
A Framework for the Detection and Resolution
of Aspect Interactions

Rémi Douence1,�, Pascal Fradet2, and Mario Südholt1,∗

1 École des Mines de Nantes/Inria, Nantes, France
www.emn.fr/{douence,sudholt}
2 Irisa/Inria, Rennes, France
www.irisa.fr/lande/fradet

Abstract. Aspect-Oriented Programming (AOP) promises separation
of concerns at the implementation level. However, aspects are not al-
ways orthogonal and aspect interaction is an important problem. Cur-
rently there is almost no support for the detection and resolution of such
interactions. The programmer is responsible for identifying interactions
between conflicting aspects and implementing conflict resolution code.
In this paper, we propose a solution to this problem based on a generic
framework for AOP. The contributions are threefold: we present a formal
and expressive crosscut language, two static conflict analyses and some
linguistic support for conflict resolution.

1 Introduction

Separation of concerns is a valuable structuring principle for the development of
software systems. Aspect-Oriented Programming (AOP) [8] promises a system-
atic treatment of concern separation at the implementation level. Once concerns
are expressed separately in terms of different aspect definitions, one of the most
fundamental problems of AOP is that of interaction between aspects, i.e., con-
flicts between aspects which are not orthogonal [4]. There is almost no support
for the treatment of aspect interactions: the programmer is responsible for iden-
tifying interactions between conflicting aspects and for implementing conflict
resolution code.
We believe that the treatment of aspect interactions should be separated

from the definition of the aspects themselves. We therefore propose a three-
phase model for multi-aspect programming:

1. Programming. The aspects which are part of an application are written
independently, possibly by different programmers.

2. Conflict analysis. An automatic tool detects interactions among aspects and
returns informative results to the programmer.

� Partially funded by the EU project “EasyComp” (www.easycomp.org), no. IST-1999-
014191.

D. Batory, C. Consel, and W. Taha (Eds.): GPCE 2002, LNCS 2487, pp. 173–188, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

174 R. Douence, P. Fradet, and M. Südholt

3. Conflict resolution. The programmer resolves the interactions using a ded-
icated composition language. The result of this phase can be checked once
again as in phase 2.

The main objective of this paper is to provide support for this three-phase pro-
cess. Our solution is based on a generic framework for AOP, which is character-
ized by a very expressive crosscut language, static conflict analyses and linguistic
support for conflict resolution.
In Section 2, we formally define a general model for AOP which (conceptu-

ally) relies on a monitor observing the execution trace. Aspects consist of cross-
cuts matching regular expressions (i.e., sequences) of execution points, which
define where the execution of the base program is modified, and inserts, which
define the aspect code to be executed. Aspect weaving is modeled as an execution
monitor recognizing crosscuts and applying inserts. The interactions treated in
this paper occur when two crosscuts match the same point in the execution trace.
In Section 3, we propose two different analyses detecting aspect interactions, in-
dependently of the base program or w.r.t. a specific base program. Section 4
proposes some linguistic support for the resolution of conflicts caused by aspect
interactions. In particular, we introduce commands making explicit the composi-
tion of several inserts at the same execution point. We also present commands to
control the visibility of aspects w.r.t. other aspects. These commands are taken
into account by aspect transformation so that interaction analyses can still be
applied to check that conflicts have been effectively resolved. We conclude by a
brief review of related work and future research directions.
This paper provides a generic model for AOP that does not rely on any

specific programming language. In order to provide more intuition, we illustrate
our different concepts by instantiating the framework toAspectJ [9]. We assume
a basic familiarity with AOP [8] in general and AspectJ in particular.

2 Framework

We model weaving as a dynamic monitor, observing the execution of the pro-
gram and inserting instructions according to execution states. An aspect specifies
which instructions to insert at which execution state. This study is made within
a generic formal framework. In particular, we do not rely upon a particular
programming language and consider a very expressive crosscut language.
We first present our model of program execution. We then introduce our as-

pect language that is based on crosscuts, inserts and composition operators. The
operators support expressive aspect definitions and enable modeling of aspect
interactions. Finally, we describe the weaver, that is to say, how executions are
monitored, i.e., observed and woven.

2.1 Observable Execution and Join Points

The relevant part of an execution for weaving is called the observable execution
trace. We define it using a transition relation (→) between observable execu-
tion states. A →-step may represent a sequence of actual execution steps. The

A Framework for the Detection and Resolution of Aspect Interactions 175

relation → can be defined on the basis of a small-step semantics [11] of the
base programming language. Observable states are configurations of the form
(j, P, σ), where j, the current join point, is an abstraction of the (static) pro-
gram P and the (dynamic) execution state σ. Join points are terms which can
be matched against crosscuts, i.e., term patterns. Their nature can be syntactic
(e.g., instructions) but also semantic (e.g., dynamic values).
The entry and exit of a program are denoted by two special join points: ↓

and ↑, respectively. The observable execution trace of a program with an initial
state σ0 is then of the form:

(↓, P, σ0) → . . . → (ji, P, σi) → . . .

