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Component Model

Component Model

Focus of our modelling approach
e Behavioural view

e Interaction among components

The purpose of the model

e Formal verification of component interaction

Framework represented by
e Component-interaction automata language
e For detailed modelling of communication behaviour in CBSs

e Very general — can be used with various component models
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Component Model
©00000

Component-interaction automata language

Component-Interaction automata language
(or ClI automata for short)

e Automata-based language
finite state model, infinite executions/traces

e Three types of actions (input, output and internal)

no additional semantics — interfaces/services/events/etc.

e Captures important interaction information
participants of communication, hierarchy of components

e Flexible composition
can be parametrized by architectural assembly, communication strategy

e General to meet various component models
by fixing the composition operator and semantics of actions
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Component Model
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Definition of a Cl automaton

A component-Interaction automaton
e States (initial)
e Labeled transitions

e Labels (structured - component names, actions)
e input, output and internal

e Hierarchy Hierarchy: (2)

. (D)
cl' \I_J/ (1,¢,—

Hierarchy: (1) Hierarchy: ((3).(4))
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Component Model
00®000

Composition of Cl automata

A parameterizable composition operator ® 1 determines
a composite automaton ® 7S as

e a product of automata from the set S
— complete transition space Ag

e where the transitions outside T are removed
— T can reflect various communicational strategies

e composed hierarchically @ 1{C1, Co=®+/{Cs,C5,Cs}, C3=® 7 {C7} }
— the transition space determined by the expression,
not computed explicitly!

Cp: ——

Hierarchy: (1) Hierarchy: (2)
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Component Model
[eleleY Yolo)

Composition — complete transition space

(1,b,1)
(2,a-)
=0

(L,e,—)

Hierarchy: (1) Hlerarchy: (2)

Cy:
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Component Model
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Composition — cube-like composition

(=21) (1,b,1)
(25377)

Cr: (1e) *)®<—@
(=:¢2)
Hierarchy: (1) Hierarchy: (2)

C = @7{C1,Co} where T = Age, 0,y

C: ~((p,p)
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Component Model
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Composition — handshake-like composition

(=21) 1,b,1
( ) (2.0-)

(L,e,—) 2 ®<7@
(—,c,
Hierarchy: (1) Hlerarchy. (2)

Ci:

C =®71{C1,Co} where T = {(s,x,s') | x € {(2,a,1), (1, b,1),(1,¢,2)}}

¢: ()

. e

(9,9) (Lb1) (r.q)

Hierarchy: ((1),(2))
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Modelling the CoCoME
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Modelling technique

Input
e Specification of behaviour of primitive components
— Java implementation

e Static structure of the system
— hierarchy of components, interfaces and bindings in between
— derived from component diagrams and Java implementation

Output
e Cl automaton representing the whole system

The Coln Team CoCoME: Component-Interaction Automata Approach August 1, 2007



Modelling the CoCoME
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Modelling technique

Modelling process

o Identify primitive components and their services
e Model primitive components as automata

e An automaton for a service
e An automaton for a primitive component
via composition of the services

e Model composite components as automata
e Fix the composition operator
e An automaton for a composite component

e Proceed to formal analysis and verification
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Modelling the CoCoME
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An automaton for a service

Each service, say doIt(), assigned a tuple of actions
o call of the method — doIt
e return from the method — doIt’

and modelled as a loop

@ (—,doA, 1)

Cli

Hierarchy: ((1),(2))
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Modelling the CoCoME
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An automaton for a primitive (basic) component

e Composition of automata for services using the star-like Cy4
and the cube-like C3 composition

(1,04,-) (2,d8",-)
m /—\
1 Q —dA 1) (1,cA 1) @ Ca O —.dB2) U (2,cB.2) @
Hierarchy: (1) Hlerarchy. 2)
(LdA' ) (LA )
k//“\r;\\ k///x\‘\\
C3")@ Caan @)= “‘fp C“")@ T Lap)— =)
(-\dB,2) (~,dB,2) (—,dB,2) (-1dB,2)
A el
e T
@W (—.dA1) (a.0) (LA D) (@) @@ (2d8':-)
(2.dB',~) (2.d8',~)
(2kB2) (2.82) (2.8.2) (24B.2)
(LA 1)
////\\\*~—\
; @ @) o)
P gany )y ) {r:p)
Hierarchy: ((1),(2)) Hierarchy: ((1),(2))
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Modelling the CoCoME
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An automaton for a composite component

e Composition of automata for components using the
handshake-like or the assembly-like composition

Assembly-like composition

e T given explicitly as a set of transitions with labels representing
interaction allowed by bindings among components

Example:
Ci entC
ServiceC ompon
- . ConponertA gl Cnm)oneﬁﬂ
ServiceC T
Sa\m:eB ServiceD ServiceD
ServiceA

La={(—,5A,1),(1,s4, =), (—,sC,1),(1,sC", =), (1,sB, =), (—,sB’, 1), (1, intA, 1)}
Lg ={(—,sB,2),(2,s8, ) (2,sD, =), (=, sD’, 2), (2, intB, 2)}
F = {(1,intA, 1), (2, intB, 2), (1, sB, 2), (2, sB’, 1), (—, sC, 1), (1,sC’, —), (2, sD, =), (—,sD’, 2)}

Cc = ®7{Ca,Cp} where T ={(q,x,q") | x € F}
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Modelling the CoCoME
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® Modelling the CoCoME

Modelling overview
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Modelling the CoCoME
oce

