transformation is one-way.

The creation of the performance and resource models starts with a decision what
use cases of the modeled system are actually interesting. This heavily depends on the
SLA and QoS expectations of the real implementation (e.g. the real time duration of
some use cases might be of very low importance for the service customers). Also
some components from the component model can be manually eliminated or merged
for the purpose of performance and resource modeling, when it is clear that their per-
formance impact is either negligible (which is assumed) or fatal (which would make
the performance model instantly useless).

After this selection and elimination, the performance model is derived automati-
cally from the component model (components becoming tasks of the performance
model) and behavior model (the behavior describes both the methods of the tasks and
the kind and probability of their interaction). The decisions and transformation can be
done iteratively when the performance model is too complex (difficult to solve) or
oversimplified (captures only trivial interaction).

After the manual decisions on the importance have been made, the transformation
from the deployment plan and behavior model into resource usage model can be also
automatic. Basically the assignment of the tasks to processing units directly reflects
the assignment of components to deployment docks. The behavior description is used
to distinguish different types of processing units – tasks which act as pure clients
(generating load) use unlimited processing units (with unbounded parallelism), whilst
other tasks use processing units with a given multiplicity (which is derived from the
number of instances of the given component in the deployment plan). This transfor-
mation is usually one-way.

15.5 Analysis

15.5.1 Compliance Both Vertical and Horizontal

Both the vertical and the horizontal compliance verification is done using a tool chain.
The parts of the chain are EBP2PR (Extended Behavior Protocols to Promela Transla-
tor) and Spin [29] (described in detail in Sect. 6). Basically, the EBP2PR tool trans-
lates the specification in EBP into the Promela language. After that, this output is
verified by the Spin model checker. Here, each EBP is modeled as a Promela process
and the absence of communication errors is transformed (by a technical trick) into
absence of deadlocks.

 CoCoME in SOFA 409

The tool chain was applied to the frame protocols associated with all of the com-
ponents in the CoCoME application (Figure 1). The data on the time the tool chain
spent on verification in this process is available at the project web site [27]. For illus-
tration, Tab.1 below provides data on the time spent on the verification of the hori-
zontal compliance of the CashDeskApplication and CashDeskBus frame protocols. In
the first column, the size of the state space generated by the frame protocols’ compo-
sition is shown. The other columns show the time spent in particular parts of the veri-
fication process – EBP2PR is the time required for transformation of the specification
in EBP into Promela, Verification represents the time Spin spent on the verification
process. As the composition of the CashDeskApplication and CashDeskBus frame
protocols generates the most demanding state space in the context of the CoCoME
application, the total time spent on behavior verification of the other parts of the ap-
plication was shorter.

This particular horizontal compliance verification was performed on the following
hardware and software configuration: PC 2x Intel Core2 Duo (dual core) processor
with 4 MiB L2 cache and 4 GiB operational memory running the Linux (kernel ver-
sion 2.6.19), and Spin version 4.2.9.

Table 1. The result of vertical compliance verification of the CashDesk component

of states EBP2PR [s] Verification [s] Total time [s]

3 335 950 41.5 46.1 95,6

Vertical compliance evaluation starts with inversion of the frame protocol of the

composite component (the emitting and accepting events are swapped, e.g. !i.a↑ is
replaced by ?i.a↑ and vice versa). Via the consent operator, the actual vertical com-
pliance is verified by composing the inverted frame protocol with the architecture
protocol capturing the composed behavior of the subcomponents; as an aside, this
way vertical compliance is converted into horizontal compliance [2]. The complete
data on verification are listed on [27].

15.5.2 Verification of Code against Frame Protocols

Checking of horizontal and vertical compliance makes sense only if implementation of
each primitive component in a particular architecture obeys (is compliant with) the com-
ponent’s frame protocol. In order to check this property, we apply the technique of code
model checking to individual primitive components. However, an isolated primitive
component cannot be checked by a typical code model checker (like Java PathFinder),
since such a component does not form a complete Java program required by a model
checker – an environment that forms a complete program together with the component is
needed. The environment is constructed from its behavior specification (component’s
inverted frame protocol) in such a way that forces the model checker to verify all reason-
able control-flow paths in the component’s implementation.

