
CASB: Common Aspect Semantics Base

ABSTRACT
This document gradually introduces formal semantic descriptions of aspect mechanisms.

Document Id : AOSD-Europe-INRIA-7
Deliverable No. : 41
Work-package No. : 8
Type : Integration
Status : Final
Version : 1.0
Date : 10 February 2006
Author(s) : Simplice Djoko Djoko, Rémi Douence, Pascal Fradet, Didier Le Botlan
Contributor(s) :

Contents
1 Common Aspect Semantics Base 2

2 Hypotheses on the base language semantics 2

3 Weaving a single aspect 4
3.1 Before aspect . 5
3.2 After aspect . 5
3.3 Around aspect . 5

4 Weaving several aspects 7
4.1 Aspects of the same kind . 7
4.2 Before, After and Around aspects . 8
4.3 Option . 9

5 Pointcuts 9
5.1 Cflow(below) pointcuts . 10

6 Aspects on specific linguistic features 12
6.1 Exceptions . 12
6.2 Aspect deployment . 15
6.3 Aspect Association . 16
6.4 Stateful Aspects . 19

7 Conclusion 20

Conclusion 20

1

1 Common Aspect Semantics Base
This document gradually introduces formal semantic descriptions of aspect mechanisms. To
begin with, we present minimal requirements on the base language semantics. Then, we consider
the weaving of a single aspect, in particular before, after and around aspects. We extend the
model with multiple aspects, cflow pointcuts, aspects on exceptions, aspect deployment, aspect
instantiation and stateful aspects.

We do our best to describe aspects as independently as possible from the base language. For
each aspect feature, we introduce the minimal constructions of the base language necessary to
plug aspects in. For example, a before aspect does not requires any special mechanisms: the base
language semantics should only respect the common requirements of Section 2. Aspects using
cflow-like pointcuts assume the base language to have a call & return instructions (e.g. proce-
dures, functions or methods).

Many features and examples are inspired from AspectJ but our descriptions are usually more
general. For example, our description of around aspects applies to a larger class of instructions
than just method calls. Usually we introduce only the minimum constraints on the base language
so that the aspectual feature described makes sense. In many cases, our descriptions could be ap-
plied to many different types of programming languages (object-oriented, imperative, functional,
logic, assembly, . . .).

2 Hypotheses on the base language semantics
The base language semantics must be described in terms of a small-step semantics (aka SOS),
formalized through a binary relation →b on configurations made of a program and a state (C,Σ).

A program C is a sequence of basic instructions i terminated by the empty instruction ε:

C ::= i : C | ε

We will abuse the notation and write, for example, C1 : C2 to denote the concatenation of two
programs. The operator ":" is supposed associative and, implicitly, programs are supposed to be
of the form i1 : (i2 : . . . : (in : ε) . . .).

States Σ are kept as abstract as possible. They may contain environments (e.g. associating
variables to values, procedure names to code, etc.), stacks (e.g. evaluation stack), heaps (e.g. dy-
namically allocated memory), etc.

A single reduction step of the base language semantics is written

(i : C,Σ)→b (C′,Σ′)

Intuitively, i represents the current instruction and C the continuation. The component i : C can
be seen as a control stack. The operator ":" sequences the execution of instructions. We rely on
this property to define before and after aspects. Final configurations are of the form (ε,Σ).

EXAMPLE 1 The semantics of the small arithmetic language

E ::= k | E1 +E2

2

can be described in this setting as:

(E1 +E2 : C,S) →b (E1 : E2 : + : C,S)
(+ : C,k1 : k2 : S) →b (C,k1 + k2 : S)
(k : C,S) →b (C,k : S)

The state is made of an evaluation stack. Evaluating an expression E1 +E2 amounts to evaluating
E1 and E2 before performing the addition. The three instructions corresponding to these tasks
are placed into the control stack. The evaluation of an integer pushes it onto the evaluation stack.
An addition replaces the top integers on top of the evaluation stack by their sum.

EXAMPLE 2 The semantics of the small imperative language

S ::= S1;S2 | f = S | call f

can be described in this setting as:

(S1;S2 : C,ρ) →b (S1 : S2 : C,ρ)
(f = S : C,ρ) →b (C,ρ[f #→ S])
(call f : C,ρ) →b (C′ : C,ρ) if ρ(f) = C′

The state is made of an environment (a function) ρ associating identifiers (f) to their code (ρ(f)).
Evaluating a sequence S1;S2 amounts to evaluate S1 and S2 in turn. A definition f = S updates
the environment so that it associates the name f to the code S. A call to f pushes the associated
code in the control stack.

Another possibility could be to compile the language by translating every sequence ";" (a
source language sequencing operator) by ":" (the semantic constructor representing sequenc-
ing). The first semantics rule would disappear.

Most instructions executes without deleting nor referring to their continuation. We say that
such instructions respect sequencing. Formally:

DEFINITION 3 An instruction i respects sequencing if

(i : ε,Σ)→b (C′,Σ′)⇒ (i : C,Σ)→b (C′ : C,Σ′)

All instructions seen in the examples above respect sequencing whereas jumps, call/cc or
exceptions would not.

It is sometimes useful to retain some structure within the program being evaluated. We extend
programs with the notion of block to represent sub-programs.

