
Composition, Reuse and Interaction Analysis of
Stateful Aspects

R~mi Douence*

Ecole des Mines de Nantes
4, rue Alfred Kastler,

44307 Nantes cedex 3, France
Remi. Douence@emn. fr

Pascal Fradet

INRIA Rh6ne-Aipes
655, av. de I'Europe,

38330 Montbonnot, France
Pascal. Fradet@±nr±a. fr

Mario SOdholt*

I~cole des Mines de Nantes
4, rue Alfred Kastler,

44307 Nantes cedex 3, France
Mario. Sudholt@emn. fr

ABSTRACT
Aspect-Oriented Programming promises separa t ion of con-
cerns at the implementat ion level. However, aspects are
not always orrthogonal and aspect interact ion is a fundamen-
tal problem. In this paper, we extend previous work on a
generic framework for the formal definition and interact ion
analysis of s tateful aspects. We propose three impor t an t ex-
tensions which enhance expressivity while preserving stat ic
analyzabil i ty of interactions. First , we provide suppor t for
variables in aspects in order to share informat ion between
different execution points. This allows the definit ion of more
precise aspects and to avoid detect ion of spurious conflicts.
Second, we introduce generic composit ion operators for as-
pects. This enables us to provide expressive suppor t for the
resolution of conflicts among interact ing aspects. Finally, we
offer a means to define applicability condit ions for aspects.
This makes interact ion analysis more precise and paves the
way for reuse of aspects by making explicit requirements on
contexts in which aspects mus t be used.

K e y w o r d s : aspect oriented programming, formal model,
s ta t ic analysis, aspect interactions, aspect composit ion, reuse
of aspects.

1. INTRODUCTION
Aspect-Oriented Programming (AOP) [10] promises the

systemat ic t r ea tmen t of separat ion of concerns at the imple-
men ta t i on level. Research on AOP is far from being ma tu re
in many respects and there remain fundamenta l problems.
In this paper we consider three of these problems: devising
an appropr ia te not ion of aspect composit ion, suppor t for
reuse of aspects, and automat ic analysis of conflicts among
non-or thogonal aspects. Currently, there is only a small
body of work addressing such issues and even fewer such
work wi th a sound formal basis. Most frequently, program-
mers dispose of only rudimentary notions of aspect composi-

*Partially funded by the EU project EASYCOMP (see
mra.easycomp.org), no. IST-1999-014191.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 04, March 2004, Lancaster UK.
Copyright 2004 ACM 1-58113-842-3/03/0004 ...$5.00.

141

t ion and no explicit suppor t for aspect reuse. Moreover, they
are responsible for identifying interact ions between conflict-
ing aspects and have to implement conflict resolution code
wi thou t suppor t for this task.

We address these problems based on the generic and for-
mal framework in t roduced in [4]. This framework is very
general: it does not depend on a specific p rogramming lan-
guage and is expressive enough to allow the definition of
stateful aspects. Stateful aspects are defined in t e rms of se-
quences of join points; they take into account the his tory of
computa t ion ins tead of a single jo in point. Ano the r ma jo r
proper ty of the framework is to pe rmi t the s tat ic and auto-
mat ic analysis of interact ions between (stateful) aspects.

In this article, we propose three impor t an t extensions
to t ha t framework. First , we augment the under lying as-
pect language by in t roducing variables allowing the shar ing
of information between different par t s of an aspect. The
language becomes much more expressive but the absence
of interactions between aspects can still be checked s ta t i -
cally. Second, we int roduce new composi t ion opera tors for
aspects. Once again, this extension fits nicely wi th in the
framework and the s ta t ic analyzabi l i ty of interact ions is pre-
served. These operators are par t icular ly useful to resolve
conflicts between interact ing aspects. Interact ions arise when
dist inct aspects m a t c h the same join points. Making the
composit ion of aspects a t such interact ion points precise per-
mits to resolve conflicts. Finally, we introduce a not ion of
explicit requirements on base programs for the applicabil i ty
of aspects. We show how such contextual aspects can be
used to make our in teract ion analysis more precise and how
they suppor t a not ion of aspect reuse.