If the reduction terminates, there exists a σn such that (↓, P, σ0)
∗→ (↑, P, σn),

where ∗→ denotes the transitive, reflexive closure of →.
AspectJ: In AspectJ, join points denote, among others, method calls, field
accesses and exception handler executions. They are represented at run time by a
variable thisJoinPoint that contains static information (e.g., method signatures,
source locations) as well as dynamic information (e.g., values of the receiver and
arguments of a call). For example, when a point object (whose address is 4711) is
moved to the origin through a call occurring in a line object (at address 1213), the
corresponding join point can be modeled in our framework by a term:

call(void Point.move(int,int), within(Line),
this(Line,1213), target(Point,4711), args(0,0)) �

2.2 The Aspect Language

The basic constituents of aspects are rules of the form

C ✄ I

where C is a crosscut and I an insert. The insert I is a program that is executed
whenever the crosscut C matches the current join point. Rules are combined
into aspects using three operators (sequence, repetition and choice).

Crosscuts. To achieve highest expressiveness, crosscuts would be defined as
arbitrary functions matching join points. However, this is too general for our
purposes: we consider a more specific yet expressive crosscut language in which
checking interactions is feasible.
Let us define terms as finite trees of the form

T ::= f T1 . . . Tn | x

where f is an n-ary (n ≥ 0) symbol and x is a variable. A term can be seen as
a pattern to be matched on join points. The symbol f can represent a syntactic
element of the programming language or, more generally, an information con-
tained within join points. Note that our aspect language is generic and can be
used to define more specialized term languages (e.g., one for AspectJ).
A crosscut is made of conjunctions, disjunctions and negations of terms:

176 R. Douence, P. Fradet, and M. Südholt

C ::= T | C1 ∧ C2 | C1 ∨ C2 | ¬C

For example, using a more concrete syntax than the abstract trees denoting
terms, the crosscut matching calls to a function g where one of the two arguments
is a constant a can be written g(x, a) ∨ g(a, x).
The formulas used to express crosscuts belong to the so-called quantifier free

equational formulas [3]. Whether such a formula has a solution is decidable. This
is one of the key properties making the analyses described in Section 3 feasible.
The application of a crosscut to a join point j is written C j. It amounts

to solving the formula obtained by replacing each term T in C by the equation
j = T . If a crosscut does not match the program point (i.e., the formula has no
solution) then we write C j = fail. If the crosscut matches the program point
then we write C j = φ where φ is a substitution mapping the variables of the
crosscut to their unique solution (variables with several solutions do not appear
in φ)
We use false for the crosscut which does not match any join point and true

for the crosscut that matches all join points. Let z be a fresh variable then false
can be defined by the crosscut z ∧ ¬z and true by z.

AspectJ: AspectJ’s crosscuts (“pointcuts”) are very close to the crosscut lan-
guage we introduced. They are defined as terms containing variables ranging over
values of programs and wildcards. They may be combined using the same logical
operators (&&, ||, !). For example, moving points could be tracked in AspectJ
with the crosscut definition:
pointcut moving(Point p, int x):target(p) && call(void move(x,*))

This crosscut can be translated in our framework into the pattern:
call(void Point.move(int,w0), within(w1), this(w2),

target(Point p), args(x,w3))
where fresh variables wi express wildcards or irrelevant information. �

Inserts. An insert I is a term as defined above. The intuition behind a rule C✄I
is that when the crosscut matches the current join point, i.e., C j = φ, then φI
is executed. Hence, C j must yield a substitution binding all the variables of I.
Any specific aspect language must ensure that φI is a always a valid piece of
code (in particular, that it does not contain undefined term variables). In the
remainder of this paper we assume that all φI are valid.
At some places, we use the special insert skip that represents an instruction

doing nothing. We write always for the rule true ✄ skip that matches any join
point and does nothing and never for the rule false ✄ skip that does not match
any join point.

AspectJ: AspectJ’s inserts (“advice”) are defined as Java code to be executed
when a crosscut matches. As in our language, they may refer to the values bound
to the variables occurring in the corresponding crosscut. �

A Framework for the Detection and Resolution of Aspect Interactions 177

Aspects. In order to define aspects, we use a syntax similar to process calculi
such as CSP. An aspect is defined by the following grammar:

A ::= µa.A ; recursive definition
| C ✄ I ; A ; sequence
| C ✄ I ; a ; end of sequence
| A1 ✷ A2 ; choice

An aspect is either

– The recursive definition of an aspect µa.A which is equivalent to the aspect
A where all the occurrences of the variable a are replaced by µa.A.

