Towards seamless computing and metacomputing in Java
Denis Caromel, Wilfried Klauser and Julien Vayssiere

INRIA Sophia Antipolis
CNRS - 135S - Univ. Nice Sophia Antipolis
BP 93, 06902 Sophia Antipolis Cedex
tel: 33 93 65 76 31, fax: 33 93 65 78 58, email: First.Last@sophia.inria.fr

http:/ /www.inria.fr/sloop /javall/

Abstract

Due to its platform-independent execution model, its support for networking, multithreading and
mobile code, Java has given hope that easy Internet-wide high-performance network computing was
at hand. Numerous attempts have then been made at providing a framework for the development
of such metacomputing applications. Unfortunately, none of them addresses seamless sequential,
multithreaded and distributed computing, i-e the execution of the same application on a multiprocessor
shared-memory machine as well as on a network of workstations, or on any hierarchical combination
of both. In this article we first identify four requirements for the development of such metacomputing
frameworks. We then introduce Java// (pronounce Java Parallel), a 100% Java library that provides
transparent remote objects as well as asynchronous two-way calls, high reuse potential and high-level
synchronization mechanisms. We also present the metaobject protocol (MOP) Java// is built on and
describe a distributed collaborative raytracing test application built using Java//.

1 Introduction

In order to provide a framework for the development of cross-paradigm metacomputing environments
[7][10][8] within the scope of the Java language [1] and environment [12], we identify four key require-
ments: polymorphism between local and remote objects, high-level synchronization mechanisms, reuse of
sequential code and the availability of a 100% Java portable library.

1.1 Transparent remote objects

First, let us focus on cross-paradigm portability.

Cross-platform portability is genuinely achieved by the standard Java execution environment. An appli-
cation written in Java is compiled into an architecture-neutral bytecode format, which then executes on
a Java Virtual Machine (JVM) whose purpose is to hide the nature of the underlying platform.

Some JVM implementations provide access to native threads, which, when run on a multiprocessor ma-
chine, permits automatic mapping of Java threads onto the set of available processors. This feature
abolishes the frontier between a monoprocessor machine and a multiprocessor, shared-memory machine
when it comes to executing multithreaded Java applications. It results in instant speedup for applications
built around concurrent activities, provided there actually is some parallelism between the threads.
Consequently, code reuse for porting Java threaded applications from a monoprocessor machine to a
multiprocessor machine is not an issue since the application code for a monoprocessor machine does not
need any modification at all to run on a multiprocessor shared-memory machine.

Nevertheless, a huge gap yet exists between multithreaded and distributed Java applications which forbids
code reuse in order to build distributed applications from multithreaded applications. Both JavaRMI and
JavalDL, as examples of distributed object libraries in Java, put a heavy burden on the programmer be-
cause they require deep modifications of existing code in order to turn local objects into remote-accessible
ones.

In these systems, remote objects need to be accessed through some specific interfaces. One could argue
that programming to an interface is usually considered as a better practice than programming to an
implementation. This is undoubtedly true, but the core of the problem is that implementation classes are
forced to move from one place in the inheritance graph to another in order to become remote-accessible

classes. Method signatures also need to be modified in order to throw distribution-related exceptions,
which does not allow a clear separation of concerns between functional code and distribution-related code.
As a consequence, these distributed objects libraries do not allow polymorphism between local and remote
objects. This feature is our first requirement for a metacomputing framework. It is strongly required in
order to let the programmer concentrate first on modeling and algorithmic issues rather than lower-level
tasks such as object distribution, mapping and load balancing.

Sequential Multithreaded Distributed

o O y O]

)

Legend

- Network Host |:| Java Virtual Machine Q Passive Object o Active Object

Figure 1: Seamless sequential, multithreaded and distributed programming

1.2 High-level synchronization mechanism

Our second requirement for metacomputing is higher-level synchronization mechanisms. Although monitor-
like primitives [13] may be theoretically sufficient for expressing synchronization, implementing complex
synchronization specifications using such low-level tools is definitely cumbersome and error-prone. More-
over, such architectures do not scale well and have some reuse problems [2]. Such an architecture also
assumes a shared memory of some kind, which does not fit well in a system that needs to address
distribution as well.

1.3 Reuse of sequential code

Reuse of sequential code does not here means reusing legacy applications in order to build concurrent
and distributed Java applications. It is our opinion that sequential code should no more be considered as
a single-threaded implementation of a problem but rather as a high-level expression of the fundamental
abstractions and operations in a system. In this context, code reuse simply means adapting the sequential
code to a particular metacomputing environment. This includes, but is not limited to, deciding which
objects should have their own activity (thread) and how they should be distributed over a set of computing
nodes.