Modelling overview

e The whole Trading System modelled in a fine detail

TradingSystem gl
CashDeskLine gl Inventory gl
CashDesk gl
Data a
CashDeskA
(100) @ CashDeskChannel @ Persistence @ Store @
(200) (510) (520)
CashBoxControll
as (1;7: 1o1nz)ro er g] ExtCommChannelgl Enterprise g
' (300) (530)
Scanner
121 122 $] Coordinator a —
(121,122) @00) Application g]
CardReaderController StoreApplicati F i
(131, 132) g (610) 'P:]‘ ‘ (630) ﬁj‘

PrinterController g] ReportingApplication E
(141, 142) (620)
LightDisplayControllel
(151, 152) "@ GUI a

StoreGUI ReportingGUI
CashDeskGUI g r10) $ZI‘ p(72'0)g @‘
(161, 162)
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® Modelling the CoCoME

Selected issues
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Modelling the CoCoME
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Selected issues

/O? (610,518, — ]ﬁg\ LexcQSIBI ¢ 6]0)1/ (—.qSIBI' 610) 25\\
.
(-,bT"610) (~,qSIBI" 610) /// (610,iA,-)
& & R &
e ~
T(sm bT,—) Fsm com, ) // // (—.iA",610)
©) o extComﬁ]Ol,lg/ (—exciA 610~ @)
Y S s
- A, (610.excCP.—)
. . (—.gTC" 610) (—,com’ 610) - (610,r0f,— )1
" .excRol \
Exception handling @ 5 @ @ sl |
. (610.6TC,~) (610.clo,~) (610,excCP, (= rol’ 610) |
. |
try, catch, finally blocks o & o) B g
M (~.gPC’ 610) (~clo’ 610) (610,excCP,—) /
e throw, delegate an exception [ N ey v
© 13) [€5) 25
(610,6PC,—) (610,7CID,—) (610,clo,—)
o1 (19I5 %)
(—.cP.610) (610,PCID,-) (~.clo' 610)
p .
— O e woran s
(610,cP',—) /
N 0\ o) el
\3}/( PCID’ sm)@/ (610,PCID, ) (- TCID", ém)@ Hierarchy: (610)

Creation and destruction of instances

g o ey (D (it -
e initial activation part (o sale ’ (el /

a, Sa/eg\)@(/sye;,)\«

Hierarchy: (i)
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Modelling the CoCoME
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Selected issues

Internal state of a component
e additional automaton representing the internal state

® answers questions if (currState.equals(PAYING BY CASH))
and reacts to commands currState = PAID;

PAYING_BY _CASH
SALE _FINISHED

INITIALIZED

SALE _STARTED

—
CREDIT,CARD,SCANNED><—Q’,BY,CREDITCARD

Asynchronous messaging
e publish-subscribe communicational model

e realized via event channels
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Analysis
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Analysis

Input for the analysis
e Model of the system as a Cl automaton
e Labelled transition system (LTS) in fact

Analytical methods
e Variety of methods available for LTSs
e Verification of temporal properties with Model Checking
e DiVinE tool for verification of large-scale systems
e Application
e In design phase to predict properties of a new system

e Analysis and verification of existing system
e During modelling to detect modelling errors
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Analysis
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Temporal-logic properties

Logic for expressing properties CI-LTL
e Extended version of LTL, operators next X and until I/
e Both state and action-based

e Properties about
— component interaction that is proceeding P
— possible interaction that is enabled £

Verification

e DiVinE tool
— distributed and on-the-fly model checking and reachability analysis

e Verification run on a cluster of 20 computers
e Presented properties verified in terms of seconds or minutes

August 1, 2007
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Analysis
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Example of properties

e If the StoreApplication (610) starts a transaction with the
Persistence (511), it correctly closes the transaction before it
is able to start another one.

g (77(610, beginTransaction, 511)
= X (- &(610, beginTransaction, 511) U P(610, close, 511)))

e It cannot happen that the StoreApplication (610) is ready to
call queryStockItemById() but never can do so because its
counterpart is never ready to receive the call.

G (£(610, queryStockItemByld, —)
= F £(610, queryStockltemByld, 521))

28 / 34
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O Analysis

Use cases and test cases
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Use cases

Analysis
oeo

Application

e To check the model against the use case scenarios

e To find a path in the model that realizes the scenario

e To refine the scenario according to the path

All use cases confirmed using DiVinE

[ Use Case [ States [ Transitions | Confirmed after generating
UC 1: ProcessSale () 401 1.488 18 of 384 states
(if) | 10.600.010 | 63.819.991 85 of 3.965.100 states
(iii) 4.975.487 | 29.648.100 | 1.658.496 of 3.317.012 states
UC 3: OrderProducts 181 211 487 of 876 states
UC 5: ShowStockReports 57 64 63 of 94 states
UC 7: ChangePrice 82 94 49 of 114 states

(i) UC 1: ProcessSale: CashPayment: btnStartNewSale
(ii) UC 1: ProcessSale: CashPayment: btnClose
(i) UC 1: ProcessSale: CardPayment: btnEnterPIN
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Analysis
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Test cases

Application

e To evaluate the test scenarios on the model

Informal scenarios
e Check for existence of a good behaviour
e Formulate a CI-LTL formula

e Verify in a negative way

Formal scenarios
e Check if all behaviours are good in some sense
e Formulate a CI-LTL formula and verify

e Consider only fair runs
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Conclusion

Summary and lessons learned

Summary
e Application of Component-interaction automata to CoCoME
— mapping of actions, composition operators, modelling process
e Solutions to various modelling issues

e Detailed automatic verification

Lessons learned
e The modelling language
+ high modelling capability
— requires a lot of effort — current works on modelling support
e The verification techniques
+ verification of very large models
+ fully automatic
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Conclusion

Thank you for your attention
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