– A sequence C ✄ I ; X, where X is an aspect or a variable. These linear
sequences always end with a variable. This is needed to ensure that aspects
are regular (finite state). If the crosscut C matches the current join point,
then X becomes the aspect to be woven. We consider that as soon as a rule
has matched a join point, it terminates. An aspect trying to apply C ✄ I
throughout the execution can be expressed as

µa.C ✄ I ; a

This aspect does not evolve during the execution: such an aspect is called
stateless. An aspect applying C ✄ I only once can be expressed as

C ✄ I ; (µa.never ; a)

Indeed, as soon as C ✄ I is applied, the weaver will try to apply never. This
is an instance of an aspect evolving according to the join points encountered.
Their implementation must use some kind of state to represent this evolution.
We use the term stateful to refer to this general form of aspects.

– A choice construction A1 ✷ A2 which chooses the first aspect that matches
a join point (the other is thrown away). If both match the same join point,
A1 is chosen. For example, the aspect trying to apply C ✄ I only on the
current join point and doing nothing afterward can be expressed as

(C ✄ I ; (µa.always ; a)) ✷ (µa.always ; a)

If C matches the current join point, the weaver chooses the first aspect,
executes the insert I and the aspect becomes µa.always ; a that keeps doing
nothing. Otherwise, the weaver chooses the second recursive aspect which is
µa.always ; a as well.

Recursive definitions, sequencing, and choices allow the specification of finite
state aspects which evolve according to the join points encountered. For example,
a security aspect that logs file accesses (calls to read) during a session (from a
call to login() until a call to logout()) can be expressed as

µa1.login()✄ skip ; µa2.(logout()✄ skip ; a1) ✷ (read(x)✄ addLog(x) ; a2)

where x denotes the name of the accessed file.

178 R. Douence, P. Fradet, and M. Südholt

Aspect composition. Aspects addressing different issues (such as debugging
and profiling) are composed using a parallel operator ‖. Typically, the weaver
takes a parallel composition of n aspects A1‖ . . . ‖An and tries to apply each of
them at each join point. The parallel operator is non-deterministic. For example,
the composition

(µa.C1 ✄ I1 ; a) ‖ (µa.C2 ✄ I2 ; a)

inserts I1 (resp. I2) if C1 (resp. C2) matches the current join point. When C1 and
C2 match the same join point, it is not specified whether I1 is executed before
I2 or vice versa. In this case, we say that (µa.C1 ✄ I1 ; a) and (µa.C2 ✄ I2 ; a)
interact.
AspectJ: AspectJ’s aspects are rules (in the sense above) and they are repeatedly
applied throughout the program execution. They can be expressed in our framework
as µa.C ✄ I ; a. Several aspects are composed in parallel (‖). Therefore, they may
match the same join point and interact. In AspectJ, conflicts are resolved based on
user annotations (“aspect domination”) and the hierarchy of aspects. However, when
two aspect are unrelated w.r.t. the domination or hierarchy relations, the ordering
of inserts is undefined.

Composition of aspects by means of sequence and choice operators have no
equivalent in AspectJ. The user must manually instrument advices with a state
and appropriate conditions in order to simulate them. So, our crosscut language is
more expressive than the crosscut language of AspectJ. �

2.3 Weaving

In order to describe aspect weaving we need to introduce several auxiliary func-
tions.
The sel function takes an aspect and extracts the rule to apply at the current

join point j.

sel j (µa.A) = sel j A
sel j (C ✄ I ; A) = ∅ if C j = fail

= {C ✄ I } otherwise
sel j (A1 ✷ A2) = sel j A1 if sel j A1 = ∅

= sel j A2 otherwise

The following rule extends sel to the parallel composition of several aspects

sel j (A1‖ . . . ‖An) = (sel j A1) ∪ . . . ∪ (sel j An)

The next function represents the evolution of an aspect after the current
join point j. It takes a composite aspect and yields the aspect to be applied to
the next join point.

next j (µa.A) = next j A[µa.A/a]
next j (C ✄ I ; A) = C ✄ I ; A if C j = fail

= A otherwise
next j (A1 ✷ A2) = next j A1 if sel j A1 = ∅

= next j A2 if sel j A2 = ∅
= (A1 ✷ A2) otherwise

A Framework for the Detection and Resolution of Aspect Interactions 179

It is extended to the parallel composition of several aspects using the rule

next j (A1‖ . . . ‖An) = (next j A1)‖ . . . ‖(next j An)

The woven execution is performed relative to a composite aspect A (see Fig-
ure 1). The transition relation =⇒ represents the woven execution. It is defined
by the application of the monitor followed by a standard execution step and
yields the aspect (next j A) to be applied to the following join point. At each
join point, the applicable rules are selected (sel j A). The monitor (relation
|=⇒) applies the selected rules in no specific order: if the crosscut of the current
rule matches the current join point, the corresponding substitution is applied to
the insert and φI is executed.