Although the well-known problem of state explosion is partially mitigated by ap-
plication of model checking to a single component (having a smaller state space than
the whole application), still the technique has very high time and space complexity

410 T. Bureš et al.

since it exhaustively verifies all possible runs of the code; for highly parallel compo-
nents, model checking may even be infeasible. In such a case, we recommend to use
run-time checking to check the property of obeying a frame protocol at least partially
(i.e. not exhaustively).

15.5.3 Run Time Checking against Code

The basic idea of run-time checking is to monitor method call-related events on the
component’s external interfaces at run-time and check whether the trace composed
from the events is specified by the component’s frame protocol. Since run-time
checking can verify only a single trace recorded during a single run of an application
and is therefore not exhaustive, an error (violation of a frame protocol) may not be
detected for many runs of the application; in this respect, the technique of run-time
checking is similar to testing.

15.5.4 Performance Analysis

The basis for our performance analysis is the CoCoME reference implementation,
which was benchmarked to provide input for the resource usage and performance
models. We have run several types of benchmarks on the implementation to identify
those parts of code that have significant performance impact and resource consump-
tion. Our further reasoning about scalability was based on these benchmarks (for
detailed benchmark results, see [27]).

We have focused our analysis on a simple but practical configuration for both
benchmarking and modeling performance, which is a repeated execution of Use
Case 1. While quite simple, it represents a typical load on the system generated in a
production environment. Other use cases serve the purpose of generating disruptions
(the Reporting components in both Enterprise and Store can submit queries that can
trash the database cache occasionally, but it would not make sense to consider a con-
tinuous reporting use case).

 a) b)

Fig. 4. Calculated a) throughput and b) average service time of Use Case 1

Stores
1 2 3 4 5 6 7

C
as

hd
es

ks
 p

er
 s

to
re

2

4

6

8

S
ale observed tim

e [s]

10

20

30

40

Stores
5 10 15 20

C
as

hd
es

ks
 p

er
 s

to
re

2

4

6

8

T
hroughtput

20

40

60

 CoCoME in SOFA 411

It is our assumption that a cash desk by itself cannot be overloaded (the throughput
is strictly limited by the cashier interacting with the cash desk – the rate of his or her
requests is significantly below any reasonable value which might be considered a high
load) and its resource consumption is constant. We can therefore focus on the per-
formance of the inventory components under the aggregated load by requests gener-
ated by several cash desks in several stores.

The results of our modeling are on Figure 4a, which shows the dependency of the
overall enterprise throughput in terms of item queries processed per second on the
number of stores in the enterprise, and on Figure 4b, which shows the dependency of
the time to perform a single sale on the number of stores in the enterprise. We see that
when the infrastructure is saturated or overloaded by requests from the cash desks,
insufficient performance is noticeable even on the cash desk side, since the cash desks
are unable to get answers to item queries within a reasonable time (however, the op-
erations performed in the cash desks still take the same constant time, independent on
the state of other components).

To evaluate the results of our modeling, we have measured the performance of the
modeled scenario on the prototype implementation. The benchmark, as well as the
benchmark experiments used to obtain the average durations of the atomic actions,
have used an Intel Pentium 4 Xeon 2.2 GHz machine with 512 MB RAM running
Fedora Core 6 and the database cache of 10000 pages for the server machine, and a
dual Intel Core 2 Quad Xeon 1.8 GHz machine with 8 GB RAM running Fedora Core
6 for the client machine. The relatively low amount of memory on the server machine
was used deliberately to allow the manifestation of swapping with a reasonably small
number of cash desks and stores.

The results on Figure 5 suggest that our approach is reasonably precise in predict-
ing the item query throughput and single sale roundtrip values. We have also pre-
dicted getting within 10% of the maximum throughput around 2 stores, when the
measurement shows this happening around 3 stores, and the degradation in perform-
ance due to swapping around 8 stores, when the measurement shows this happening

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
20

40
60

80
10

0

Stores

T
hr

ou
gh

pu
t

Fig. 5. Benchmarked throughput of Use Case 1

412 T. Bureš et al.

around 10 stores. Some difference in these results can be explained by our inability to
determine the precise memory requirements of the individual components, something
that is difficult to do with current tools.