When designing an object-oriented application, the programmer usually starts with creating high-level
domain-dependent abstractions and turns these into objects and classes. These classes and objects are
then connected together using inheritance, composition or any other technique, which eventually results
in a modelling of the world managed by the application.

Deciding which objects should have an activity on their own or distributing objects over several adress
spaces is definitely a lower-level issue. As a matter of fact, object distribution or the expression of parallel
activities is always constrained by the actual system the application should be implemented on.

This is why we believe a framework for metacomputing applications should provide a clear separation
between high-level application design and lower-level implementation issues such as object distribution
or managing concurrent activities.

1.4 A portable, non-intrusive library

A rather large number of research projects have already been conducted on transparent remote objects
in Java [19][17].

Two major implementation techniques are used: some change the Java Virtual Machine or the Java-to-
bytecode compiler, other rely on some source pre-processing. These techniques lead to two different flaws.

The first one fails at providing Internet-wide portability by requiring installation of a specific runtime
environment on each possible node of the computation. The second one requires that the programmer
has access to the source code of the objects he wants to make remote, which is barely never the case when
using third-party libraries. Consequently, a library that aims at distributing Java objects transparently
has to be 100% Java and only require access to the compiled representation of classes, not to the sources.

2 The Java// framework

In order to meet these requirements, we have designed and implemented Java// (pronounce Java Parallel),
a Java library for seamless sequential, multi-threaded and distributed programming.

Java// ouly consists of a collection of 100% Java classes, thus requiring no change to the standard Java
execution environment. The Java// model uses by default the following principles:

heterogeneous model with both passive and active objects (threads, actors)
sequential processes

unified syntax between message passing and inter-process communication
systematic asynchronous communications towards active objects
wait-by-necessity (automatic and transparent futures)

automatic continuations (a transparent delegation mechanism)

no shared passive objects (call-by-value between processes)

centralized and explicit control by default

polymorphism between standard objects, active objects, and remote objects.

2.1 Model of execution

Given a standard Java object, there are several new behaviors we would like to transparently give it:
location transparency, activity transparency and advanced synchronization mechanism.
Location transparency provides polymorphism between local and remote objects. Activity transparency
hides the fact that methods invoked on an active object actually execute in a separate thread. This is
achieved using transparent future objects and wait-by-necessity [5]. Advanced synchronization mecha-
nisms allow an easy and safe implementation of potentially complex synchronization policies.
Let’s have a look at how these different features can be obtained within the scope of the Java language.
In most distributed objects systems, such as RMI or CORBA, location transparency is achieved using
the proxy pattern [11]. A local object (the so-called prozy) acts as a representative for an object that
resides in another address space, possibly on another machine across a network. This proxy encapsulates
all communication details so that other local objects do not know they are actually sending messages to
a remote object.

Adding a new behavior to an object, such as its own

thread of execution, may be usually achieved using two

different object-oriented techniques: multiple inheritance Object 4 Object B

and composition. Multiple inheritance allows effortless

extension of a class behavior, provided these different

behaviors be rather orthogonal, like functional code and Object A Object 8

synchronization for example. Composition mimes a com-
plex object by delegating different behaviors to different
objects. Local node

Body

@ “/Hemote node

N

As Java features simple class inheritance and multiple in-
terface inheritance, we have chosen to take the best from Figyre 2: Standard and Java// models of ex-
both worlds. We use composition for implementation of acution contrasted.

multiple behaviors while multiple interface inheritance is

used for declaring these behaviors.

In Java//, any standard object (figure 2 (top)) may be extended through composition with a pair of
objects : a prozy and a body (figure 2 (bottom)). The active object is actually composed of two objects:
the body and the standard object.

In terms of metaobjects, the proxy transparently reifies method invocations. Method invocations are
‘trapped’ and converted into instances of the MethodCall class. These method invocations may then be
manipulated as first-class objects in order to implement any new semantics.

The body receives these reified calls and stores them into a queue of pending calls. It then executes them

in an order specified by a given synchronization policy. If none is provided, the body defaults to a FIFO
behavior.

The programmer has the possibility to override the default FIFO-ordered policy by writing code for
explicitely managing the queue of pending calls on an object. This gives him total control over the syn-
chronization strategy. Note that any other synchronization abstraction may be implemented using the
explicit one, such as, for example, an implicit one where the programmer declares a set of properties that
constrain the default FIFO-ordered policy.