Woven execution

[j, P, σ]sel j A
∗

|=⇒ σa (j, P, σa) → (j′, P, σ′)
(A, j, P, σ) =⇒ (next j A, j′, P, σ′)

Monitor

[j, P, σ]∅ |=⇒ σ [end]

S = {C ✄ I} ∪ S ′ C j = φ (↓, φI, σ) ∗→ (↑, φI, σ′)

[j, P, σ]S |=⇒ [j, P, σ′]S
′ [match]

Fig. 1. Dynamic weaving of silent inserts

Note that we use ∗→ to reduce inserts. This implies that inserts are not
subject to weaving. In this case, we say that inserts are silent. Figure 2 formalizes
another option which uses ∗=⇒ to execute inserts. This makes inserts visible to
the weaver. Since the composition of aspects may evolve during the execution of
visible inserts, it must be passed to and returned by the monitor.
The programmer may want to choose whether the (inserts of an) aspect A1

is visible for the weaving of aspect A2. We come back to this issue in Section 4.
Note that since no specific order of application of aspects has been specified,

weaving may be non-deterministic. This situation arises when aspects interact,
that is to say when sel j A returns a set of at least two rules. Detecting and
resolving such cases is the objective of the next two sections.

AspectJ: In AspectJ, aspects are silent w.r.t. one another and the base pro-
gram is visible to all aspects. So, the first version of the weaver should be used.
However, when an advice calls a method of the base program, the woven version
of the method is executed in AspectJ. Indeed, static weaving (based on program

180 R. Douence, P. Fradet, and M. Südholt

Woven execution

[j, P, σ]sel j A

next j A

∗
|=⇒ (σa, A′) (j, P, σa) → (j′, P, σ′)

(A, j, P, σ) =⇒ (A′, j′, P, σ′)

Monitor

[j, P, σ]∅A |=⇒ (σ, A) [end]

S = {C ✄ I} ∪ S ′ C j = φ (A, ↓, φI, σ) ∗=⇒ (A′, ↑, φI, σa)

[j, P, σ]SA |=⇒ [j, P, σa]S
′

A′
[match]

Fig. 2. Dynamic weaving of visible inserts

transformation rather than execution monitoring) makes this natural. This behavior
does not correspond exactly to either of the two weaver definitions given above.

In the beginning of this paper, we introduced method-call join points. On oc-
currence of such a join point, our weaver definitions first execute the insert followed
by the base execution after the join point. This behavior corresponds to AspectJ’s
before-advices. In order to take into account AspectJ’s advice qualifier after, a
new kind of join point must be introduced which represents when a method returns
(the insert is executed after the method returns). In our framework, the weaver can-
not skip portions of the base program execution. So, we can only model (by means
of before and after) around advices that call proceed as part of the advice. �

3 Aspect Interactions

One of our goals is to detect when the naive parallel composition of aspects does
not guarantee a deterministic weaving. We say that two aspects are indepen-
dent if they do not interact (i.e., none of their crosscuts may match the same
join point). Independence of two aspects is a sufficient condition to ensure that
weaving is well-defined: in this case, they can be woven in any order. On the
opposite, dependent aspects require the programmer to resolve the interactions.
We distinguish between two notions of independence:

– Strong independence does not depend on the program to be woven. The
aspects are independent for all programs. The advantage of this property is
that it does not have to be checked after each program modification.

– Independence w.r.t. a program takes into account the possible sequences of
join points generated by the program to be woven. The advantage of this
property compared to strong independence is that it is a weaker condition
to enforce.

A Framework for the Detection and Resolution of Aspect Interactions 181

Note that independence (strong or w.r.t. a program) is a sufficient but not
a necessary condition. If two crosscuts C and C ′ match the same join point but
their corresponding inserts I and I ′ commute (i.e., executing I then I ′ is equiv-
alent to executing I ′ then I) then the woven execution remains deterministic.

3.1 Strong Independence

We start by defining strong independence for crosscuts.

Definition 1. Two crosscuts C and C ′ are said to be strongly independent if
C ∧ C ′ has no solution.

This ensures that the two crosscuts can never match the same join point.
When crosscuts are simple patterns (i.e., terms) strong independence amounts
to checking that they are not unifiable. When the crosscuts involve negations,
conjunctions and disjunctions, C ∧ C ′ is an equational formula and remains
solvable [3].
The algorithm to check strong independence of aspects is based on the laws

shown in Figure 3. The algorithm, which is similar to the algorithm for finite-
state product automata, terminates due to the finite-state nature of our aspects
(the (un)fold law is used to fold already encountered aspects). We only describe
here its essential properties.

