CoCoME:
Component-Interaction Automata Approach

The Coln Team

B. Zimmerova, P. Varekovd, N. Beneg, I. Cernd, L. Brim, and J. Sochor

Faculty of Informatics, Masaryk University
Brno, Czech Republic

August 1, 2007

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 1/34

@ Introduction

® Component Model
Component-interaction automata

® Modelling the CoCoME
Modelling technique
Modelling overview
Selected issues

O Analysis
Temporal-logic properties

Use cases and test cases

® Conclusion

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

@ Introduction

The Coln Team CoCoME: Component-Interaction Automata Approach

Introduction

Group introduction

Affiliation:

ParaDiSe Laboratory, Faculty of Informatics
Masaryk University, Brno, Czech Republic
http://anna.fi.muni.cz/coin

Members:
e Profs: lvana éerné, Lubo% Brim, Ji¥i Sochor

e Studs: Barbora Zimmerova, Pavlina Vafekova, Nikola Bene§

Experience:
e ParaDiSe Laboratory (1999)

automated verification of large-scale systems
verification tool DiVinE

e Coln Team (2005)

communication behaviour in component-based systems

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Component Model

® Component Model
Component-interaction automata

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Component Model

Component Model

Focus of our modelling approach
e Behavioural view

e Interaction among components

The purpose of the model

e Formal verification of component interaction

Framework represented by
e Component-interaction automata language
e For detailed modelling of communication behaviour in CBSs

e Very general — can be used with various component models

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Component Model
©00000

Component-interaction automata language

Component-Interaction automata language
(or ClI automata for short)

e Automata-based language
finite state model, infinite executions/traces

e Three types of actions (input, output and internal)

no additional semantics — interfaces/services/events/etc.

e Captures important interaction information
participants of communication, hierarchy of components

e Flexible composition
can be parametrized by architectural assembly, communication strategy

e General to meet various component models
by fixing the composition operator and semantics of actions

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Component Model
0®0000

Definition of a Cl automaton

A component-Interaction automaton
e States (initial)
e Labeled transitions

e Labels (structured - component names, actions)
e input, output and internal

e Hierarchy Hierarchy: (2)

. (D)
cl' \I_J/ (1,¢,—

Hierarchy: (1) Hierarchy: ((3).(4))

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 8 /34

Component Model
00®000

Composition of Cl automata

A parameterizable composition operator ® 1 determines
a composite automaton ® 7S as

e a product of automata from the set S
— complete transition space Ag

e where the transitions outside T are removed
— T can reflect various communicational strategies

e composed hierarchically @ 1{C1, Co=®+/{Cs,C5,Cs}, C3=® 7 {C7} }
— the transition space determined by the expression,
not computed explicitly!

Cp: ——

Hierarchy: (1) Hierarchy: (2)

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Component Model
[eleleY Yolo)

Composition — complete transition space

(1,b,1)
(2,a-)
=0

(L,e,—)

Hierarchy: (1) Hlerarchy: (2)

Cy:

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Component Model
0000®0

Composition — cube-like composition

(=21) (1,b,1)
(25377)

Cr: (1e) *)®<—@
(=:¢2)
Hierarchy: (1) Hierarchy: (2)

C = @7{C1,Co} where T = Age, 0,y

C: ~((p,p)

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

11 /34

Component Model
00000e

Composition — handshake-like composition

(=21) 1,b,1
() (2.0-)

(L,e,—) 2 ®<7@
(—,c,
Hierarchy: (1) Hlerarchy. (2)

Ci:

C =®71{C1,Co} where T = {(s,x,s') | x € {(2,a,1), (1, b,1),(1,¢,2)}}

¢: ()

. e

(9,9) (Lb1) (r.q)

Hierarchy: ((1),(2))

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME

® Modelling the CoCoME
Modelling technique
Modelling overview
Selected issues

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 13/ 34

Modelling the CoCoME
®00000

Modelling technique

Input
e Specification of behaviour of primitive components
— Java implementation

e Static structure of the system
— hierarchy of components, interfaces and bindings in between
— derived from component diagrams and Java implementation

Output
e Cl automaton representing the whole system

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME
0®0000

Modelling technique

Modelling process

o Identify primitive components and their services
e Model primitive components as automata

e An automaton for a service
e An automaton for a primitive component
via composition of the services

e Model composite components as automata
e Fix the composition operator
e An automaton for a composite component

e Proceed to formal analysis and verification

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME
00®000

Modelling technique

Modelling process

o Identify primitive components and their services
e Model primitive components as automata

e An automaton for a service
e An automaton for a primitive component
via composition of the services

e Model composite components as automata
e Fix the composition operator
e An automaton for a composite component

e Proceed to formal analysis and verification

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 16 /

Modelling the CoCoME
000®00

An automaton for a service

Each service, say doIt(), assigned a tuple of actions
o call of the method — doIt
e return from the method — doIt’

and modelled as a loop

@ (—,doA, 1)