C ::= i : C | {C1} : C2 | ε

With this extension, an instruction can be a block of instructions. such as {i1 : . . . : in : ε}. The
reduction rule for blocks is just

({C1} : C2,Σ)→b (C1 : C2,Σ)

3

EXAMPLE 4 Blocks can be useful to distinguish return addresses. If we consider again the small
imperative language above then the reduction of the program

(f = call g; i3);(g = i1; i2);call f

will lead to the configuration (i1 : i2 : i3 : ε,ρ) where it is impossible to distinguish the continua-
tions of calls to f and g. If we use blocks in the rule for calls as follows

(call f : C,ρ)→b (C′ : {C},ρ) if ρ(f) = C′

then, the previous configuration will be (i1 : i2 : {i3 : ε},ρ) which makes clear that i1 : i2 are
instructions of the current function and i3 is a return address.

3 Weaving a single aspect
The semantics represents an aspect as a function ψ to be applied to the current instruction i that
returns a function φ. This second function takes the state Σ as parameter and returns a pair (a, t):

ψ(i) = (φ, t) and φ(Σ) = a

where a denotes the advice (supposed to be written in the same language as the base program) to
be inserted, and t (= before,after,around, . . .) denotes the kind of aspect.

These two functions ψ and φ can be seen as two steps to decide which joinpoints are woven.
The first function ψ takes only static information (e.g. syntax) into account, while the second
one φ uses dynamic information (e.g. runtime values). The function ψ returns /0 when there is
no advice for the current instruction. The function φ returns ε when there is no advice for the
current state. In AspectJ, the function ψ can be interpreted as the compiler that instruments the
code with an advice that starts with dynamic checks (i.e. the function φ).

The semantics of weaving is described in terms of a relation → on configurations. The
rule NOADVICE below executes the current instruction i if no advice is to be executed.

NOADVICE
ψ(i) = /0 (i : C,Σ)→b (C′,Σ′)

(i : C,Σ)→ (C′,Σ′)

In order, to prevent an instruction i to be matched, we introduce the notion of tagged instructions
(written i). A tagged instruction i has exactly the same semantics as i except that it is not subject
to weaving. Formally

∀(i,C,Σ) (i : C,Σ)→b (C′,Σ′)⇒ (i : C,Σ)→ (C′,Σ′)

∀i ψ(i) = /0
Some aspect oriented languages consider only the weaving of the base program and rule out the
weaving of advice code. This can be represented by tagging all advice instructions.

In the following subsections we present the semantics rules for before, after and around
aspects. Our semantic descriptions always consider that advice is subject to weaving.

4

3.1 Before aspect
When a before aspect matches the current instruction, its advice is executed before reducing this
instruction. If the before aspect ψ matches the current instruction, the rule BEFORE tags the
current instruction and inserts test φ before.

BEFORE
ψ(i) = (φ,before)

(i : C,Σ)→ (test φ : i : C,Σ)

When test φ is the current instruction, the rule ADVICE applies φ it to the current state Σ in order
to insert the corresponding advice.

ADVICE
(test φ : C,Σ)→ (φ(Σ) : C,Σ)

Note that the instructions of the advice can be matched by the aspect.

3.2 After aspect
The intuition behind an after aspect is to execute the advice after the current instruction has
completed. To make sense, it should be applied to instructions which respect sequencing.

The rule AFTER inserts the advice function after the current instruction and tags the current
instruction if the after aspect ψ matches the current instruction. If an advice has to be executed
after i, the configuration (i : C,Σ) is transformed into (i : test φ : C,Σ). The instruction i cannot
be matched again and the next reduction step of the configuration will be done using →b.

AFTER
ψ(i) = (φ,after)

(i : C,Σ)→ (i : test φ : C,Σ)

If the instruction does not respect sequencing (e.g. it can throw exceptions) then the advice might
not be executed. If the instruction is a procedure call, the advice will be executed when the
procedure returns.

3.3 Around aspect
In order to accommodate around aspect, the base language must contain an additional instruction
(proceed) which can be used in the code of an around advice.

Typically, an around aspect starts by executing its advice before the current instruction. The
advice code may proceed by executing the instruction matched by the around aspect (using the
instruction proceed). The advice may also terminate without executing the current instruction:
the advice has completely replaced the instruction.

In AspectJ, execution of around advices may be more complex than this. For example, an
around advice may contain several proceed resulting in multiple executions of the instruction
matched by the around aspect. The advice of an around aspect may be matched by another
around aspect and one has to keep track to which instruction each proceed is referring to.

To represent the behavior of AspectJ-like around aspects we introduce the following addi-
tional semantic components:

5

◦ a special stack P called the proceed stack,
◦ the semantic function pushp i which pushes the instruction i in the proceed stack,
◦ the semantic function popp which removes the top of the proceed stack.

The rule AROUND inserts the advice function followed by popp and pushes the current in-
struction in the proceed stack so that it can be possibly executed by a proceed.

The rule PROCEED executes the instruction placed on top of the proceed stack. This instruc-
tion is removed (i may be the code of an enclosing around aspect whose proceed would refer to
the top of the stack P not i) and replaced after completion (using pushp i) since the advice may
contain other proceeds.

The rule POP terminates the current advice by removing the instruction on top of the proceed
stack.