[(un)fold] µa.A = A[µa.A/a]

[assoc] (A1 ✷ A2) ✷ A3 = A1 ✷ (A2 ✷ A3)

[commut] (C1 ✄ I1 ; A1) ✷ (C2 ✄ I2 ; A2) = (C2 ✄ I2 ; A2) ✷ (C1 ✄ I1 ; A1)

if C1 ∧ C2 has no solution

[elim1] C ✄ I = false✄ I if C has no solution

[elim2] (false✄ I ; A1) ✷ A2 = A2

[elim3] false✄ I ; C1 ✄ I1 ; A = false✄ I ; A

[priority] (C1 ✄ I1 ; A1) ✷ (C2 ✄ I2 ; A2) = (C1 ✄ I1 ; A1) ✷ (C2 ∧ ¬C1 ✄ I2 ; A2)

[propag] let A = (C1 ✄ I1 ; A1) ✷ . . . ✷ (Cn ✄ In ; An)
and A′ = (C′

1 ✄ I ′
1 ; A′

1) ✷ . . . ✷ (C′
m ✄ I ′

m ; A′
m)

then A ‖ A′ = ✷
j=1..m
i=1..n Ci ∧ C′

i ✄ (Ii✶I ′
j) ; (Ai ‖ A′

j)
✷i=1..nCi ✄ Ii ; (Ai ‖ A′)
✷j=1..mC′

j ✄ I ′
j ; (A ‖ A′

j)

Fig. 3. Laws for aspects

The main law is propag which propagates the parallel operator inside the
aspect definition. It produces a sequence of choices made of all the possible pairs

182 R. Douence, P. Fradet, and M. Südholt

of crosscuts from A and A′ and all the single crosscuts of A and A′ independently.
Conflicts are represented using the non-deterministic function (I1✶I2) which
returns either I1;I2 or I2;I1 (where “;” denotes the sequencing operator of the
programming language). The law elim1 uses the algorithm of [3] to check if a
crosscut has no solution in which case the crosscut is replaced by false. The laws
elim2 and elim3 remove unreachable parts of an aspect. The priority accounts for
the priority rules implicit in the choice operator. This makes the analysis more
precise (e.g., using this law and elim2, (true ✄ I1 ; A1) ✷ A2 can be rewritten
into (true ✄ I1 ; A1)). The laws assoc, commut and (un)fold serve to rewrite an
aspect so that the other laws can be applied.

Definition 2. Two aspects A and A′ are said to be strongly independent if
A ‖ A′ can be expressed as a single aspect (i.e. without ✶ and ‖).
For example, the parallel composition

A ‖ A′ = (µa.C ✄ I ; a) ‖ (µa.C ′ ✄ I ′ ; a)

can be rewritten using (un)fold twice, propag and fold again into

µa.(C ∧ C ′ ✄ (I✶I ′) ; a) ✷ (C ✄ I ; a) ✷ (C ′ ✄ I ′ ; a)

If C and C ′ are independent then, using elim1 and elim2, it can be rewritten
into

µa.(C ✄ I ; a) ✷ (C ′ ✄ I ′ ; a)

a deterministic, sequential aspect.
AspectJ: As explained in the previous section, each rule in AspectJ is of the
form: µa.Ci ✄ Ii ; a. So, the analysis of strong independence of two aspects boils
down to check the independence of two crosscuts C1 and C2. For example, the
analysis detects that the two following crosscuts are unifiable and therefore not
strongly independent:

call(void *.move(*, int)) and call(* Point.*(int, *)) �

3.2 Independence w.r.t. a Program

Strong independence may be too strong a condition. It is sufficient to check
independence w.r.t. the set of possible observable execution traces of a program.
These traces depend on whether inserts are visible or not. We first consider the
case of silent aspects, i.e., inserts which are not subject to weaving.
The precise set of execution traces is not statically computable. We assume

that we have a finite approximation taking the form of a finite set of join points
J (P) and a function

stepP : J (P) → P(J (P))
giving for each join point a superset of the possible successors. When the join
points are purely syntactic (and when new syntax cannot be dynamically cre-
ated as it is possible, e.g., using Lisp’s backquote-construction), then a possi-
ble approximation is to take all the join points of the program for J (P) and

A Framework for the Detection and Resolution of Aspect Interactions 183

stepP j = J (P) for every join point. This crude approximation (all join points
can follow each join point) is sufficient for stateless aspects. For stateful aspects,
we may rely on techniques based on control flow to get more precise approxi-
mations. To be safe, such an analysis must take into account the impact that
inserts may have on the control flow of the base program.
We can specialize the parallel composition of aspects w.r.t. the possible se-

quences of join points. The function Iw formalizes such a specialization. In the
following definition, we assume that A is a parallel composition of two aspects
(i.e., at most two crosscuts can match a join point).