Cli

Hierarchy: ((1),(2))

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

17/

Modelling the CoCoME
0000e0

An automaton for a primitive (basic) component

e Composition of automata for services using the star-like Cy4
and the cube-like C3 composition

(1,04,-) (2,d8",-)
m /—\
1 Q —dA 1) (1,cA 1) @ Ca O —.dB2) U (2,cB.2) @
Hierarchy: (1) Hlerarchy. 2)
(LdA') (LA)
k//“\r;\\ k///x\‘\\
C3")@ Caan @)= “‘fp C“")@ T Lap)— =)
(-\dB,2) (~,dB,2) (—,dB,2) (-1dB,2)
A el
e T
@W (—.dA1) (a.0) (LA D) (@) @@ (2d8':-)
(2.dB',~) (2.d8',~)
(2kB2) (2.82) (2.8.2) (24B.2)
(LA 1)
////*~—\
; @ @) o)
P gany)y) {r:p)
Hierarchy: ((1),(2)) Hierarchy: ((1),(2))

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME
oooo0e

An automaton for a composite component

e Composition of automata for components using the
handshake-like or the assembly-like composition

Assembly-like composition

e T given explicitly as a set of transitions with labels representing
interaction allowed by bindings among components

Example:
Ci entC
ServiceC ompon
- . ConponertA gl Cnm)oneﬁﬂ
ServiceC T
Sa\m:eB ServiceD ServiceD
ServiceA

La={(—,5A,1),(1,s4, =), (—,sC,1),(1,sC", =), (1,sB, =), (—,sB’, 1), (1, intA, 1)}
Lg ={(—,sB,2),(2,s8,) (2,sD, =), (=, sD’, 2), (2, intB, 2)}
F = {(1,intA, 1), (2, intB, 2), (1, sB, 2), (2, sB’, 1), (—, sC, 1), (1,sC’, —), (2, sD, =), (—,sD’, 2)}

Cc = ®7{Ca,Cp} where T ={(q,x,q") | x € F}

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 19/

Modelling the CoCoME
®0

® Modelling the CoCoME

Modelling overview

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME
oce

Modelling overview

e The whole Trading System modelled in a fine detail

TradingSystem gl
CashDeskLine gl Inventory gl
CashDesk gl
Data a
CashDeskA
(100) @ CashDeskChannel @ Persistence @ Store @
(200) (510) (520)
CashBoxControll
as (1;7: 1o1nz)ro er g] ExtCommChannelgl Enterprise g
' (300) (530)
Scanner
121 122 $] Coordinator a —
(121,122) @00) Application g]
CardReaderController StoreApplicati F i
(131, 132) g (610) 'P:]‘ ‘ (630) ﬁj‘

PrinterController g] ReportingApplication E
(141, 142) (620)
LightDisplayControllel
(151, 152) "@ GUI a

StoreGUI ReportingGUI
CashDeskGUI g r10) $ZI‘ p(72'0)g @‘
(161, 162)

The Coln Team CoCoME: Component-Interaction Automata Approach

Modelling the CoCoME
®00

® Modelling the CoCoME

Selected issues

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME
oeo

Selected issues

/O? (610,518, —]ﬁg\ LexcQSIBI ¢ 6]0)1/ (—.qSIBI' 610) 25\\
.
(-,bT"610) (~,qSIBI" 610) /// (610,iA,-)
& & R &
e ~
T(sm bT,—) Fsm com,) // // (—.iA",610)
©) o extComﬁ]Ol,lg/ (—exciA 610~ @)
Y S s
- A, (610.excCP.—)
. . (—.gTC" 610) (—,com’ 610) - (610,r0f,—)1
" .excRol \
Exception handling @ 5 @ @ sl |
. (610.6TC,~) (610.clo,~) (610,excCP, (= rol’ 610) |
. |
try, catch, finally blocks o & o) B g
M (~.gPC’ 610) (~clo’ 610) (610,excCP,—) /
e throw, delegate an exception [N ey v
© 13) [€5) 25
(610,6PC,—) (610,7CID,—) (610,clo,—)
o1 (19I5 %)
(—.cP.610) (610,PCID,-) (~.clo' 610)
p .
— O e woran s
(610,cP',—) /
N 0\ o) el
\3}/(PCID’ sm)@/ (610,PCID,) (- TCID", ém)@ Hierarchy: (610)