AROUND
ψ(i) = (φ,around)

(i : C,Σ,P)→ (test φ : popp : C,Σ, i : P)

PROCEED
(proceed : C,Σ, i : P)→ (i : pushp i : C,Σ,P)

POP
(popp : C,Σ, i : P)→ (C,Σ,P)

EXAMPLE 5 Let us consider the previous small imperative language and an aspect ψ such that

ψ(call f oo) = (φ,around)

φ(Σ) = call bar; proceed;call baz

This aspect inserts a call to bar (resp. baz) before (resp. after) each call to f oo. An example of
reduction is:

(call f oo : ε,ρ,ε)
→ (test φ : popp : ε, ρ, call f oo : ε)
→ (call bar; proceed;call baz : popp : ε, ρ, call f oo : ε)
→∗ (proceed : call baz : popp : ε, ρ′, call f oo : ε)
→ (call f oo : pushp(call f oo) : call baz : popp : ε, ρ′, ε)
→∗ (pushp(call f oo) : call baz : popp : ε, ρ′′, ε)
→∗ (call baz : popp : ε, ρ′′, call f oo : ε)
→∗ (popp : ε, ρ′′′, call f oo : ε)
→ (ε, ρ′′′, ε)

Note that our semantics of around aspects is not limited to calls but can be applied to any
instruction.

6

4 Weaving several aspects
We now consider the weaving of several aspects at the same join point. We first consider the
weaving of several aspects of the same kind. Then we consider the general case of weaving
before,after and around aspects at the same join point.

4.1 Aspects of the same kind
The aspects matching an instruction i are represented by a tuple of advice functions and a kind

ψ(i) = ((φ1 . . .φn), t)

with t = before,after or around.
The order of execution of the advices is made by the function ψ. It is the order of occurrence

of the advice functions in the tuple.

Before aspects

When before aspects match an instruction, their advices are executed before reducing this cur-
rent instruction. As the rule BEFORE, the rule BEFORE* tags the current instruction to prevent
matching it again and inserts the advice functions before.

BEFORE*
ψ(i) = ((φ1 . . .φn),before)

(i : C,Σ)→ (test φ1 : . . . : test φn : i : C,Σ)

After aspects

When after aspects match an instruction, their advices are executed after reducing the current
instruction. As the rule AFTER, the rule AFTER* inserts the advice functions after this current
instruction and tags this current instruction.

AFTER*
ψ(i) = ((φ1 . . .φn),after)

(i : C,Σ)→ (i : test φ1 : . . . : test φn : C,Σ)

Around aspects

The rule AROUND* inserts the first function and pushes all the other advice functions and the
current instruction in the proceed stack. As before, advice can perform 0, 1, or several proceeds.
If n advices (a1, . . . ,an) match a instruction i and each advice is of the form a′i : proceed : a′′i then
the execution will be of the form

a′1 → a′2 → . . .→ a′n → i→ a′′n → . . .→ a′′2 → a′′1

If we change a1 to a′1 : proceed : a′′1 : proceed : a′′′1 the execution will look like

a′1 → . . .→ a′n → i→ a′′n . . .a′′2 → a′′1 → a′2 . . .→ a′n → i→ a′′n . . .a′′2 → a′′′1

7

If we further remove the proceed of a2 the reduction will look like

a′1 → a2 → a′′1 → a2 → a′′′1

The rule AROUND* inserts the first advice function followed by popp n which is responsible
to remove the other advice functions and the instruction after completion.

The rule PROCEED* executes the next advice or instruction placed on top of the proceed
stack. It is the same rule as before. If the instruction execution is an advice it will possibly
execute the next instruction in the proceed stack and will eventually terminate by reintroducing
itself in the proceed stack.

The rule POP* terminates the current advice by removing the top n instructions (the n− 1
advices and the matched instruction) of the proceed stack.

AROUND*
ψ(i) = ((φ1 . . .φn),around)

(i : C,Σ,P)→ (test φ1 : popp n : C,Σ, test φ2 : . . . : test φn : i : P)

PROCEED*
(proceed : C,Σ,x : P)→ (x : pushp x : C,Σ,P)

POP*
(popp n : C,Σ,x1 : . . . : xn : P)→ (C,Σ,P)

4.2 Before, After and Around aspects
We now consider that the more general case of several aspects of different kinds matching a join
point. The aspects matching an instruction i are represented by a function ψ returning a tuple of
pairs made of an advice function and a kind:

ψ(i) = ((φ1, t1) . . .(φn, tn))

with ti = before,after or around.
The function γ translates such a tuple in an equivalent tuple of around only aspects using the

two following rules:

(φ,before) #−→ (λΣ.(test φ : proceed),around)

(φ,after) #−→ (λΣ.(proceed : test φ),around)

A before aspect is translated in a around aspect that possibly inserts the advice (i.e. test φ) before
it proceeds with the next aspect. Symmetrically, an after aspect is translated in a around aspect

8

that possibly inserts the advice after the next aspect is executed. Remember the function φ takes
the state as a parameter, so the translations have to start with λΣ. Here, test φ at the beginning
of the translated before aspects inspects the current state (see the rule ADVICE). In the translated
after aspect, test φ inspects the state after the other aspects execution (i.e. proceed).

The new AROUND* rule is similar to the previous one, but it calls γ.