2.2 Programming active objects

Given a sequential Java program, it takes only minor modifications from the programmer to turn it into
a multithreaded, ready-for-metacomputing program. We’ll first focus on active object creation and then
discuss inter-object synchronization.

Active Object Creation

Java// actually only requires instanciation code to be modified in order to transform a standard object
into an active one. All the code that had previously been written for the passive version of the same
object remains perfectly valid. Besides the standard constructor parameters for the object, the creation
of an active object requires at least the node to create the object on. Depending on special semantics
requirements, additional parameters may be passed.

Here’s a sample of code with several techniques for turning a passive instance of class A into an active,
possibly remote, one.

e A standard object created through such a statement:
A a = new A ("foo", 7);
e becomes either (instanciation-based)

Object[] params = {"foo", new Integer (7)};
A a = (A) Javall.newActive ("A", params, myNode);

e or (class-based)

class pA extends A implements Active {}
Object[] params = {"foo", new Integer (7)};
A a = (A) Javall.newActive ("pA", params, myNode);

e or (object-based)

A a = new A ("foo", 7) ;
a = (A) Javall.turnActive (a, myNode);

This piece of code creates an instance of class A or pA on node myNode. The mapping mechanism
between nodes and actual virtual machines, processors and network hosts will be described later.

The active instance just created owns its own thread that executes methods invoked on this object
in a default FIFO order. The semantics of calls to such an object are transparently asynchronous, with
no code modification being required on the caller’s side. This sample also illustrates instanciation-based
reification (see section 4) contrasted with class-based reification and object-based reification.

e Instanciation-based reification is much of a convenience technique. It allows the programmer to
create an active instance of A with a FIFO behavior without defining any new class.

e Class-based reification is the core of Java//’s philosophy. Given a class A, the programmer writes
a subclass pA that inherits directly from A and implements a specific interface such as Active.
He or she may also provide a 1ive method in class pA for giving a specific activity or managing
synchronization, as we’ll see in section 2.3

e Object-based reification makes use of the Javall.turnActive method, which enables us to attach
an active behavior to an existing object at any time after its creation. This is especially useful when
we do not have access to the code that creates the standard object we want to make active.

We suggest the use of the factory method pattern [11] in order to nicely encapsulate the code needed
to instanciate active objects. This would result in a static method newActive in class pA :

public static pA newActive (String s, int i, Mapping node)
{

Object[] params = {s, new Integer (i)};

return (pA) Javall.newActive ("pA", params, node);

}

As a side-effect, this technique reduces the amount of code needed to instanciate active objects using
Java// :

a = pA.newActive ("foo", 7);

Inter-object synchronization

Asynchronous message-passing would not be of much interest if the user had to explicitely add synchro-
nization to the code that invokes methods on active objects. Fortunately, Java// provides a mechanism
of transparent futures.

When a method is invoked on an active object, it immediately returns a future object. This object acts
as a placeholder for the result of the not-yet-performed method invocation. As a consequence, the calling
thread can go on with executing its code, as long as it doesn’t need to invoke methods on the returned
object, in which case the calling thread is automatically blocked if the result of the method invocation is
not yet available.

Future objects in Java// are said to be transparent because they do not require any modification of the
caller’s code. They are automatically created when a method is invoked on an active object: this is the
wait-by-necessity principle. Transparent future objects are possible because the automatically-created
future object is actually an instance of a subclass of the returned object, which is compliant with all
compile- and runtime type checks and does not weaken software quality.

We believe asynchronous calls and future objects can dramatically improve performance of Internet-wide
computations. Because huge latency is the plague of today’s Internet, wait-by-necessity can help auto-
matically overlap computations and communications. As a consequence, the Java virtual machine that
runs at a node in a computation spends less time in the idle state waiting for some remote computation
to complete.

There are a few cases where future objects are not available. Primitive types cannot lead to future objects
because they are not standard objects and thus cannot be subclassed. The same limitation applies to
final classes, which includes all arrays.

We have also chosen to forbid the use of future objects for methods that throw checked exceptions. If
this were allowed, the execution of a method on an active object could throw an exception in the calling
thread at a point where the calling thread has exited the try clause. This would result in an exception
being thrown in a context where it cannot be caught, thus modifying the semantics of the application
and most likely resulting in an application crash.

We have seen that when using wait-by-necessity, a thread is automatically suspended if it needs an ob-
ject that is not yet available. This is why wait-by-necessity is said to be a data-driven synchronization
mechanism, as opposed to control-driven synchronization. Yet, there are some situations where synchro-
nization is not directly connected to the call of a method on an object. This is why Java// provides
the Javall.waitFor (Object obj) static method which performs an explicit wait on object obj, without
calling any method on this object. Another static method, Javall.isAwaited(Object obj) returns a
boolean that indicates if object obj is awaited or not. This enables the thread to do something useful
instead of being suspended while obj is awaited.