The paper is organized as follows. In Section 2, we intro-
duce our formal framework and provide an informal overview
of the extensions presented in the following three sections.
Section 3 makes the under ly ing aspect language more ex-
pressive th rough suppor t for inter-crosscut variables and
presents an associated in terac t ion analysis. Section 4 defines
the new composi t ion facilities and thei r appl icat ion to con-
flict resolution. Section 5 int roduces explicit requi rements
for aspects, discusses how th is informat ion makes in terac t ion
analysis more precise, and how it facilitates reuse of aspects.
Finally, Section 6 presents related work and concludes.

2. PRELIMINARIES
In this section, we briefly present the generic framework

(introduced by the au thors in [4]) on which the current work
is based. Then, we give an overview of the extensions de-

fined in the current article for the analysis of interactions,
composit ion and reuse of stateful aspects.

2.1 Basic Framework
We model AOP th rough weaving by means of a dynamic

monitor, which observes the execution of the program and
inserts instruct ions according to execution states.

Execution traces. The relevant par t of an execution for
weaving is called the observable execution trace. It can be
formally defined on the basis of a small-step semantics of the
base programming language. The observable t race is a se-
quence of join points which are abstract ions of the execution
s ta te of the program.

Aspects. The primit ive const i tuents of our aspect language
are basic rules C t> I where C is a crosscut and I an insert.
Crosscuts are pa t t e rns match ing join points whereas inserts
are templates. The intui t ion behind a basic rule is t h a t
when the crosscut matches the current join point, it yields a
subs t i tu t ion which is applied to the insert before executing
it. The basic rule error(m) ~> abo r t () abor ts the current
execution when a join point is encountered which matches
the call to the one pa rame te r routine e r r o r .

Aspects combine basic rules using three operators: pre-
fixing of basic rules to aspects, choice between two aspects
and repetition of an aspect . Aspects match sequences of
join points and they evolve according to the join points they
match. For example, an aspect intended to log warning mes-
sages in a log file may wai t for the log file to be opened and
then store warnings repeatedly in t ha t file. Such aspects are
called stateful: a s ta te is needed to represent their evolution.

Aspects are defined using the following grammar:

A ::= /za.A ; recursive definition (a E T~ec)
I C C> I; A ; prefixing
I C C> I; a ; end of sequence (a E T~ec)
I A1 [] A2 ; choice

An aspect is either:

• A recursive definition.

• A sequence formed using the prefix operat ion C i> I ; X ,
where X is an aspect or a variable. When the crosscut
C matches the program point and its variables have
a unique solution, we write C j = ¢ where ¢ is a
subs t i tu t ion mapp ing the variables in C to their so-
lution. The variables in C used in I are replaced by
their solution and X becomes the aspect to be woven.
Otherwise, we say t h a t the crosscut does not match
the program point and we write C j = f a i l .

• A choice cons t ruc t ion A1 [] A2 which chooses the first
aspect t h a t ma tches a join point (the other is thrown
away). If b o t h m a t c h the same join point, A1 is chosen.

For instance, a logging aspect which, after opening a log file,
logs warnings but abo r t s program execution when an error
occurs can be expressed as follows:

ErrLog =

openLog 0 C> skip; ~a.warning(m) ~> writeLog(m); a
[] error(m) > abort(); a

where the insert skip is the instruction doing nothing.

We consider only closed aspects, i.e., with no free vari-
ables in inserts nor free 7~ec variables. To ensure tha t as-
pect are finite state, recursion occurs only as tail recursive
calls. Aspects keep t ry ing to ma tch the join points of the
execution trace and never t e rmina te (note t h a t the aspect
ErrLog formally does not s top but t h a t it causes the base
program execution to be abor ted) .

Aspect weaving. Aspects addressing different issues, e.g.,
different error handl ing strategies, security and profiling, are
composed using a parallel operator. Weaving defines how
match ing of crosscuts and execution of inserts is interleaved
wi th the base program's execution. Intuitively, the weaver
takes a parallel composi t ion of n aspects All[. . . [[An and
performs the following steps at each join point:

• The applicable basic rules (whose crosscuts match the
current join point) are de termined by a function sel.