Creation and destruction of instances

g o ey (D (it -
e initial activation part (o sale ’ (el /

a, Sa/eg\)@(/sye;,)\«

Hierarchy: (i)

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Modelling the CoCoME
ooe

Selected issues

Internal state of a component
e additional automaton representing the internal state

® answers questions if (currState.equals(PAYING BY CASH))
and reacts to commands currState = PAID;

PAYING_BY _CASH
SALE _FINISHED

INITIALIZED

SALE _STARTED

—
CREDIT,CARD,SCANNED><—Q’,BY,CREDITCARD

Asynchronous messaging
e publish-subscribe communicational model

e realized via event channels

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

24 /

O Analysis
Temporal-logic properties
Use cases and test cases

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Analysis
[Jele]

Analysis

Input for the analysis
e Model of the system as a Cl automaton
e Labelled transition system (LTS) in fact

Analytical methods
e Variety of methods available for LTSs
e Verification of temporal properties with Model Checking
e DiVinE tool for verification of large-scale systems
e Application
e In design phase to predict properties of a new system

e Analysis and verification of existing system
e During modelling to detect modelling errors

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 26 /

Analysis
o] 1o}

Temporal-logic properties

Logic for expressing properties CI-LTL
e Extended version of LTL, operators next X and until I/
e Both state and action-based

e Properties about
— component interaction that is proceeding P
— possible interaction that is enabled £

Verification

e DiVinE tool
— distributed and on-the-fly model checking and reachability analysis

e Verification run on a cluster of 20 computers
e Presented properties verified in terms of seconds or minutes

August 1, 2007

27 / 34

The Coln Team CoCoME: Component-Interaction Automata Approach

Analysis
ocoe

Example of properties

e If the StoreApplication (610) starts a transaction with the
Persistence (511), it correctly closes the transaction before it
is able to start another one.

g (77(610, beginTransaction, 511)
= X (- &(610, beginTransaction, 511) U P(610, close, 511)))

e It cannot happen that the StoreApplication (610) is ready to
call queryStockItemById() but never can do so because its
counterpart is never ready to receive the call.

G (£(610, queryStockItemByld, —)
= F £(610, queryStockltemByld, 521))

28 / 34

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Analysis
®00

O Analysis

Use cases and test cases

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007

Use cases

Analysis
oeo

Application

e To check the model against the use case scenarios

e To find a path in the model that realizes the scenario

e To refine the scenario according to the path

All use cases confirmed using DiVinE

[Use Case [States [Transitions | Confirmed after generating
UC 1: ProcessSale () 401 1.488 18 of 384 states
(if) | 10.600.010 | 63.819.991 85 of 3.965.100 states
(iii) 4.975.487 | 29.648.100 | 1.658.496 of 3.317.012 states
UC 3: OrderProducts 181 211 487 of 876 states
UC 5: ShowStockReports 57 64 63 of 94 states
UC 7: ChangePrice 82 94 49 of 114 states

(i) UC 1: ProcessSale: CashPayment: btnStartNewSale
(ii) UC 1: ProcessSale: CashPayment: btnClose
(i) UC 1: ProcessSale: CardPayment: btnEnterPIN

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 30/

Analysis
ooe

Test cases

Application

e To evaluate the test scenarios on the model

Informal scenarios
e Check for existence of a good behaviour
e Formulate a CI-LTL formula

e Verify in a negative way

Formal scenarios
e Check if all behaviours are good in some sense
e Formulate a CI-LTL formula and verify

e Consider only fair runs

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 31/

® Conclusion

The Coln Team CoCoME: Component-Interaction Automata Approach

Conclusion

Summary and lessons learned

Summary
e Application of Component-interaction automata to CoCoME
— mapping of actions, composition operators, modelling process
e Solutions to various modelling issues

e Detailed automatic verification

Lessons learned
e The modelling language
+ high modelling capability
— requires a lot of effort — current works on modelling support
e The verification techniques
+ verification of very large models
+ fully automatic

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007 33 /34

Conclusion

Thank you for your attention

The Coln Team CoCoME: Component-Interaction Automata Approach

	Outline
	Introduction
	Component Model
	Component-interaction automata

	Modelling the CoCoME
	Modelling technique
	Modelling overview
	Selected issues

	Analysis
	Temporal-logic properties
	Use cases and test cases

	Conclusion