Mapping active objects to nodes

Hiding platform-specific details from the programmer is one of the great strengths of Java. Yet, this
fundamental design choice sometimes shows unwanted side-effects, especially when it comes to fine-tuning
parameters like performance or distribution. More specifically, it influences the way Java// deals with
mapping active objects to actual processing ressources (processors).

Java// library provides a unique abstraction for representing processing power resources: the class Node.
This is the only locator used for specifying where to create active objects. Since the programmer is entirely
free to instanciate these Node objects wherever he or she wants, having a single locator class does not
mean less flexibility. A Node object may, for example, represent a multiprocessor machine where a single

JVM transparently maps its threads onto the set of available processors. On the other hand, there may
be different Node objects within one single VM, so that it is possible to test a distributed application on a
single workstation, thanks to the seamless transition between multithreaded and distributed applications
Java// provides. When working with a real cluster of workstations, the programmer may instanciate one
Node object for each workstation. In the case of a metacomputing application, a Node object would be
instanciated in every Web browser that participates.

As a consequence, the mapping of active objects to actual computing ressources through the Node class
enables the distribution of the application over a set of abstract nodes. Switching between different
execution environments (such as a single workstation, a multiprocessor machine, a cluster of workstations
or a collection of Web browsers) becomes a matter of only a few seconds.

2.3 Intra-object Synchronization

Active objects instanciated through the Javall.newActive static method are transparently given their
own thread that executes invoked methods with a default FIFO order. This thread is started by the
object that owns the queue of pending method invocations on an object: the body.

Java// provides a mechanism for specifying synchronization of method invocations on a given active ob-
ject. The purpose of this mechanism is to enhance the standard thread synchronization mechanism [16]
with an ezplicit method for specifying synchronization. The biggest difference with the standard thread
synchronization mechanism is that synchronization is now centralized in one special method of a class,
instead of being disseminated in all methods of a class.

The responsibility for specifying the synchronization policy for a class is placed on its 1ive (Body myBody)
method. If no 1live method is provided by the class of the reified object, the body uses its own default
live method. For most bodies, the default policy is FIFO.

If the class implements Active, the default mechanism, a thread of control is explicitely available and it
is then the responsibility of the 1ive method to explicitely manage the queue of pending requests, if the
programmer wishes to override the default FIFO policy. It does so by invoking methods on the Body, such
as servelldest, serve0ldest (Method met), serve(lldestBut (Method met), waitARequest (). This
methods are provided as a service library for managing the queue of pending calls. This service library
also includes iterators for safe traversing of the queue of pending requests with access to the effective
value of the parameters of the calls.

The FIFO behavior provided by default is simply implemented as follows

live (Body myBody)

{
while (true)
{
myBody .serveOldest ();
myBody .waitARequest () ;
}
}

Please note that waitARequest blocks if the state of the queue of pending requests is modified (no
active wait).
Now consider the case of the canonical Bounded Buffer example. We assume we have a class FixedBuffer
that implements a fixed-length buffer and features methods put and get as well as isEmpty and isFull.
In order to achieve consistency, a typical programming could be :

class BoundedBuffer extends FixedBuffer implements Active

{
live (Body myBody)
{
while (true)
{
if (this.isFull()) myBody.serveOldest ("get");
else if (this.isEmpty()) myBody.serveOldest ("put");
else myBody.serveOldest();

myBody.waitARequest () ;

Given these two synchronization constraints, the Body object manages the queue of pending request
properly. As several methods in the same class may have the same name and different parameter types,
we provide a convenience mechanism of shortcuts that associates a string to a given method, which results
in less code for constraints declaration. If for example class A contains two methods foo with different
argument types, shortcuts may be created as follows:

java.lang.reflect.Method methodl, method2;

// Some code for obtaining Method objects for

// these two ’foo’ methods through Reflection API.
/7 L]

Javall.setShortcut ("A", "fool", methodl);
Javall.setShortcut ("A", "foo2", method?2);

2.4 Abstraction for implicit synchronization

In the case of an implicit synchronization declaration (which is implemented on top of the basic explicit
mechanism), the programming of the buffer synchronization policy would be as follows.

class BoundedBuffer extends FixedBuffer implements ImplicitActive

{
live (Body myBody)
{
myBody.forbid ("put", "isFull");
myBody.forbid ("get", "isEmpty");
}
}