15.6 Tools and Results

15.6.1 BP Checker

The EBP2PR tool is used to transform the specification in EBP into Promela (input
language of the Spin model checker). On its input, this tool accepts the frame protocol
of a composite component and the architecture protocol capturing behavior of its
subcomponents. The output is a corresponding Promela model. This section describes
the transformation process in detail.

As the semantics of the Promela language and EBP differ in many aspects (e.g. in
handling nondeterminism), a straightforward translation of EBP into Promela is not
possible. Therefore, the following sequence of transformations is applied: Each EBP
on its input is first transformed into a corresponding nondeterministic finite automa-
ton (NFA) (local variables and method parameters are not considered). This NFA is
transformed into an equivalent deterministic finite automaton (DFA) that is mini-
mized. Finally, Promela code modeling the minimal DFA is generated and the local
variables and method parameters (ignored in the preceding steps) are added as vari-
ables of a Promela enumeration type.

As to communication errors (bad activity and no activity), bad activity is modeled
as Promela deadlock in the following way: Each time a Promela process (recall that
each EBP is modeled as a Promela process) emits an event e, it first acquires a lock
(shared variable) and then emits e. If no other process is ready to accept e, a deadlock
occurs since, due to the lock, no other event may be either accepted or emitted before
accepting e. Technically, an event is represented by a dedicated shared variable. No
activity is modeled naturally as a deadlock when the lock is not acquired.

If a communication error is discovered during the verification process, the verifi-
cation is stopped, and the Promela error trace is used to guide the Spin simulation
(i.e., only the error trace is executed) to generate the corresponding error trace in the
EBP.

15.6.2 Modified JPF and BP Checker

As indicated in Sect. 5.2, we use the technique of code model checking to verify that a
primitive component obeys its frame protocol. Since the SOFA component model is
strictly Java-based, we use the Java PathFinder (JPF) tool, which is a highly extensi-
ble model checker for Java byte code, in combination with the old version of behavior
protocol checker (BPC) that supports only old behavior protocols – there is no Java-
based checker for new behavior protocols.

Technically, JPF and BPC cooperate while traversing their own state spaces and
since both checkers work at different levels of abstraction, we defined a mapping
from the JPF state space into the state space of BPC to make such cooperation possi-
ble. The mapping is implemented via a JPF plug-in that traces traversal of JPF state
space and drives BPC in traversal of its own state space; for each executed byte code

 CoCoME in SOFA 413

instruction related to method calls on the component’s external interfaces, JPF plug-in
tells BPC what transition it has to take in its state space. If such a transition does not
exist in the BPC state space, a violation of a frame protocol is detected and reported.
Environment for a primitive component is constructed in a semi-automated way: (i)
the EnvGen tool generates stub implementations of component's required interfaces
and skeleton of a driver program, and (ii) the driver program is manually modified so
that the environment behaves correctly (with respect to data-flow and component's
state).. Translation of EBP into the old behavior protocols (BP) is performed in an
automated way. EBP-specific features are translated into constructs supported by the
old BP with the possible loss of information (some behaviors may be added).

Run-time checker is also based on the old Java-based version of BPC. However, in
this case, the state space traversal in BPC is driven by run-time notification performed
by micro-components that intercept method calls on the component’s external inter-
faces; moreover, no coordination of backtracking is needed since only a single run of
the application is checked.

By application of our tool to the implementation of CashDeskApplication and its
frame protocol created according to the reference specification of UC1, we were able
to detect the inconsistency between the reference implementation and specification of
UC1 that is first mentioned in Sect 3.2. Detection of this inconsistency took 2 seconds
on a 2xDualCore at 2.3GHz with 4 GB RAM PC. Code checking of CashDeskAppli-
cation against the frame protocol based on the reference implementation (i.e. with no
UC1-related inconsistency) has not reported any error and took 14 seconds.