AROUND*
ψ(i) = ((φ1, t1) . . .(φn, tn)) γ((φ1, t1) . . .(φn, tn)) = ((φ′1,around) . . .(φ′n,around))

(i : C,Σ,P)→ (test φ′1 : popp n : C,Σ, test φ′2 : . . . : test φ′n : i : P)

4.3 Option
Our semantics is based on two functions ψ and φ. We could also use only one function that
combines both. For instance, let us consider a new version of ψ that takes both the current
instruction i and the current state Σ as parameters and returns a tuple of pairs made of an advice
and a kind:

ψ(i,Σ) = ((a1, t1) . . .(an, tn))

In this case, we use the same state Σ to decide which aspects match the current instruction i
(i.e. an advice execution does not influence whether or not the following aspects will be woven).
This option makes it simpler to predict when more than one advice can be woven at the same
instruction.

5 Pointcuts
An aspect is made of a pointcut selecting some join points, an advice (i.e. a code to execute)
and a kind (e.g. before,after,around). Until now, we have abstracted aspects in a function ψ. In
this section, we make more precise the structure of this function and consider several types of
pointcuts.

If we represent pointcuts by patterns, the function ψ can be written as follow:

ψ(i) = i f match(P, i) then (σ(φ), type) else ε

with σ such that σ(P) = i

The aspect selects a join point i by matching it against a pattern (pointcut) P. We represent
the matching process by the function match which takes a pattern, an instruction and returns a
boolean.

match : P× Instruction→ bool

where Instruction is the set of instructions. In case of a match, the advice and its type is returned.
Information (names, types, etc.) can be passed from the instruction to the advice using the
substitution (σ) unifying the pattern with the instruction.

9

The pattern P can be a term with variables matching an instruction, or disjunction, conjunc-
tion and negation of patterns. Thus, during the execution of the program, an aspect matches an
instruction, if the pattern of that aspect matches this instruction. Standard patterns are described
by the following grammar:

P ::= Ti | P1∧P2 | P1∨P2 | ¬P

The term Ti follows the grammar of instructions (left unspecified here) but includes pattern vari-
ables to match arbitrary instructions. The boolean function match is defined as follows:

match(Ti, i) = true if ∃ σ such that σ(Ti) = i
= f alse otherwise

match(P1∧P2, i) = match(P1, i)∧match(P2, i)
match(P1∨P2, i) = match(P1, i)∨match(P2, i)
match(¬P, i) = ¬match(P, i)

Boolean operators (especially the negation) may lead to complications. For example, a pattern
can match an instruction but according to several substitutions (consider for example the pointcut
¬call x matching all instructions different from a call). In these cases, no pattern variables should
occur in the advice.

5.1 Cflow(below) pointcuts
cflow(B), is a pointcut which intuitively represents all the join points which are in the control flow
of a method/procedure call B including the join point represented by B. cflowbelow(B) is similar
but excludes the the join point represented by B. To describe the semantic of such pointcuts we
introduce new instructions, namely method definition and call:

Prog ::= (T id(){S})∗ S

T ::= void | int | . . .

S ::= call id() | . . .

In this grammar, T id() {S} represents the declaration of the procedure/method id and T (void,
int, etc) its return type. A program consists in a collection of procedures/methods declarations
followed by a main command. Commands include instructions call id() which are calls to id.
The semantic of those instructions are expressed by the rules below. Configurations are extended
with an environment ρ and a stack F . The environment ρ is a function which associates to each
id of a procedure its body and return type. The stack F contains the signature of all the calls
which have not returned yet. The program is in the control flow of all calls whose signatures are
contained in F . A call to a procedure inserts a block representing its return address and the body
of the procedure contained in the environment. It also pushes the signature corresponding of the

10

procedure call on F . Blocks, which represent a return instruction, will remove that signature on
exit.

CALL
ρ(id) = (C′, t)

(call id() : C,Σ,ρ,F)→b (C′ : {C},Σ,ρ,(t)id : F)

RET
({C},Σ,ρ,(t)id : F)→b (C,Σ,ρ,F)

The pointcut cflow(B) selects all the join points which are in the control flow of the pointcut
B. Thus, cflow(B) matches an instruction, if this join point is in the control flow of B. The
semantic of cflow and cflowbelow is described by extending the matching function match to take
into account the stack F . The boolean function match f takes a pattern, an instruction and a stack
of signatures.

match f : P× Instruction×Sig∗ → bool

where P is the set of pointcuts, Instruction is the set of instructions and Sig∗ is a stack of signa-
tures corresponding to procedure calls. The pointcuts have the following syntax:

P ::= Ti | cflow((PT)PI) | P1∧P2 | P1∨P2 | ¬ P

PT ::= x | void | int | . . .