Implicit synchronization has proven to be better than its explicit

counterpart with respect to ease of reuse and better scalability. On
the other hand, the overhead needed to decide which call to execute Reflect
given a set of constraints may not be neglectible and in general the ex-
plicit technique has more expressiveness. However, high-performance ZF
computing often relies on relatively simple synchronization policies. |

This technique is easily extensible and the programmer is free to im-
plement new abstractions for intra-object synchronization [4]. Each Active
of these implementations should result in a body class that imple-

ments the synchronization policy and an interface inheriting directly ZF
or indirectly from Active which declares the name of the proxy class
(usually the default asynchronous proxy) and the name of the body ImplicitActive
class (see figure 3). Such an interface helps organize synchronization

abstractions logically and is used by classes such as pA (see 2.2) in
order to choose which synchronization technique they would like to Figure 3: Java// interfaces for
use. The interface Reflect does not provide any functionality but distribution and synchronization
acts as a common root interface for all behaviors implemented using

the Java// metaobject protocol.

2.5 A method for reuse

As Java// is an extension of Eiffel// [3] and C++// [6], it may be the support for a method for reuse
first described in [5]. Its main feature is to postpone the identification of active objects in the design of
an application. The programmer may then concentrate on application design and not mix it with the
division of the application in concurrent activities. The main steps of this method are shown in figure 4.

—_

. Sequential design and programming
2. Active objects identification

e Initial activities

e Shared objects
3. Active objects programming

e Define each active object class
e Define the activity (live)

e Use the active objects classes
4. Adaptation to constraints

e Refine the topology

e Define new active objects

Figure 4: The 4 steps of the method

3 Example and performances

3.1 Distributed matrix-vector product

We have implemented an example proposed by Raje, William and Boyles in [18]: a matrix-vector product,
the rows of the matrix being split between two machines. The matrix is a square matrix of size 1000
containing float numbers.

We make extensive use of wait-by-necessity in order to automatically overlap local and remote calcula-
tions. The time we consider includes sending the vector, performing the calculation and returning the
result. It does not include the initial transmission of the remote rows of the matrix.

Here is the code for the main method of the sequential version of the program :

public static void main (String args[])
{
// Size of the matrix
int n = 1000;
// number of rows on the local node
int m;
// One initial matrix and two submatrixes
Matrix mO, ml, m2;
// Initial, temporary and final vectors
Vector v0O, vi1, v2, v3;

// Some initialization code

[...]

// Creates submatrixes of sizes m and n-m
ml = m0.getBlock (0, 0, m, n-1);
m2 = m0.getBlock (m+1, 0, n-1, n-1);

// Computes both right products
vl = ml.rightProduct (vO0);
v2 = m2.rightProduct (v0);

// Creates result vector
v3 = vl.concat (v2);

Now assume we want to get a multithreaded and distributed version of this program. The only
modifications we need to bring to the source code are located in the portion of code where we create the
objects we want to make active.

ml = m0.getBlock (0, 0, m, n-1);
m2 = m0.getBlock (m+1, 0, n-1, n-1);

If we had access to the code of the Matrix class, we would like to modify it in such a way that the
implementation of method getBlock in class Matrix now returns an active object instead of a standard
one. But this method would have several flaws :

e Every invocation of this method would return an active object, even if we do not want to.

e Its signature would have to be modified in order to take into account a new argument: the node on
which to create the active object.

This is why we provide the Javall.turnActive method in order to attach an active behavior to an
active object after its creation. As a consequence, we only need to add these two lines to method main,
after the standard m1 and m2 :

ml=(Matrix) Javall.turnActive(ml, remoteNode) ;
m2=(Matrix) Javall.turnActive(m2, localNode);

As a general rule, we do not assume we have access to the code of the linear algebra library. Conse-
quentely, using Javall.newActive is not always possible, since submatrixes might be instanciated inside
the library (actually inside the body of method getBlock) and returned as a result of this method invo-
cation.

Parallelism is achieved here because, as both m1 and m2 are active objects, both calls to rightProduct are
asynchronous and return future objects for representing the not-yet-available result vectors (namely v1
and v2). As a consequence, the thread that executes main launches this two products and is then blocked
on the call to concat because v1 is not available at the moment. Both products are executed in parallel
on two different nodes of the computation (the local node localNode and a remote one designated as
remoteNode.

Let us now assume we want to run the same program on an SMP machine with a JVM using native
threads. The only modification needed would be to change myRemoteNode to the current node (localNode
here), through the javall-mapping file.