Nevertheless, correctness of switching between the express and normal mode is not
checked, since the environment is not able to find whether the application is in the
express mode or not, and thus does not know whether it can trigger payment by credit
card (which is being forbidden in the express mode). Moreover, we added the
CashAmountCompleted event into the frame protocol and implementation of Cash-
DeskApplication in order to explicitly denote the moment when the cash amount is
completely specified (originally, the CashAmountEntered event with a specific value
of its argument was used for this purpose). Were the CashAmountCompleted event
not added, the environment for CashDeskApplication would exercise the component
in such a way that a spurious violation of its frame protocol would be reported by JPF.

15.6.3 Cushion Development Support Tool

As mentioned in Sect. 3.4, Cushion (available as a part of the SOFA 2.0 implementa-
tion [28]) is a tool supporting development of SOFA 2.0 applications. It allows adding
new ADL specification of interfaces, frames, and architectures to the repository, re-
trieving already existing specifications from the repository for further development
(multiple versions are supported), etc. Also, it controls behavior validation of compo-
nents. Further, Cushion serves as a build tool; it supports compilation of the code of
primitive components, preparation of deployment plan, etc.

By its design, Cushion is fully extensible. In fact, by itself, Cushion provides just a
core; all the above described functionality is implemented as extensions.

In addition to Cushion (command-line tool by nature), SOFA 2.0 application can
be developed in a graphical development environment (designed as an Eclipse IDE
plugin); unfortunately is has been still under the development at the time of writing,
not being ready for a no-trivial use such as CoCoME.

414 T. Bureš et al.

15.7 Summary

In this paper, we presented our experience and results of using the SOFA 2.0 compo-
nent model for specification and implementation of components of the CoCoME
application. The architecture was modified in order to improve clarity of the design –
in particular, the hierarchical bus was replaced by two separated buses and the In-
ventory component was restructured. All these modification, as well as the motivation
for them, were described in Sect. 3.1. To demonstrate the modeling power of SOFA
2.0 in terms of behavior specification at the ADL level, Extended Behavior Protocols
described in Sect. 2.2 were used. They further extend the expressive power of Be-
havior protocols via introducing local variables of enumeration type, method pa-
rameters of these types, and add simple control structures (loop, switch, if). By taking
advantage of the EBP specification, the behavior compliance of communicating com-
ponents was verified (Sect. 5.1). Furthermore, compliance of a part of the implemen-
tation (the CashDeskApplication component) against its EBP specification was also
verified. This illustrated that the question whether the implementation fulfills the
specification in EBP can be answered in an automated way at an early stage of the
application development.

The deployment of the CoCoME application was done by the runtime and deployment
environment of SOFA 2.0. Thanks to the presence of connectors in SOFA 2.0, RMI for
remote method invocation and JMS for modeling buses could be used for implementa-
tion of the communication among components. For modeling the performance and re-
source usage, Layered Queueing Networks coupled with an extra resource usage model
were used. Specifically, the performance of a particular enterprise under a varying spec-
trum of load conditions was modeled. By comparing the results with measurements on
the prototype implementation, our model was shown to successfully predict changes in
performance due to resource sharing and resource exhaustion.

As a future work, we plan to integrate the verification tool chain into the SOFA 2.0
framework and to predict performance of a component application by using a combi-
nation of formal methods and benchmarking.

References

1. Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil, F.: Component
Reliability Extensions for Fractal Component Model (2006),
http://kraken.cs.cas.cz/ft/public/public_index.phtml

2. Adamek, J., Plasil, F.: Component Composition Errors and Update Atomicity: Static
Analysis. Journal of Software Maintenance and Evolution: Research and Practice 17(5)
(September 2005)

3. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture to Im-
plementation. In: Proc. of ICSE 2002, Orlando, USA (May 2002)

4. Allen, R.J.: A Formal Approach to Software Architecture, Ph.D. Thesis, School of Com-
puter Science, Carnegie Mellon University (May 1997)

5. Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based Performance Predic-
tion in Software Development. IEEE Transactions on Software Engineering 30(5) (May
2004)

 CoCoME in SOFA 415

6. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A Component
Model for Architectural Programming. In: ENTCS, Vol. 160 (August 2006)

7. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Fractal Compo-
nent Model and Its Support in Java. Software Practice and Experience, Special issue on
Experiences with Auto-adaptive and Reconfigurable Systems 36(11-12) (2006)