For instance, in case of the aspect ErrLog defined above,
se l yields the rule openLog 0 [> s k i p at the f i r s t join
point opening the log file. The empty set is yielded
for, among others, all log-opening join points after the
first one.

All selected basic rules are applied (i.e., their inserts
executed) in no specific order.

In the case of the first rule of ErrLog, nothing would
be done because the insert sk ip is applied.

The evolution of A1 H - . . H An is computed by a function
n e x t .

For ErrLog this means t h a t after the first jo in point
which opens the log file has been handled, the aspect
to be considered (i.e., the result of n e x t) is

~a .warn ing (m) ~ ~rziteLog(m); a
[] error(m) t> abor t () ; a

Note t ha t the aspect ErrLog does not evolve from its
initial s ta te before encounter ing the join point t h a t
opens the log file.

• A s t andard execution s tep of the base program is per-
formed, yielding a new current join point.

These steps are i terated wi th the new aspect and the next
join point until the base program terminates .

More formally, the weaver makes use of sel which takes
a composit ion of aspects and extracts the rules to apply at
the current join point j .

s e l j (AI[[. . . [[An) = (s e l j A1) U . . . U (sel j An)
sel j (#a.A) = se l j A
sel j (C D I; A) = @ if C j = f a i l

= {C C> I} otherwise
sel j (At [] A2) = se l j A1 if se l j A1 ~ 0

= se l j A2 otherwise

The evolution of an aspect after the application of a basic
rule is described by the n e x t function. It takes a composite
aspect, the current join point and yields the aspect to be
applied to the next join point. I t makes use of the function
sel which takes an aspect and extracts the rule to apply at

142

the current join point j .

n e x t j (Ai[[. . . [[An)
n e x t j (#a.A)
n e x t j (C t> I; A)

n e x t j (A1 [] Az)

= (n e x t j Ax)[[. . . [[(next j An)
= n e x t j A[pa.A/a]
= C t > I ; A i f C j = f a i l
= A i f C j = ¢
= n e x t j Ax if sel j Ax 5~ 0
= n e x t j A2 if sel j A2 ~
= (A1 t3 A2) otherwise

The woven execution performed relative to a composite as-
pect A is formalized in Figure 1. The entry mad exit of a

Wo'13en execution

[j,P,a] sel j A ~=~ aa (j,P,a~) ---~ (j ' ,P,a ')

(A , j ,P ,a) ~ (nex t j A , j ' ,P ,a ')

Monitor

b',P,~] ~ ~=.

S = {C t> I} U,S' C j = ¢ (~ ,¢I ,a) - -~(l ,¢ I ,a ')
[j,p,~]s ~=. b,p,~,lS'

F i g u r e 1: W e a v i n g

program are denoted by two special join points: I and T,
respectively. The transition relation --~ represents the stan-
dard execution. Let o'0 be the initial state, the observable
execution trace of a program P is of the form:

(l ,P, ao) (j~,P,a 0

If the reduction terminates, there exists a an such that
(~,P, ao) --~ (T,P, an), where ~ denotes the transitive, re-
flexive closure of --,. The woven execution ~ is defined by
the application of the monitor followed by a standard execu-
tion step. It yields the aspect (n e x t j A) to be applied to the
following join point. At each join point, the applicable rules
are selected (sel j A). The monitor (relation ~) applies
the selected rules in no specific order: if the crosscut of the
current rule matches the current join point, the correspond-
ing substitution is applied to the insert and ¢ I is executed.
To end the discussion of the weaver, note that stateful as-
pects are implementable efficiently using static analysis and
transformation techniques (see, [2]).

Interaction analysis. Two distinct aspects are said to in-
teract when they match the same join point. Two aspects
are independent if their crosscuts never match the same join
point simultaneously. Independence of two aspects ensures
that their parallel composition is well-defined: they can be
woven in any order. To the contrary, dependent (i.e., in-
teracting) aspects require the programmer to resolve the in-
teractions by changing aspects or making the composition
more precise.

Consider, for example, the aspect A~c~-uptio,~ that matches
some method calls and encodes their argument and an as-
pect Atoggi~g that logs some method calls. If some method
calls are matched by both Ae,~,~pt~o,~ and Alogg~,g, the as-
pects interact and their parallel composition is not well-
defined. In this case, since Ae,~c~p,o~ [I Atog~ng does not spec-

ify any execution order for inserts, weaving is non-determi-
nistic.