3.2 Performances

Figure 5 shows the time needed to compute the prod-

uct with respect to the number of rows on the remote
machine. Both the local and the remote machine were
UltraSparcs. As in [18], the minimum is reached for 400
remote rows and 600 local ones. This is not surprising at
all since both Java// and ARMI are implemented on top
of RMI.

Our implementation of Java// is based on Java RMI. Our

experience with RMI lead us to the following conclusion:

8000

7500 - e

7000 B

6500 - B

6000 - B

5500 |- B

5000 - B

Time in milliseconds

RMI shows catastrophic performance when it comes to 4500 | 1
exchanging large-size messages, such as a whole matrix 4000 :
or a very large graph of objects. RMI itself is not directly 3500 |- 7
responsible for this, but the default serialization mecha- soo0 L .)

400 500 600
Number of remote rows

nism is. As a general rule, it is today hard to achieve

speedup on a network of workstations when the commu-

nication/computation ratio is too high. Figure 5: Java// performances for Matrix-
Vector computation

3.3 A parallel and distributed collabora-
tive application

Introduction

In order to demonstrate the power of Java// regarding synchronization, we have implemented a collabo-
rative application. It showcases three of the major benefits of Java//: ease of distributed programming,

speedup through parallel calculation, and ease of synchronization. Several users can collaboratively view
and manipulate a 3D scene, which involves election and synchronization issues. The image for the scene is
calculated by a dynamic set of rendering engines using a raytracing algorithm, everything being controlled
by a central dispatcher.

~| Javass Collaborative System - uzer window | = | J|

User

User manslainriafr (Solaris 20

Dispatcher: slainte.inriafr (Linux 2.0.30)

Elaction finished =
User 1 voted ‘left’
Result: O times ‘right’, 1 times ‘left’
The scene will be rotated left,

all intervals rendered

send

Rotate Ieftl Exit | Rotate right| o

Figure 6: Screen shot of a user window

Users can rotate the scene and send messages to other users. They are informed by the dispatcher on
events of public interest (i.e. user set changes, elections, rendering).

Details

An instance of class Dispatcher (see figure 7) acts as the central management module. It uses Java// to
dynamically distribute the calculation on remote hosts, to centralize all synchronizations and to provide
collaborative services to the users. Furthermore, it serves as a static entry point for the users (each
running an instance of UserFrame), it manages the set of users and holds all the cross-references.

The first user to register at the Dispatcher instance determines the scene to be rendered. The
rendering task is split up by the Dispatcher in a stack of image Interval instances. Those are as-
signed to the set of RenderingEngine instances with a first-returned, next-assigned load-balancing. Each
RenderingEngine receives one initial Interval first, the remainder of the Interval stack is given to the
engines when they return the results. The Dispatcher collects the image data and forwards it to the
users UserFrame instance.

Thanks to Java//, all method calls between the application modules are asynchronous, which provides
efficient communication-calculation overlapping. Neither the users nor the Dispatcher is waiting for the
calculation results, they are asynchronously called back instead.

UserFrame and DispatcherFrame inherit from the AWT Frame, which is a heavy-weight class with a
lot of public methods. To keep the stub small and to minimize overhead, we choose to activate Redirector
and Dispatcher in their stead.

Note that each active object can be selectively and dynamically mapped into a Java virtual machine
(JVM), which can be either local or remote. This gives a wide range of distribution options, from having
all active objects in the same local JVM, to having each active object distributed in its own remote JVM.
The standard objects always reside in the JVM of the active object they are controlled by.

Synchronization

All the Dispatcher synchronizations are centralized in the 1ive method. It uses Java// service methods
(see section 2.3) to manipulate the queue of pending method calls.

An instance of Election is created when two or more users are registered at the dispatcher and one
user clicks to rotate in any direction. This request is converted into the first vote. The new Election
instance starts its own standard Java thread, notifies all users of the election, and runs until either all
users have voted or a 5 second time-out is reached. It then counts the votes, picks the decision (either
unanimity or majority mode) and starts the rotation. While the election is running, rotate requests are
taken as votes, other requests are ignored. While the image is rendered, rotate requests are refused, other
requests are served.

public void live(Body body) {

UserFrame
O
0] Q
O
@ Redirector

Legend

Standard Active
Object (>—Reference—»

Figure 7: Runtime instance graph

// Handles the election, will run in its own thread
Election election;

// Loops over lifetime of this Dispatcher
while (body.isActive()) {
// Waits on any method call
body.waitForRequest () ;
// Reads the call from the line
MethodCall ¢ = body.readOldest();
// Obtains the name of the method called
String s_method = c.getMethodName () ;