PI ::= x | id

In this grammar, (PT)PI is a pattern matching any signature corresponding to a procedure call
whose identifier is matched by PI . The optional type pattern PT matches the return type. The
patterns PT (resp. PI) are either a type (resp. an identifier) or a pattern variable x. The matching
function match f taking into account cflow(below) pointcuts is defined as follows:

match f (cflow((PT)PI), i,F) =

((match(PT , t)∧match(PI, id)∧ i = call id with ρ(id) = (_, t))
∨
(∃ (t)id ∈ F.match(PT , t)∧match(PI, id))

match f (cflowbelow(((PT)PI), i,F) = ∃ (t)id ∈ F.match(PT , t)∧match(PI, id)
match f (P1∧P2, i,F) = match f (P1, i,F)∧match f (P2, i,F)
match f (P1∨P2, i,F) = match f (P1, i,F)∨match f (P2, i,F)
match f (¬P, i,F) = ¬match f (P, i,F)

A join point is in the control flow of a pointcut (PT)PI if (PT)PI matches either the signature of
the current instruction if this instruction is call id or (PT)PI matches a signature in the stack F . A
join point is below the control flow of a pointcut (PT)PI is that (PT)PI matches a signature in the
stack F . Boolean combination of patterns are treated as before.

11

6 Aspects on specific linguistic features
In this section, we describe several aspectual features taken from AspectJ: aspects on exceptions
(around throws, after throwing and handler) and aspect instantiation. They involve to introduce
special instructions on the base language. For example, to specify aspects on exceptions, we in-
troduce exception mechanisms (try-catch blocks and a throw instruction). For the sake of clarity,
aspectual features are described in isolation. We believe that these descriptions provide hints
useful enough to establish the semantics of complete AO language.

6.1 Exceptions
We introduce exceptions on the base language using the following instructions:

S ::= try S1 catch ex S2 | throw ex | . . .

The instruction try S1 catch ex S2 declares a new exception ex which can be thrown within S1 and
is handled by S2. The instruction throw ex raises an exception ex.

The store remains as abstract as possible but we need to introduce a stack E recording the
exceptions declared. Every element of E is a pair of type I × C where I represents an exception
identifier and C a code. A pair (ex,C) of E provides the code C to execute when the exception ex
is raised. These pairs are pushed in the order of the try-catch block declarations in the program.
When an exception ex is thrown, the current continuation is replaced by the code associated with
ex in E. If an exception cannot be found in E it is a dynamic error "uncaught exception".

The semantic of exceptions in the base program is described in terms of the relation →b on
configurations extended with the stack E. The execution of a try S1 catch ex S2 block pushes in E
the pair constituted of the exception name and the code to execute in that case (i.e. (ex,S2 : C)),
execute the block S1. The instruction pope removes the pair from E after completion of S1.
When an exception ex is raised, the current continuation C is replaced by the code C′ associated
with (the first occurrence of) ex in E. All the exceptions stacked after ex are removed from E;
indeed the exception escapes from all the try catch blocks encountered between its declaration
and raise.

TRY
(try S1 catch ex S2 : C, Σ, E) →b (S1 : pope : C, Σ,(ex, S2 : C) : E)

POPe (pope : C, Σ, X : E) →b (C, Σ, E)

THROW
(throw ex : C, Σ, (ex0,C0) : . . . : (exk,Ck) : (ex,C′) : E)

→b (C′, Σ, E) with exi .= ex ∧ 0≤ i≤ k

UNCAUGHT
(throw ex : C, Σ, (ex0,C0) : . . . : (exk,Ck) : ε)

→b Uncaught exception with exi .= ex ∧ 0≤ i≤ k

12

We now present the semantics rules of aspects and pointcuts taking exceptions into account.
We consider three aspectual features inspired from AspectJ: around throws, after throwing and
handler.

Around throws Aspects

The aspect around throws P Pex matches an instruction which can match P and which can also
raise an exception matching the pattern Pex. The execution is an around aspect but the definition
of pointcut has to be adapted. We have to define patterns matching exceptions. For example, we
can used

Pex ::= ∗ | id

where ∗ represents any exceptions and id is a specific exception identifier. We use the function
excep which takes the current instruction and returns the list of exceptions lex this join point
might raise. Then, the function matchex returns true if it exists at least one exception in the list of
exception matching the pattern of exception (matchex(lex,∗) = true). Therefore, around throws
aspects are taken into account by redefining ψ to associate instructions with the list of exceptions
they may raise. The aspect around throws P Pex is defined by a function ψ of the form:

ψ(i) = i f match(P, i)∧matchex(excep(i),Pex) then (σ(φ),around) else ε

with σ such that σ(P) = i

After throwing Aspects

After throwing aspects apply on procedure returning by propagating an exception. We assume
that calls and returns are formalized using the stack F in configurations as in section 5.1. The
stack F contains the signatures corresponding to the calls which have not returned yet. First to
in order to find which calls propagate an exception the current stack F must be memorized with
the exception and the current continuation when entering a try - catch block. The two rules TRY
and POPe are refined as follows:

TRY

(try S1 catch ex S2 : C, Σ, F, E) →b (S1 : pope : C, Σ, F,(ex, S2 : C,F) : E)

POPe (pope : C, Σ, F, X : E) →b (C, Σ, F, E)

When an exception is thrown, the program is replaced by the code C′ associated with this
exception and the exception stack is reset as before. Instead of replacing immediately F by the
stack recorded with the exception, this will be done iteratively by the instruction Retid .