Wrti(A, j) =
if sel j A = ∅ then ✷j′∈(stepP j) Iw(A, j′)
else if sel j A = {C ✄ I} then C ✄ I ; ✷j′∈(stepP j)Iw(next j A, j′)
else if sel j A = {C ✄ I, C ′ ✄ I ′}

then C ∧ C ′ ✄ (I✶I ′) ; ✷j′∈(stepP j)Iw(next j A, j′)

The process starts with an aspect and the entry of the program ↓. The
crosscuts matching the current join point are extracted (sel). The process is
iterated with the new aspects (computed by next) and all possible successors
(given by step). The resulting aspects are combined with the choice operator.
Due to the finite-state nature of aspects and join points, there are only a finite
number of reachable pairs (A, j) and Iw terminates. The laws (un)fold, elim1
and elim2 are then used to simplify the expression.

Definition 3. Two aspects A and A′ are independent w.r.t. a program P if
Iw(A ‖ A′, ↓) can be expressed as a single aspect (i.e. without ✶ and ‖).

If inserts are visible, join points generated by inserts must be taken into
account by the control flow analysis. This requires to compute an approximation
of the set of join points and the possible insertions.
Note that since (visible) inserts produce new syntax dynamically, it is even

possible that the weaving process loops and introduces an unbounded number of
new join points. For instance, the following profiling aspect repeatedly crosscuts
any method call in order to increment a counter:

µa.(call(x.y(z))✄ Profiler.incrCall()) ; a

This aspect crosscuts its own insert and weaving loops: the first method call
of the base program is crosscut, so Profiler.incrCall() is called, which is
itself crosscut, etc.

AspectJ: The two crosscuts
call(void *.move(*, int)) and call(* Point.*(int, *))

are independent w.r.t. to programs which do not contain call sites corresponding to
the unification of the two patterns (i.e., call(void Point.move(int, int))). �

184 R. Douence, P. Fradet, and M. Südholt

3.3 Semantic Crosscuts

Most of the crosscuts we have considered so far match syntactic information
such as method calls, etc. As already suggested, crosscuts can also match se-
mantic information, such as dynamic values. For instance, the rule that matches
only join points where the first argument of move is zero can be expressed as
x1.move(0,x3)✄I. In general, the dynamic information must be encoded as terms
in join points. For example, let us consider the crosscut that matches method
calls to move if the value of the first argument of the call is even. A simple
solution would be to instrument the insert with a test, such as

x1.move(x2, x3)✄ if (even x2) then I

The drawback of this approach is that the conflict analysis is not able to take the
parity condition into account. A more precise solution is to encode the parity
information in the join point model. For example, we may enhance the join
point model of AspectJ with a constructor Even to denote the parity of the
arguments of a call. The join point

call(void Point.move(int,int),...,args(2,3),Even(true,false))

makes explicit that the first and second argument of the call to move are respec-
tively even and odd.
Both independence analyses can take dynamic information into account. The

interaction analysis w.r.t. a program can perform a static analysis of the seman-
tic properties to improve its precision.
AspectJ: AspectJ provides a construction cflow(C1) && C2. It can be ex-
pressed in our framework as:

µa1.C1 ✄ skip ; µa2.(RetC1 ✄ skip ; a1) ✷ (C2 ✄ I ; a2)

where C1 defines a method call join point and RetC1 defines the corresponding
method-return join point. This definition can be read as: “between C1 and RetC1,
occurrences of C2 trigger execution of I”. However, this definition is only valid when
the method denoted by C1 is not recursive. In general, such a crosscut is semantic.
In AspectJ, cflow’s implementation requires a stack in order to count (i.e., store)
pending calls to C1.

Similarly to the parity property above, a solution is to encode in the join point
the presence/absence of (at least) one pending call in the execution stack for every
method in the program (e.g., using a bit vector). The conflict analysis w.r.t. a
program could approximate this information using static analysis. For example, when
cflow(C) is involved, we can safely assume that there is at least one call to C in
the stack for every join point in the set of reachable methods from C.

Analysis of strong independence cannot make assumption about the call graph
of the application. So, we must assume that every method has pending calls in the
stack, and when cflow(C1) && C2 is involved, the analysis can only consider C2.
However, there are special cases of crosscuts involving cflow (such as cflow(C1)
&& C2 and !cflow(C1) && C3) which can be shown strongly independent. �

A Framework for the Detection and Resolution of Aspect Interactions 185

4 Support for Conflict Resolution

When no conflicts have been detected, the parallel composition of aspects can
be woven without modifications. Otherwise, the programmer must get rid of the
nondeterminism by making the composition more precise. We present here some
linguistic support aimed at resolving interactions. A first kind of commands
serves to specify how inserts compose. A second kind allows the user to control
visibility of inserts by restricting the scope of aspects. We describe a collection
of useful commands which is, however, not meant to be complete.

4.1 Composition of Inserts

The conflict analyses of Sections 3.1 and 3.2 both return aspects as results. The
occurrences of rules of the form C ✄ (I1✶I2) indicate potential interactions.