2.2 Overview of contributions
One main objective of the present work is to generalize the

techniques for interaction analysis and conflict resolution in-
troduced in [4]. Furthermore, we are interested in extending
the framework by means for the more expressive definition
of aspects. Concretely, we present three contributions in the
following: introduction of inter-crosscut variables generaliz-
ing the aspect language suitable for static analysis, gener-
alized means for aspect composition and conflict resolution,
and new means for the expression of applicability require-
ments of aspects which support reuse of aspects.

Inter-crosscut pattern variables
In many cases, information must be passed between cross-
cuts of a complex aspect. Suppose, for example, tha t Alogm,~u
should log only file deletions referring to the user currently
logged in. (i.e., between calls to login(uid) and l o g o u t 0) .
The aspect must wait for a login, record the corresponding
user identity (uid), and log calls referring to this uid (e.g.
rra(uid, file)). When the session ends (logout 0 occurs),
the aspect proceeds by waiting for the next login and so
on. The identity of the current user (uid) has to be passed
between crosscuts and this is done using pat tern variables.
Section 3 presents an expressive aspect language featuring
pat tern variables and the associated interaction analysis.

Aspect composition and conflict resolution

In Section 4, we introduce a sequence composition operator
for aspects. This sequence operator explicitly uses a "termi-
nation crosscut": if this crosscut matches, the first aspect in
the sequence is stopped and the second is activated. The op--
erator gives rise to a flexible notion of scope of aspects which
enables the scope of an aspect to be delimited by execution
events. We also introduce a set of composition operators
for the adaptation, i.e., transformation, of aspects. These
composition adaptors specify transformations on inserts of
aspects. They are therefore highly useful to resolve conflicts
in non-deterministic aspects resulting from a parallel com-
position. For example, it is easy to define the composit ion
operator IIr~i (resp. II~) which sequentializes inserts (resp.
applies only the first insert) at each interaction. By com-
posing the logging and encryption aspects introduced before
we can then resolve conflicts using these operators:

• Atog~ng [Is---q- Aencr~tion generates logs for super users
by logging method calls with original arguments,

• Aencr~tion I1~ Atog~,u generates logs for basic users
where the encrypted methods do not appear.

Requirements and aspect reuse
In general, an aspect is not valid for all base programs,
but only for some because it relies on certain implicit con-
text conditions. For example, in our previous description of
Alog~g, we implicitly assumed that sessions were non-nested
(otherwise, l ogou t 0 would not necessarily mean leaving the
top-level session). We show in Section 5 tha t such condi-
tions can be made explicit in our framework as requirements
on base programs. These requirements define which base
programs can correctly be woven with an aspect. Such re-
quirements can be expressed as a companion aspect, i.e. as
sequences of join points. For example, non-nested sessions

143

can be specified by an aspect checking t ha t no login call oc-
curs between each login(uid) and l o g o u t 0 . We also show
how aspect requirements can be used to make interact ion
analysis more precise. Finally, we give evidence t h a t require-
ments suppor t reuse of aspects by checking compat ibi l i ty of
aspects w.r.t, requirements defining use contexts (similar to
how pre- and post-condit ious in programming by cont rac t
are used to suppor t software reuse).

3. INTER-CROSSCUT VARIABLES AND
INTERACTION ANALYSIS

In this section, we present an expressive aspect language
and the associated interact ion analysis. Technically, we ex-
tend the base framework by inter-crosscut pa t t e rn variables,
which permits to define aspects more precisely and to avoid
detect ion of spurious conflicts.

3.1 The aspect language
As in the base framework, aspects are regular expressions

(defined using the g rammar A introduced in the previous
section) of rules of the form: C t> I where C denotes a
crosscut and I an insert.

Crosscuts

Crosscuts are buil t from terms, t ha t is to say, finite trees of
the form:

T : :=f T1 . . .T~ I x

where f is an mary (n _> 0) symbol and x 6 Vars is a
pa t t e rn variable.