THROW
(throw ex : C, Σ, F, (ex0,C0,F0) : . . . : (exk,Ck,Fk) : (ex,C′,F ′) : E)

→b (Retid ex F ′ : C′, Σ, F, E) with exi .= ex ∧ 0≤ i≤ k

13

The function Retid ex F ′ recursively pops the signatures of the stack F until it is the same as
during the try-catch corresponding to the exception ex. Each instruction popped corresponds to a
return propagating the exception therefore a candidate for inserting an afterthrowing advice. The
rule RET1

id pops the top signature of F and tries to match call id(), the call instruction denoting a
return propagating the exception ex. In that case, the advice corresponding to the afterthrowing
aspect is inserted. We consider here that if no afterthrowing aspect matches the instruction, the
function ψ will return (/0, afterthrowing). The rule RET2

id ends this process when the F stack
is back to its correct state. The execution proceeds with the exception continuation (i.e. the
handler).

RET1
id

(t)id : F .= F ′ ∧ ψ(call id()) = (φ, afterthrowing)
(Retid ex F ′ : C,Σ,(t)id : F,E) → (Retid ex F ′ : test φ : C,Σ,F,E)

RET2
id (Retid ex F : C,Σ,F,E) → (C,Σ,F,E)

EXAMPLE 6 Consider the program Prog and the aspect ψ defined as follows:

Prog = try call f oo() catch ex ε
void f oo() ex = call goo()
void goo() ex = throw ex
ψ(∗,∗) = (φ, afterthrowing)
φ(Σ) = call baz
void baz() = ε

The declaration of procedures is extended to include the exceptions they might throw (or prop-
agate). Prog call the procedure f oo in a try - catch block. The procedure f oo, which can
propagate the exception ex, calls the procedure goo which raises the exception ex. The aspect ψ
matches any return exiting abruptly by throwing any exception. It inserts a call to the procedure
baz.

The execution of Prog proceeds as follows:

(try call f oo() catch ex ε : ε,Σ,ε,ε)
→ (call f oo() : pope : ε,Σ,ε,(ex,ε,ε) : ε)
→ (call goo() : {pope : ε},Σ,(void) f oo : ε,(ex,ε,ε) : ε)
→ (throw ex : {{pope : ε}},Σ,(void) goo : (void) f oo : ε,(ex,ε,ε) : ε)
→ (Retid ex ε : ε,Σ,(void) goo : (void) f oo : ε,ε)
→ (Retid ex ε : test φ : ε,Σ,(void) f oo : ε,ε)
→ (Retid ex ε : test φ : test φ : ε,Σ,ε,ε)
→ (test φ : test φ : ε,Σ,ε,ε)
→ (call baz : test φ : ε,Σ,ε,ε)
→ ({test φ : ε},Σ,(void) baz : ε,ε)
→ (test φ : ε,Σ,ε,ε)
→ (call baz : ε,Σ,ε,ε)
→ ({ε},Σ,(void) baz : ε,ε)
→ (ε,Σ,ε,ε)

14

When the exception is thrown, the current continuation is replaced by the handler code (here ε)
and the instruction Retid ex. It removes iteratively the two signatures in the stack F inserting
each time a call to the procedure baz.

Handler

The pointcut handler Pex matches any join point which catches an exception ex matching the
pattern Pex. It is supported only by aspects of kind before. Since the entry of the handler is not
distinguished in our semantics of exceptions, we model the rule HANDLER when the exception
is thrown.

HANDLER
ψ(throw ex) = (φ, beforehandler)

(throw ex : C, Σ, (ex0,C0) : . . . : (exk,Ck) : (ex,C
′
) : E)

→ (test φ : C
′
, Σ, E) with exi .= ex ∧ 0≤ i≤ k

6.2 Aspect deployment
Like classes, aspects can also be instantiated dynamically. For example, an instance can be
activated on entry in a block and deactivated on exit. This is a dynamic aspects deployment
which is opposed to the static aspect deployment where the aspects are instantiated once and for
all. We describe here the semantic of a dynamic aspect deployment similar to the feature deploy
of CaesarJ.

We consider the instruction deploy id S in the base language. By this instruction, the aspect
named id is activated within the block S and deactivated after the execution of S. We introduce
in the configurations a stack Ψ recording all the current active aspects. The stack Ψ contains
the aspects which are dynamically activated by the instruction deploy but also those which are
statically instantiated. These global aspects are supposed to be at the bottom of the stack. When
the instruction deploy id S is executed, the new aspect ψid is pushed on Ψ and the block S followed
by the instruction popΨ are executed. After the execution of S, the instruction popΨ deactivates
the aspect which is on the top of Ψ by removing it.

DEPLOY
(deploy id S : C, Σ, Ψ) → (S : popΨ : C, Σ, ψid : Ψ)

PopΨ (popΨ : C, Σ, ψid : Ψ) → (C, Σ, Ψ)

During the execution, trying to match a join point i amounts to apply the stack of active
aspects to i. As usual, the application of each aspect to i returns pair made of an advice and a
kind. These pairs must be sorted with respect to their relative priorities. We suppose that such
priorities are given by the global function priority. This function can be explicitly defined by
the programmer using declarations such as declare precedence in AspectJ. So, matching a join
point i by a stack of aspects (ψ1 : . . . : ψn : ε) is described as follows:

(ψ1 : . . . : ψn : ε)(i) = priority(ψ1(i), . . . ,ψn(i))
= ((φ j1, t j1), . . . ,(φ jn, t jn)) with 1≤ ji ≤ n

15

Aspect deployment can be seen as a simple and restricted form of aspect instantiation that we
consider in the following section.