// Somebody has called rotateLeft()

if (s_method.equals("rotateLeft")) {
// Gets the number of the user who has called
int i_user = c.getIntegerArgument (0);

if (Election.isRunning()) {
body.removeOldest () ;
// casts the vote
int i_votes = election.vote(i_user, Election.LEFT);
if (i_votes == users.number()) {
// Everybody voted, stops the election immediately
election.finish();
}
} else {
if (isRendering()) {
// Rendering in progress, ignores request
body.removeOldest () ;
} else if (users.number() == 1) {
// Only one user, starts immediately
body.serveOldest () ;
} else {
body.removeOldest () ;
// Several users, starts a new election with the current vote
election = new Election(i_user, Election.LEFT);
}
}
} else if (s_method.equals("rotateRight")) {

[...] // Similar code as above for rotatelLeft

} else if (!Election.isRunning()) {
// No election is running, serves the request immediately
body.servelldest();

} else {
// Election is running, refuses the request
body.removeOldest () ;

}

}
}

4 Implementation: a Meta-Object Protocol

Java// is built on top of a metaobject protocol (MOP) [14] that permits reification of method invocation
and constructor call. As this MOP is not limited to the implementation of our transparent remote objects
library, it also provides an open framework for implementing powerful libraries for the Java language.
As for any other element of Java//, this MOP is entirely written in Java and does not require any
modification or extension to the Java Virtual Machine, as opposed to other metaobject protocols for
Java [15]. It makes extensive use of the Java Reflection API, thus requiring JDK 1.1 or higher. JDK
1.2 is required in order to suppress default Java language access control checks when executing reified
non-public method or constructor calls.

If the programmer wants to implement a new metabehavior using our metaobject protocol, he or she
has to write both a concrete (as opposed to abstract) class and an interface. The concrete class provides
an implementation for the metabehavior he or she wants to achieve while the interface contains its
declarative part. The concrete class implements interface Proxy and provides an implementation for the
given behavior through the method reify:

public Object reify (MethodCall c)
throws InvocationTargetException, IllegalAccessException;

This method takes a reified call as a parameter and returns the value returned by the execution of
this reified call. Automatic wrapping and unwrapping of primitive types is provided. If the execution of
the call completes abruptly by throwing an exception, it is propagated to the calling method, just as if
the call had not been reified.

The interface that holds the declarative part of the metabehavior has to be a subinterface of Reflect
(the root interface for all metabehaviors implemented using Java//). The purpose of this interface is to
declare the name of the proxy class that implements the given behavior. Then, any instance of a class
implementing this interface will be automatically created with a proxy that implements this behavior,
provided that this instance is not created using the standard new keyword but through a special static
method: MOP.newInstance. This is the only required modification to the application code. Another
static method, MOP .newWrapper, adds a proxy to an already-existing object; the turnActive function of
Java//, for example, is implemented through this feature.

Here’s the implementation of a very simple yet useful metabehavior : for each reified call, the name of
the invoked method is printed out on the standard output stream and the call is then executed. This
may be a starting point for building debugging or profiling environments.

class EchoProxy extends Object implements Proxy

{

// here are constructor and variables declaration

// [...]

public Object reify (MethodCall c) throws InvocationTargetException, IllegalAccessException
{
System.out.println (c.getMethodName());
return c.execute (targetObject);
}
}

interface Echo extends Reflect

public String PROXY_CLASS= "EchoProxy";
%

Instanciating an object of any class with this metabehavior can be done in three different ways :
instanciation-based, class-based or object-based. Let’s say we want to instanciate a Vector object with
an Echo behavior.

e Standard Java code would be :
Vector v = new Vector (3);
e Java// code, with instanciation-based declaration of the metabehavior :

Object[] params = {new Integer (3)} ;
Vector v = (Vector) MOP.newInstance
("Vector", params, "EchoProxy", null) ;

The last parameter is because we do not have any additional parameter to pass to the proxy.

e with class-based declaration:

public class MyVector extends Vector
implements Echo {}

Object[] params = {new Integer (3)} ;
Vector v = (Vector) MOP.newInstance
("Vector", params, null);

e with object-based declaration:

Vector v = new Vector (3);
v=(Vector) MOP.newWrapper ("EchoProxy",v);

which is the only way to give a metabehavior to an object that is created in a place where we cannot
edit source code. A typical example could be an object returned by a method that is part of an API
distributed as a JAR file, without source code. Please note that, when using newWrapper, the invocation
of the constructor of the class Vector is not reified.