Crosscuts are made of conjunctions, disjunctions and nega-
tious of equations on terms:

C : : = v = " T I C , A C 2 I C , VC2I-~C v e V a r s

Assuming a special variable • denoting the current join point,
the applicat ion of a crosscut to a join point C j amounts to
solving the formula obta ined by subst i tu t ing j for • in C
(C j = C~j/•]). There exists an algori thm to find equa-
tious solving such formulas [3]. I t is used by the interact ion
analysis of Section 3.2.

We write def(C) for the set of variables (C Vats) occur-
ring a s / h s of equations in C. These variables are defined by
the equations of C and can be used in the insert or later on
in the aspect. We write false for the crosscut which does not
match any join point and true for the crosscut t h a t matches
all join points. Let z be a fresh variable then true can be
defined by the crosscut z =" z and false by ~(z =" z).

Inserts

An insert I is a t e rm as defined above. The intui t ion behind
a rule C I> I is t h a t when the crosscut matches the cur-
rent join point, i.e., C j = ¢, then ¢ I is executed. Hence,
the insert can only use variables defined in C or a previous
crosscut. The special insert s k i p represents an instruct ion
doing nothing.

Variables and notation
An equat ion z =" T defines the variable z whose scope ends at
the subsequent (re)definition of z. Variables can be used to
pass information between crosscuts. For example, an aspect
count ing the number of calls of the first method ever called
by the base program can be expressed using inter-crosscut
variables as follows:

Ai = • --" call x A f "---- x C> first.set(l);
(~a.- ~ can] ~ first.inc(); a)

To simplify the notation, we write ^T for • ~ T and 5 to
define and use a variable in a pattern. This syntactic sugar
can be suppressed from a crosscut C using the following
rules:

C = C[(• --" T)/^T]
C = C[z/~] A x--'--z withz a fresh variable

With these conventions, the aspect Ai can be written:

^call f > first.set(l); (~a.^call f > first.incO; a)

Note that without inter-crosscut variables, such an aspect
would require book-keeping code in inserts (e.g., memorizing
the name of the first me thod for comparison in fur ther calls)
which would be executed for all calls.

Weaving
The semantics of aspects is given by the weaver as described
in Section 2.1. Here, we focus on the differences brought
for th by inter-crosscut variables.

W h e n a crosscut matches the current join point, the sub-
s t i tu t ion found is applied to the rest of the aspect. This
means t ha t variable bindings from the preceding basic as-
pect must be passed to the next one. In order to account
for this, the function n e x t presented in the previous section
must be modified as follows:

n e x t j (Ct>I; A) = Ct>I; A i f C j = f a i l
= ¢ A i f C j = ¢

Here, the applicat ion of a subs t i tu t ion ¢ to an aspect A is
defined as follows:

¢(/za.A) = Ida.CA
¢(A1 E2 A2) = (¢A1 [] ¢A2)
¢(C t> I; A) = ¢ ' e t> ¢'I; ¢ 'A with ¢ ' = ¢\def(C)

Applying a subs t i tu t ion to a crosscut C thus amounts
to applying it to each t e rm occurr ing in C. Furthermore,
variable redefinitions performed in prefix operat ions are ob-
served by using the subs t i tu t ion ¢\def (C) , which denotes
the restriction of ¢ to the variables not (re)defined in C, in
the last case.

3.2 Interaction analysis
Our goal is to keep the wri t ing of aspects as independent

as possible from their composit ion. Fur thermore, we do not
want to compel the programmer to specify a (useless) order
of application for independent aspects. In our approach,
aspects are first wr i t ten and composed in parallel. Then,
interactions are detected using s ta t ic analysis and resolved
by making the composi t ion more specific. This way, the
composit ion of aspects is specified separately and only when
needed.

There are several sufficient propert ies ensuring the ab-
sence of interactions. We focus here on strong independence
t ha t does not depend on the p rogram to be woven: strongly
independent aspects do not in teract regardless of the base
program or the inserts which can be woven. Strong inde-
pendence thus does not have to be checked after each pro-
gram modification. (A more precise var iant of the interac-
t ion analysis which takes into account the base program and
new behavior introduced by other inserts has been presented
in [4]. We expect t h a t the extension by variables carries over
smoothly to t ha t case as well).