6.3 Aspect Association
Aspect association designates the mechanism that associates a peculiar aspect to an instruction.
In our model, this association is performed by a function ψ taking an instruction as an argument
and returning a dynamic test function φ with a type (before, after, around), see Rule BEFORE
page 5 for instance. In this section, we refine the model so that aspects can be associated to dy-
namic entities, along the lines of perTarget and variants in AspectJ. In order to keep the presenta-
tion simple, we consider the single aspect case. Generalization to multiple aspects is orthogonal,
and the technique exposed in Section 4 can be used.

In opposition to aspects that are instantiated once and for all (also called singleton aspects),
some aspects are meant to be associated to dynamic entities, such as objects. Thus, several
instances of the same aspect may exist at run-time, for example one aspect being associated to
each object instance of a given class. Each instance has its own private state, stored in Σ, that
may evolve over time. Since in general the number of instances of a given class is not known
statically, neither is (in general) the number of instances of a given aspect. This is why aspects
have to be instantiated dynamically.

Aspect Instantiation
Since new aspect instances may be generated at run-time, the association function ψ has to evolve
dynamically to take account of all aspect instances. To this end, we decompose ψ into elementary
association functions ψid , where id is a unique aspect identifier. This leads to the definition of an
aspect environment:

DEFINITION 7 The aspect environment is a mapping Ψ that maps aspect identifiers (id) to ele-
mentary aspects ψid.

At a given time, the domain of Ψ, written dom(Ψ), is the set of identifiers of all existing aspects.
The composition of all elementary aspects ψid in Ψ is written (◦Ψ) and formally defined as
ψid1 ◦ ..◦ψidn for dom(Ψ) = {id1, .., idn}.

We modify the semantics so that the aspect environment Ψ may evolve over reductions. Thus,
the general form of a reduction is now the following:

(C,Σ,Ψ)→ (C′,Σ′,Ψ′)

Like pointcuts, aspect instantiation is governed by instructions. More precisely, each time an
instruction is executed, the function Ψ is possibly updated with new aspects, thanks to a function
update. We show a new version of Rule BEFORE that takes aspect instantation into account.
Other rules can be updated likewise, in particular rules NOADVICE, AFTER, and AROUND.

BEFORE
update(Ψ, i,Σ) = (Ψ′,Σ′) (◦Ψ′)(i) = (φ,be f ore)

(i : C,Σ,Ψ)→ (test φ : ī : C,Σ′,Ψ′)

16

Intuitively, the function update checks if the instruction i should trigger an aspect instantia-
tion. If this is the case, and if the aspect does not already exist, it is created. Since the state of the
new aspect instance is stored in Σ, it also takes Σ as an argument and returns a new state Σ′. As
a possible effect, update can also remove aspect instances from the context once their associated
entity has disappeared (garbage collection).

The function update must be idempotent: if update(Ψ, i,Σ)= (Ψ′,Σ′), then update(Ψ′, i,Σ′)=
(Ψ′,Σ′). Additionally, tagged instructions must not introduce new aspects: update(Ψ, ī,Σ) =
(Ψ,Σ).

Example (perTarget)

We illustrate aspect instantiation by associating an aspect counter to each instance of a given
class Point, like perTarget in AspectJ. Each aspect counter advises the calls to a method m in
Point, by counting the number of times the method is invoked. At first, we describe only the
association and instantation mechanisms. Then, we provide the details of updating the value of
the counter.

We have two options: either we create new instances of counter each time a new object of
class Point is created, either instances of counter are created by need, that is, only when the
method m is invoked on an object for the first time. We consider the second case, although the
other option fits in our model as well.

New aspect instances are created using an aspect template, called a generator, and written
G. In the perTarget case, a generator is a function expecting an object x and a store Σ and
returning a new elementary aspect as well as a new store Σ′ which holds the private state of the
elementary aspect. The elementary aspect is a function ψid . By convention, in the perTarget
case, the identifier id is of the form aspectNamex, that is, the name of the aspect tagged by a
reference to the object it is associated to. In short, G(x,Σ) is a pair (ψid,Σ′).

To pursue the example, update is defined as follows, where x.m() is the invocation of method
m on object x.

update(Ψ,x.m(),Σ) ∆= (Ψ′,Σ′) if counterx /∈ dom(Ψ)
with G(x,Σ) = (ψid,Σ′)
and Ψ′ = Ψ{id → ψid}

update(Ψ, i,Σ) ∆= (Ψ,Σ) otherwise

In the first case, an aspect instance is created by invoking the generator G and adding ψid to
the current environment Ψ. The global state Σ is extended with private aspect state and becomes
Σ′. In the second case, the instruction does not trigger aspect instantiation, and so Ψ is not
modified.

The generalization to other classes and aspects is immediate.
To exemplify the introduction of new state in Σ, we now provide the details of counter. To this

end, we assume that Σ is an environment associating a value (such as an integer) to identifiers
(variables). We assume given a function incr that increments its argument, which must be a

17

variable. Formally, the generator G associated to the aspect counter is defined as

G(x,Σ) ∆= (ψid,Σ′) with id ∆= counterx

where ψid
∆=

{
x.m() #→ ((λΣ.incr z),be f ore) if classOf(x) = Point
i #→ /0

and Σ′ ∆= Σ{z #→ 0} with z /∈ dom(Σ)

The new environment Σ′ is defined as Σ{z #→ 0}, that is, the environment Σ extended with
a new variable z initialized with 0 (note the side-condition z /∈ dom(Σ) that avoids capture of
existing variables). The association function ψid is defined as x.m() #→ ((λΣ.incr z),be f ore).