8. Bures, T.: Generating Connectors for Homogeneous and Heterogeneous Deployment,
Ph.D. Thesis, Dep. of SW Engineering, Charles University, Prague (September 2006)

9. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a Hierar-
chical Component Model. In: Proc. of SERA 2006, Seattle, USA, August 2006, IEEE CS,
Los Alamitos (2006)

10. Eclipse Modeling Framwork, http://www.eclipse.org/emf/
11. Enterprise Java Beans specification, version 2.1, Sun Microsystems (November 2003)
12. Ghosh, A., Givargis, T.: Cache optimalization for embedded processor cores: An analytical

approach. ACM Transactions on Design Automation of Electronic Systems (TODAES),
9(4) (October 2004)

13. Haas, P.J.: Stochastic Petri Nets: Modelling. Springer, New York (2002)
14. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for Software Architectures. In:

Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344. Springer, Heidelberg (2006)
15. Hnetynka, P., Plasil, F.: Dynamic Reconfiguration and Access to Services in Hierarchical

Component Models. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford,
J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063. Springer, Heidel-
berg (2006)

16. Kofron, J.: Extending Behavior Protocols With Data and Multisynchronization, Tech. Re-
port No. 2006/10, Dep. of SW Engineering, Charles University in Prague (October 2006)

17. Magee, J., Kramer, J.: Concurrency State Models & Java Programs. Wiley, Chichester
(1999)

18. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proc. of FSE 2004,
San Francisco, USA (October 1996)

19. Mencl, V., Bures, T.: Microcomponent-Based Component Controllers: A Foundation for
Component Aspects. In: Proc. of APSEC 2005, Taipei, Taiwan, December 2005, IEEE CS,
Los Alamitos (2005)

20. OMG: UML Profile for Schedulability, Performance and Time, OMG document for-
mal/2005-01-02 (January 2005)

21. OMG: CORBA Components, v 3.0, OMG document formal/02-06-65 (June 2002)
22. OMG: MDA Guide, v. 1.0.1, OMG document omg/03-06-01 (Jun 2003)
23. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component

Model for Consumer Electronics Software. IEEE Computer 33(3) (March 2000)
24. Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for Component Trading and

Dynamic Updating. In: Proc. of ICCDS 1998, Annapolis, USA. IEEE CS Press, Los
Alamitos (May 1998)

25. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Transactions
on Software Engineering 28(11) (November 2002)

26. Seinturier, L., Pessemier, N., Duchien, L., Coupaye, T.: A Component Model Engineered
with Components and Aspects. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt,
H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063.
Springer, Heidelberg (2006)

27. SOFA CoCoME (2007), http://dsrg.mff.cuni.cz/cocome/sofa
28. SOFA 2.0 implementation, http://sofa.objectweb.org/
29. Spin, http://www.spinroot.com/

416 T. Bureš et al.

30. Sun Microsystems, JSR 220: Enterprise JavaBeansTM, Version 3.0
31. Woodside, C.M., Neron, E., Ho, E.D.S., Mondoux, B.: An Active-Server Model for the

Performance of Parallel Programs Written Using Rendezvous. Journal of Systems and
Software (1986)

32. Xu, J., Oufimtsev, A., Woddside, C.M., Murphy, L.: Performance Modeling and Predic-
tion of Enterprise JavaBeans with Layered Queueing Network Templates. ACM SIGSOFT
Software Engineering Notes 31(2) (March 2006)

33. Wu, X.P., Woodside, C.M.: Performance Modeling from Software Components. In: Proc.
of WOSP 2004, Redwood Shores, USA (January 2004)

Appendix A: SOFA 2.0 Meta-model

NamedEntity

name : String

Feature

value : String

Interface

+addFeature(name : String,value : String) : Feature
+addFactoryAnnotation(method : String,retInstance : Frame,retIface : Interface) : void

communicationStyle : String
connectionType : ConnectionType
isCollection : boolean