144

[(un)fotd]
[assoc]
[commut]

[elimx]

[elima]

[,hip]
b~rioritu]
[sed

[p~pa~]

pa.A = A[pa.A/a]

(Ax [] A2) [] As = Ai [] (A2 [] As)

(Cx t> I1; A1) [] (C2 ~>/2; A 2) = (C2 t>/2; A2) [] (Cx t>/1; A1)

C [I = false t> I

(false t> I; X) [] A = A

false t> I; X = false t> I; a

(sk ipM l) = (l~skip) = I
(e l l> I1; Ax) [] (C2 D I2; A 2) = (C x I > I 1 ; A1) [] (C2A-~¢ClC>I2; A2)

C I> I ; (Oi=x..,Ci t>/~; Ai) = C C> I; ([],=x..,Ci[C] >/~; A0

with Ci[C] = Ci A ¢ C A~e~ef(c) Cx =" x

let A = (C l t> /1 ; Ax) [] . . . [] (C , ~ I , ; An)
and A' = (C~t>I~ ;A~) [] . . . [] (C ~ > I ' ~ ; A ~)
then A]1 A' = []j=x..m,~. ,

O~=L.,C~ t> h; (A~ II A')
[]~=~ ~cl > ~; (A II A~)

; if Cx A C2 has no solution

; if C has no solution

; a 6 T~ec

; ¢ is a renaming
. from Vars to fresh variables
7

F i g u r e 2: Laws for a s p e c t s

The algorithm to check strong independence of aspects is
based on the laws (which can be proved correct w.r . t the
weaving semantics) shown in Figure 2. The algorithm, which
is similar to the algorithm for finite-state product automata,
propagates and suppresses parallel operators. It terminates
due to the finite-state nature of our aspects (the (un)foldlaw
is used to fold already encountered aspects). If the com-
position of aspects can be rewritten into a sequential and
deterministic aspect then the aspects are independent and
weaving is well defined. Otherwise, nondeterministic inserts
occur in the resulting aspect. They represent conflicts to be
resolved by the techniques presented in Section 4.

To avoid name capture problems, we assume tha t the as-
pects of a parallel composition use disjoint sets of variables.
We illustrate the analysis and explain the rules on an exam-
ple. Let Ax be the aspect introduced in Section 3.1 and A2
the aspect

~cal l ~ > skip; Gua.^call h A -~(h =" g) l> o th s r s . i ncO; a)

counting the number of calls to all methods except the first
one called. Intuitively, these aspects do not interact and
their naive parallel composition is well defined. This is es-
tablished by the analysis using the rules of Figure 2 as fol-
lows.

C = ^ca l l] h " c a l l
C' = ^ c a l l / A ^ c a l l h A ~(h=" g)

Let A~ = ~ a . ' c a l l f D f i r s t . i n t O ; a
AS = ~ a . ' c a l l h A -~(h =" g) t> o t h e r s . i n c 0 ; a

then
Ax II A2

= " c a l l f A ^ca l l ~ ~> (sk ip t~ f i r s t . s e t (1)) ; (AI II A~)
[] ^call f [> first.set(l); (A~ II A~)
D "call y > skip; (Ai I[AS) [pwpag]
The parallel composition (product) of aspects is performed

by [propag] which propagates the parallel operator inside the
aspect definition. It produces a sequence of choices made of
all the possible pairs of crosscuts from A and A' and all
the single crosscuts of A and A' independently. Conflicts
are represented using the non-deterministic function (Ixt~I2)
which returns either I1;I2 or I~;I1 (where ";" denotes the
sequencing operator of the programming language). In the

example, (s k i p N f i r s t . s e t (1)) is not a true conflict since
the inserts commute.

= C t> f i r s t . s e t (I) ; (A~ II A~)
[] " c a l l 7 A ' ~ C b f i r s t . s e t (l) ; (A~ [I A~)
[] " c a l l ~A--~('ca!l i A-~C) > skip; (A~ II A~)

[skipl, [priority], [~ s~]
The [skip] rule is an instance of the simplification that

can be done by taking into account the semantics of in-
serts, whenever two inserts commute. Many similar laws
could be conceived. In particular, whenever two inserts I1
and 12 commute, (I,t~I2) is equivalent to 11;12 (or I2;/1)-
The [priority] rule accounts for the priority rules implicit
in the choice operator. This makes the analysis more pre-
cise by allowing simplifications. The renaming is needed to
avoid clashes between variables names occurring in the two
crosscuts (the renaming needs not be applied to Is because
variables are not visible in a sibling argument of a choice).
The law [assoc] (as well as [commut] and [(un)folo~) serves
to put aspects on a form appropriate for further rewriting.