Example of per-control-flow aspects (percflow)

Let Pe be a pointcut definition, as defined in Section 5.1. In this example, we formalize the
meaning of per-cflow(Pe), which states that the corresponding aspect is instantiated each time a
“new cflow” is considered.

Let us first describe more precisely the intuitive meaning. In Section 5.1, a stack of enclosing
calls written F was introduced in the program state. Thus, each time a procedure (or function,
method) call occurs, its signature (t)id is pushed onto the stack. Conversely, each time a pro-
cedure calls ends, the last element of the stack is popped. The pointcut cflow(Pe) matches the
current joinpoint if and only if a signature satisfying Pe is in the stack or if the current instruction
is a call to a method whose signature matches Pe. Informally, we say that the program is in the
cflow of Pe.

When the program steps from a state where it is not in the cflow of Pe into a state where it is
in the cflow of Pe, we say that the program enters the cflow of Pe. Conversely, the program may
leave a cflow of Pe. The qualifier per-cflow(Pe) states that a new aspect instance must be created
each time the program enters the cflow of Pe.

Formally, we assume given an aspect generator G that takes two arguments: the state Σ and
the instruction i that caused the program to step into the cflow of Pe. The generator returns an
elementary aspect ψid , where id is the (unique) aspect name, and a possibly new state Σ′.

G(i,Σ) = (ψid,Σ′)

New aspects are created each time the program enters the cflow of Pe, which happens only
when the current instruction i is a call to a method whose signature is matched by Pe while the
program was not in the cflow of Pe. Conversely, aspects are deleted each time the program leaves
the cflow of Pe, which occurs in Rule RET defined in Section 5.1. In order to take the call stack
into account, the function update, defined in the previous section, gets F as an extra argument.

The function update that implements per-cflow(Pe) is defined as follows (the name id is the

18

unique name of the aspect being considered):

update(Ψ, i,Σ,F) ∆= (Ψ,Σ′)
if match f (Pe, i,F) and id /∈ dom(Ψ)
with G(i,Σ) = (ψid,Σ′)
and Ψ′ = Ψ{id → ψid}

update(Ψ,{C},Σ,F) ∆= (Ψ− id,Σ)
if not match f (Pe,{C},F)

update(Ψ, i,Σ,F) ∆= (Ψ,Σ)
if not match f (Pe, i,F) or id ∈ dom(Ψ)

The first case correspond to a program entering the cflow of Pe. The function match f is for-
mally defined page 11, in the definition of cflow. The second case captures the return instruction
(Rule RET). It removes the aspect instance id from the aspect environment Ψ if the reduction
steps out of the cflow of Pe.

Note that it is also acceptable to consider per cflow for individual threads. To this end, it
suffices to mark the identifier of the aspect (id in ψid) with the thread identifier. Thus, a new
aspect instance will be created each time a thread enters the cflow of Pe. This requires that the
current thread id is made explicit in the reduction rules.

6.4 Stateful Aspects
An aspect inserts an advice when it matches an instruction. A stateful aspect inserts an advice
when it matches a sequence of instructions. So, it has a state that evolves and specifies the next
instruction to be matched. Our semantics rules must take into account the evolutions of ψ as the
weaving progresses. For instance, the rule BEFORE becomes:

BEFORE
ψ(i) = (φ,before,ψ′)

(i : C,Σ,ψ)→ (test φ : i : C,Σ,ψ′)

We introduce a grammar for stateful aspects:
A ::= µa.(P1 !a1;A1! . . .!Pn !an;An)

| a
The base case P ! a;A inserts the advice a when the pattern P matches the current instruction,
then it weaves A. The choice operator ! defines branches in sequences of instructions. Finally,
the recursion operator enables sequences of arbitrary length. Such an aspect definition can be
translated into a function ψ as follows:

T1 :: A→ ψ
T1[[µa.(P1 !a1;A1! . . .!Pn !an;An)]] = µa.λi.

if match(P1, i) then (λΣ.a1,before,T1[[A1]]) else
. . .
if match(Pn, i) then (λΣ.an,before,T1[[An]]) else
a

T1[[a]] = a

19

The recursion is translated directly. A function ψ takes the current instruction in parameter
(i.e. λi.). Then it performs pattern matching and returns the corresponding advice (or check the
next instruction if no pattern matches). The function returns a triplet (φ,before,ψ′) where ψ′ is a
kind of continuation for the aspect (i.e. the function to be applied to the next instruction).

7 Conclusion
In this note, we have defined a small step semantics for the major mechanisms of AspectJ, EAOP
and Caesar. They have been defined in isolation. So, the next step could be to mix them. It is
quite likely these mechanisms are not fully orthogonal. For instance, both aspect association and
stateful aspects update the function ψ. We also plan to use our semantics in order to explore the
analysis and/or verification of aspect oriented programs. In particular, we would like to verify
that a specific aspect ensures some properties in the woven program or preserves some properties
of the base program.

20