0..*

communicationFeature

VersionedEntity

addInfo(name : String,value : String) : Info

locked : boolean

Version

version : String
prevVersion : String

entity

version

Property

type : String

MappedProperty

subcomponentPropertyName : String

Frame

+addProvision(name : String,iface : InterfaceType,comStyle : String,conType : ConnectionType,isCol : boolean) : Interface
+addRequirement(name : String,iface : InterfaceType,comStyle : String,conType : ConnectionType,isCol : boolean) : Interface
+addProperty(name : String,type : String) : Property
+setTopLevel(topLevel : boolean) : void
+addBehavior(name : String,value : String) : Info

0..*

requiredInterface

0..*

property

0..*

providedInterface

InterfaceType

signature : String

interfaceType

Architecture

addSubcomponentByFrame(name : String,frame : Frame) : SubcomponentInstance
addSubcomponentByArch(name : String,arch : Architecture,frame : Frame) : SubcomponentInstance
addConnection() : Connection
addProperty(name : String,type : String) : Property
addMappedProperty(name : String,type : String,subcompPropName : String,subc : SubcomponentInstance) : MappedProperty

implementation : String

1..*

implements

0..*

property

0..*

mappedProperty

SubcomponentInstance

0..1

instantiatesFrame

0..*

subcomponent

0..1

instantiatesArchitecture

instance

Connection

addComponentEndpoint(ifaceName : String) : ComponentInterfaceEndpoint
addSubcomponentEndpoint(ifaceName : String,sub : SubcomponentInstance) : SubcomponentInterfaceEndpoint

0..*

connection

SubcomponentInterfaceEndpoint

interfaceName : String

subcomponent

ComponentInterfaceEndpoint

interfaceName : String

<<enumeration>>
ConnectionType

normal
utility

Annotation

0..*

annotation

0..*

annotation

<<Singleton>>
TopLevel

<<Singleton>>
Factory

method : String

returnInterface

ConnectionEndpoint

1..*

endpoint

1..* behavior

0..*

info

Info

value : String

aa+returnInstance

 CoCoME in SOFA 417

Appendix B: Specification of Selected Components

The full version of CoCoME EBP specification is available at the SOFA CoCoME
project web site [27]. As the space allotted for this chapter is limited, this appendix
contains EBP specification only of selected, “representative” components CashDesk-
Line and CardReader – those which are discussed elsewhere in the text.

component CashDeskLine {
 behavior {
 (
 !CDConnector1.getProductWithStockItem*;
 (!BankIf1.validateCard*;
 !BankIf1.debitCard
)*;
 !CDLineEvDisp1.send(AccountSale);
 !CDLineEvDisp2.send(SaleRegistered)
)*
 |
 (
 !CDConnector2.getProductWithStockItem*;
 (
 !BankIf2.validateCard*;
 !BankIf2.debitCard
)*;
 !CDLineEvDisp2.send(AccountSale);
 !CDLineEvDisp2.send(SaleRegistered)
)
 }
}

component CardReader {
 types {
 states = {CARD_READER_ENABLED, CARD_READER_DISABLED}
 }
 vars {
 states state = CARD_READER_ENABLED
 }
 behavior {
 (
 !CardReaderControllerEvDispatcher.send(PINEntered) +
 !CardReaderControllerEvDispatcher.send(CreditCardScanned)
)*
 |
 ?CardReaderController.onEvent(ExpressModeDisabled){
 state <- CARD_READER_DISABLED
 }*
 |
 ?CardReaderController.onEvent(ExpressModeEnabled) {
 state <- CARD_READER_ENABLED
 }*
 }
}

	CoCoME in SOFA
	Introduction
	Goals and Scope of the Component Model
	Modeled Cutout of CoCoME
	Benefit of the Modeling
	Effort and Lessons Learned

	Component Model
	Static View
	Behavior View
	Deployment View
	Performance View
	Comparison with Other Component Models

	Modeling the CoCoME
	Static View
	Behavioral View
	Deployment View
	Implementation View
	Performance View
	Specification of CashDeskApplication
	Specification of Component CashDeskBus

	Transformations
	Analysis
	Compliance Both Vertical and Horizontal
	Verification of Code against Frame Protocols
	Run Time Checking against Code
	Performance Analysis

	Tools and Results
	BP Checker
	Modified JPF and BP Checker
	Cushion Development Support Tool

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