= C m f i r s t . s e t (I) ; (Ai II A~)
D false E> f i r s t . s e t (l) ; (A~ II A~)
[] false ~> skip; (Ai II AS) let;roll
The law [el;roll uses the algorithm of [3] to check if a cross-

cut has no solution in which case the crosscut is replaced by
false. In the example, if the join point does not match C it
is not a call; it cannot match c a l l f or c a l l ~ either.

= C t> f i r s t . s e t (l) ; (Ai II A~) [el/m2]
The law [elim2] (as [el;real) removes unreachable parts of

an aspect.
= C l> first.set(1);

(Da.C' t> (first.incO~others.incO); a
[] ^call f t> first.intO; a
[] ^ c a l l h A -~(h =" g) C> o t h s r s . i n c 0 ; a) [propag]

The expression has been unfolded ([(un)fol~), the parallel
operator has been propagated using [propag] and suppressed
by folding the expression back ([(un)fola~).

= C D f i r s t . s e t (I) ;
(~za.C'[C] D (f i r s t . i n c 0 1 ~ o t h e r s . i n c 0) ; a
0 (^ c a l l /) [O f b f i r s t . i n c () ; a
[] ('call h A ~(h =" g))[C] t:> o t h e r s . i n c 0 ; a) [seq]

The [seq] rule serves to propagate the constraints on vari-

145

ables introduced by a crosscut. The propagation renames all
the variables of the crosscut (including 0) by fresh variables
to avoid name clashes. For our example, C

• ----" callx A f='x A -----" cally A g--'--y

has its variables renamed into

z----" callz] A z2"~-z] A z~callz3 A z4=" Zs

The useful information is passed by binding the variables in
def(C) to their renaming. In our example,

z 2 ~ f A z 4 ~ g

Therefore,

c'[c] ^ca l l f A ^ca l l h A - (h =" g) A
z ~ c a . l l z x A z "---- call zs A

Z2 ~"Zl A Z4-~Z3 A z 2 ~ f A Z4-~g

which is false: C t implies f ~ g whereas the information
brought by C implies f = g. The associated rule can be
removed using [eliml] and [elim2].
= C D f i r s t . s e t (i) ;

(~a.(^call/)IV] t> fi~st.inc();
[] (^ca l l h A ~(h ~ g))[C] t> o t h e r s . i n c 0 ; a)

So, A1 II A2 has been rewritten into a deterministic, se-
quential aspect. The aspects A1 and A~ are strongly inde-
pendent. Without inter-crosscut wriables, Ai would have
been expressed by book-keeping code such as:

^ ca l l x C> f i r s t . seZ(1) ;name = x;
Da.^cal l y ~> i f y = = name then f i r s t . i n c 0 e l s e skip; a

This aspect matches all calls. It would be found to interact
with any other aspect matching calls (like As).

4. ASPECT COMPOSITION AND CONFLICT
RESOLUTION

The parallel operator II enables different aspects to be
combined along with the analysis of their interactions. In
this section, we generalize aspect composition in two dif-
ferent ways while preserving feasibility of static analysis of
interactions. Using these extensions, we then define expres-
sive support for conflict resolution of interacting aspects.

4.1 Sequential composition of aspects
In Section 3, we have considered three different opera-

tors allowing to combine aspects: recursion (p), choice ([])
and parallel composition (ll)- However, prefixing (C t> I; X,
where X is an aspect or a recursion variable) is only defined
starting with a basic rule.

Our first extension consists in the new composition
A1 -C---* A2 which behaves as the aspect A1 until an event
matches the crosscut C; in this case, A1 is stopped and the
aspect A2 is started. This sequence operator can be formally
defined as

A1 -C---~ A2 = T[Ai~Ac~

where T is the following transformation which eliminates
sequencing between aspects, thus yielding a "standard" as-

pect.