These interactions can be resolved one by one. For each C ✄ (I1✶I2), the
programmer may replace each rule C ✄ (I1✶I2) by C ✄ I3 where I3 is a new
insert which combines I1 and I2 in some way.
This option is flexible but can be tedious. Instead of writing a new insert for

each conflict, the programmer may indicate how to compose inserts at the aspect
level. We propose parallel operators of the form ‖f to indicate that whenever
a conflict occurs in the composition A ‖f A′, the corresponding inserts must
be composed using f . Of course, these operators can be combined to compose
several aspects (e.g., A ‖f (A′ ‖g A′′))
For example, when an insert I1 of A1 conflicts with an insert I2 of A2,

– A1 ‖seq A2 inserts I1;I2, (where “;” denotes the sequencing operator of the
programming language).

– A1 ‖fst A2 inserts I1 only.

Let us consider two aspects whose composition produces conflicts: Aencryption

crosscuts some method calls and encodes their arguments and Alogging logs some
method calls.

– Alogging ‖seq Aencryption generates logs for super users by logging method
calls with original arguments,

– Aencryption ‖seq Alogging generates logs for users by logging method calls
with possibly encrypted arguments,

– Aencryption ‖fst Alogging generates logs for basic users where the encrypted
methods do not appear.

Another class of commands concerns spurious conflicts. Indeed, when inserts
commute in a conflict (e.g., one of the insert is skip), the inserts can be executed
in any order. The programmer may use the command I1 commute I2 to allow
the analyzer to produce an arbitrary sequence of I1 and I2.
All these assertions can be taken into account by the analyzer. If there are

still conflicts, the analyzer warns the programmer that the composition is not

186 R. Douence, P. Fradet, and M. Südholt

yet completely specified. The process can be iterated until the composition of
aspects can be rewritten into a single deterministic aspect.
AspectJ: In AspectJ, conflicting advice can be ordered with dominate which is
equivalent to ‖seq. The programmer must manually implement other compositions.

�

4.2 Scope of Aspects

In the weaver defined in Figure 2, the inserts are subject to weaving. This option
is conflict-prone. In order to control visibility, we propose a notion of scope for
aspects. The command

scope id Idset A

declares an aspect A with name id which can match only join points coming from
an aspect whose name belongs to Idset. The join points of inserts are supposed
to be tagged by the name of the aspects the inserts belong to. The join points
of the base program are supposed to be tagged by base.
Scope declarations allows us to define aspects of aspects. For instance, it

becomes possible to compose a profiling aspect with a security aspect in order
to evaluate the cost of security tests in an application:

(scope sec {base} Asecurity) ‖ (scope prof {sec} Aprofiling)

In order to profile both the security aspect and the base application, we
should use the following declaration

(scope sec {base} Asecurity) ‖ (scope prof {base, sec} Aprofiling)

We pointed out in Section 3.2 that visible inserts may lead to an infinite
loop in the weaver. Preventing cycles in the scope declarations (e.g., an aspect
cannot see its own inserts) is sufficient to ensure that such non-terminating
weaving never occurs.
AspectJ: As mentioned at the end of Section 2, aspects are silent w.r.t. one
another in AspectJ and the base program is visible to all aspects. AspectJ does
not provide the notion of scope and cannot define aspects of aspects. �
Our static analyses can take scopes into account by transforming the dec-

larations into regular aspects. If a tagged join point is represented by a term
(tag j id) then,

scope id {id1, id2, id3} A

is transformed into A where all terms T occurring in the crosscuts of A are
replaced by

(tag T id1) ∨ (tag T id2) ∨ (tag T id3)

Analysis of strong independence as described in the previous section can be
applied to such transformed aspect definitions. Independence analysis w.r.t. a
program requires the base program and join points of inserts to be annotated
similarly. Note that this encoding is for static analysis purposes only. In an actual

A Framework for the Detection and Resolution of Aspect Interactions 187

implementation, the join points do not need to be tagged because the identity
of the current insert being executed could be recorded in the execution context.
Finally, let us mention that finer-grained scope annotations can be defined

easily by allowing crosscuts and inserts to be named individually.

5 Related Work and Conclusion

Despite its importance, few work has previously been done on aspect interactions
and conflict resolution.
Recent releases of AspectJ [9] provide limited support for aspect interaction

analysis using IDE integration: the base program is annotated with crosscutting
aspects. This graphical information can be used to detect conflicting aspects.
However, the simple crosscut model of AspectJ would entail an analysis de-
tecting numerous spurious conflicts. The reason is that the relationship between
several crosscuts must be maintained by book-keeping code in advice (e.g., by
incrementing a counter and check for the counter value later) [6]. In our case, this
kind of relationship can (sometimes) be expressed by stateful aspects and taken
into account by the analysis. In case of real conflicts, AspectJ programmers
can resolve conflicts by reordering aspects using the keyword dominate.
DeVolder et al. [12] propose a meta-programming framework based on Prolog.