All the interfaces used for declaring metabehaviors inherit directly or indirectly from Reflect. This
leads to a hierarchy of metabehaviors such as shown in figure 8.
Note that ImplicitActive inherits from Active to highlight

the fact that implicit synchronization somewhere always relies
on some hidden explicit mechanism. Interfaces inheriting from Reflect
Reflect can thus be logically grouped and assembled using
multiple inheritance in order to build new metabehaviors out of Z}
existing ones. l [1

Due to its commitment to be a 100% Java library, the MOP Active Echo Persistent

has a few limitations: Z} E

e Calls sent to instances of final classes (which includes all ImplicitActive
arrays) cannot be reified.

e Primitive types cannot be reified because they are not

instance of a standard class. Figure 8: Java// interfaces

e Final classes (which includes all arrays) cannot be reified
because they cannot be subclassed.

5 Conclusion and Future Work

We have designed and implemented Java//, a 100% Java library aimed at providing a framework for
the development of metacomputing applications. It features transparent active and remote objects as
well as asynchronous calls, transparent future objects and wait-by-necessity. The most important feature
of Java// is that it provides very smooth transition between sequential, multithreaded and distributed
programming.

Java// is implemented without any modification of the Java Virtual Machine or any element of the stan-
dard Java environment. It is only made of 100% Java classes and heavily relies on Java Reflection API
and Java RMIL

We are currently working on a new implementation of Java// which will take advantage of new JDK 1.2
features (suppression of language access control checks, Reflection and RMI enhancements, weak refer-
ences,...) as well as take into account deprecated parts of the thread API.

We're also working on an implementation of the Salishan problems [9] as a test bed.

Java// is available for download along with source code and examples at http://www.inria.fr/sloop/javall.

References

[1] Ken Arnold and James Gosling. The Java Programming Language. The Java Series. Addison-Wesley,
Reading, MA, USA, May 1996.

[2] Jean-Pierre Briot and Akinori Yonezawa. Inheritance and synchronization in concurrent OOP. In
European Conference on Object-Oriented Programming (ECOOP’87), pages 32 40. Springer-Verlag,
LNCS 276, 1987.

[3] Denis Caromel. Service, Asynchrony, and Wait-By-Necessity. Journal of Object Orientated Pro-
gramming (JOOP), pages 12-22, November 1989.

[4] Denis Caromel. Programming Abstractions for Concurrent Programming. In Technology of Object-
Oriented Languages and Systems, PACIFIC (TOOLS PACIFIC ’90), November 1990.

[5] Denis Caromel. Toward a method of object-oriented concurrent programming. Communications of
the ACM, 36(9):90 102, September 1993.

[6] Denis Caromel, Fabrice Belloncle, and Yves Roudier. The C++// System. MIT Press, 1996.
[7] C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35:44 152, 1992.

[8] Geoffrey C.Fox and Wojtek Furmanski. Java for parallel computing and as a general language for
scientific and engineering simulation and modelling. 1996.

[9] John T. Feo. A comparative study of parallel programming languages: the Salishan problems, volume 6
of Special topics in supercomputing. North-Holland Publishing Co., Amsterdam, The Netherlands,
1992.

[10] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The International
Journal of Supercomputer Applications and High Performance Computing, 11(2):115-128, Summer
1997.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns Elements of
Reusable Object-Oriented Software. Professional Computing Series. AW, 1995.

[12] James Gosling and H. McGilton. The Java Language Environment. Sun Microsystems Computer
Company, May 1995.

[13] C.A.R Hoare. Monitors: An operating system structuring concept. Communications of the ACM,
10:549-557, October 1974.

[14] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT
Press, 1991.

[15] Juergen Kleinoeder and Michael Golm. Metajava: An efficient run-time meta architecture for java.
Techn. Report TR-14-96-03, Univ. of Erlangen-Nuernberg, IMMD IV, 1996. english.

[16] Doug Lea. Concurrent programming in Java: design principles and patterns. Addison/Wesley Java
series. Addison-Wesley, Reading, MA, USA, November 1996.

[17] Michael Philippsen and Matthias Zenger. Javaparty - transparent remote objects in java. In ACM
1997 Workshop on Java for Science and Engineering Computation, June 1997.

[18] Rajeev R. Raje, Joseph I. William, and Michael Boyles. An asynchronous remote method invo-
cation (armi) mechanism for java. In ACM 1997 Workshop on Java for Science and Engineering
Computation, June 1997.

[19] W. M. Yu and A. L. Cox. Java/DSM: a platform for heterogeneous computing. In ACM 1997
Workshop on Java for Science and Engineering Computation, June 1997.