They specify crosscuts by predicates on abstract syntax trees and define ad-hoc
composition rules for specific aspects. However, this approach does not provide
a general solution to aspect interaction analysis and resolution. DeVolder’s work
is extended by Gybels [7] to crosscut definitions depending on dynamic values
(e.g. the value of a method call argument) and optimization opportunities are
discussed. However, in this case the weaving process cannot be static anymore
(i.e., the weaving cannot be performed by means of inserts inlining).
Andrews [1] models AOP by means of algebraic processes. He focuses on

equivalence of processes and correctness of a weaving algorithm. Non-termination
problems of weaving and a formal definition of before and around are discussed
but aspect interaction is not treated.
Douence et al. [5,6] propose another model for AOP based on execution

monitoring. In this model, the crosscut language is even more expressive, in fact
Turing-complete, and independence or equivalence must be proven manually.
Other approaches to the formal definition of AOP — such as Wand’s et al.

denotational semantics for a subset of AspectJ [13] and, to a lesser extent,
Lämmel’s big-step semantics formalizing method-call interception [10] — could
lead to alternative approaches to interaction analysis.
Finally, note that interaction properties arise in many fields of software engi-

neering. For instance, Batori et al. [2] introduce “layers” which can be compared
to aspects and study composition validation using semantic conditions. It would
be interesting to study whether these techniques can be adapted to control se-
mantic interactions between aspects.
We have proposed a general method for the static analysis of aspect inter-

actions. The paper has presented three contributions. First, we have defined a

188 R. Douence, P. Fradet, and M. Südholt

generic formal framework for AOP featuring expressive crosscuts. Second, we
have given two general independence properties and have presented how to ana-
lyze them statically. Finally, we have proposed some useful commands for conflict
resolution, which is based on and compatible with the presented static analyses.
As to the application of our framework, we started to formalize parts of

AspectJ. This task should be completed. It would also be interesting to compare
the framework precisely with the denotational semantics of Wand et al. [13] for
a subset of AspectJ.
Other properties and analyses could been studied in our framework for AOP.

For example, in some cases, the programmer may want to check that an aspect
has terminated (i.e., keeps doing nothing) before another one starts. Several
linguistic extensions of the aspect language are worth further study. For example,
allowing crosscuts of the same aspect to share variables would make the aspect
language more expressive. Also, the possibility of associating an aspect with a
class or an instance would facilitate the instantiation of the framework to object-
oriented languages.

References

1. J. H. Andrews. Process-algebraic foundations of aspect-oriented programming. In
Reflection, pages 187–209, 2001.

2. D. Batory and B. J. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering (special issue on Software
Reuse), pages 62–87, February 1997.

3. H. Comon. Disunification: A survey. In Computational Logic: Essays in Honor of
Alan Robinson. MIT Press, Cambridge, MA, 1991.

4. C. A. Constantinides, A. Bader, and T. Elrad. Separation of concerns in concur-
rent software systems. In International Workshop on Aspects and Dimensional
Computing at ECOOP, 2000.

5. R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In
Proceedings of the 3rd International Conference on Reflection and Crosscutting
Concerns, volume 2192 of LNCS. Springer Verlag, September 2001.

6. R. Douence, O. Motelet, and M. Südholt. Sophisticated crosscuts for e-commerce.
ECOOP 2001 Workshop on Advanced Separation of Concerns, June 2001.

7. K. Gybels. Aspect-oriented programming using a logic meta programming lan-
guage to express cross-cutting through a dynamic joinpoint structure.

8. G. Kiczales et al. Aspect-oriented programming. In Proc. of ECOOP, volume 1241
of LNCS, pages 220–242. Springer Verlag, 1997.

9. G. Kiczales et al. An overview of AspectJ. In ECOOP, pages 327–353, 2001.
10. R. Lämmel. A semantics for method-call interception. In 1st Int. Conf. on Aspect-

Oriented Software Development (AOSD’02), April 2002.
11. F. Nielson and H. R. Nielson. Semantics with Applications - A Formal Introduction.

John Wiley and Sons, New York, NY, 1992.
12. K. De Volder. Aspect-oriented logic meta programming. In Pierre Cointe, editor,

Meta-Level Architectures and Reflection, Second International Conference, Reflec-
tion’99, volume 1616 of LNCS, pages 250–272. Springer Verlag, 1999.

13. M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join
points in aspect-oriented programming. In FOOL 9, pages 67–88, January 2002.

	Introduction
	Framework
	Observable Execution and Join Points
	The Aspect Language
	Weaving

	Aspect Interactions
	Strong Independence
	Independence unhbox voidb @x hbox {it w.r.t. }a Program
	Semantic Crosscuts

	Support for Conflict Resolution
	Composition of Inserts
	Scope of Aspects

	Related Work and Conclusion