T~pa.A]AC~ = pa.T~A]AC;
T[Ct> I; A~Ac: = C A C ' t > I; A'

[] C ' t> skip; A'

[] C t> I; T~A]AC;
T ~ a ~ ; = a

T~A1 [] AZ~AC; = TEA,]At; [] T~A2~Ac;

Here, the interesting case is the transformation of prefixing
C t> I ; A, which starts with a basic rule. Three cases must
be distinguished. First, when the current join point matches
the "terminating" crosscut C' as well as the crosscut C of
the basic rule, the insert I is executed, the current aspect
is terminated and A' is started.* Second, when only C ' is
matched, no insert (i.e., skip) is executed and A' becomes
the new aspect. Finally, if C ' does not match but C does,
I is inserted and the transformed version of the aspect A is
executed.

As a simple example, consider the following two defini-
tions:

E1 = pa .^er ror (x) l> beepO; a
E~ = /~a . ' e r ro r (~) I> v r i t eLog(m) ; a

E1 and E2 define two aspects for error handling: the former
marks errors by a beep while the latter logs error messages.
The second error handling strategy obviously is only rea-
sonable if the log file has previously been created. In order
to account for that need we could define error handling as
E1 -e rea teLog() - -~ E2, which ensures that errors produce
beeps up to the point when a log file is created; from that
point on error messages are logged.

The composition operator A1 - C - ~ As can be naturally
interpreted as "A1 until C then A2", i.e., an operator defin-
ing a flexible notion of scope, which delimits the scope of A1
based on event occurrences. We could define many different
other operators supporting such flexible scoping, e.g., "A
until C" as A -C--~ never (where never denotes an aspect
which matches no event), "A from C" as C t> skip; A, and
also more complex ones such as "A should be enabled every
other crosscut". Note that the expressions constructed from
such operators can be freely composed with one another.

4.2 Composition adaption
The second extension geared towards aspect composition

we propose enables adaptation, i.e., transformation, of par-
allel compositions. Technically, we purport composition adap-
tors, operators O constructed using the following grammar:

O ::= pa.O ; recursive definition
I C t> F; 0 ; prefixing
I C t> F i a ; end of sequence
I 01 [] 02 ; choice

F ::= (U ~9 B) ; pair of transformers
U ::= id I skip ; unary transformers
B ::= t~ I seq I fs t I snd I skip ; binary transformers

In a pair of transformers (u~Bb), u : I --~ 1 and b : I × I ~ I
are unary and binary transformers of inserts, respectively.
The function skip is the constant function yielding skip,

*This ease means that our operator includes the behavior of the left
aspect at "termination points"; applying skip at those points (i.e.,
excluding the behavior) would give a different sequence operator.

146

seq(ll, I2) yields /1;/2, and fst (snd) the first (second) ar-
gument. Many other unary and binary functions could be
considered.

We note composition operators which use a composition
adaptor O as []o. Intuitively, an adapted aspect composition
A = A1]10 A2 evolves throughout the composition the same
way as the plain aspect composition A1]] A2. The different
composition functions (u ~ b) occurring in a basic rule r of
the composition adaptor 0 are applied to inserts of A1 and
A2 at join points matching the crosscut of r and at least one
of the corresponding crosscuts of A~ and A2. If only one of
the two aspects matches, u is applied to the corresponding
insert, whereas b is applied when the two aspects interact.
This way, adaptors allow the selective modification of inserts
generated by a composition. Note that the plain parallel
composition can be expressed as the following composition
operator:

[I = IIx ~ith X =/~a.true D (id ~ ~) ; a

The adaptor X matches all join points and composes con-
flicting inserts using ~.

An adapted composition (Ai[[oA2 say) can be analyzed
for strong independence by taking into account the evolution
of the adaptat ion operator O along with those of the aspects
A1 and A2. At join points where O and A1 or A2 interact,
the adaptat ion ftmction defined in the corresponding insert
of O is applied to the corresponding insert of the parallel
composition of the two aspects.

The interaction analysis remains the same except that the
rule [propag] of Figure 2 is replaced by the rule shown in Fig-
ure 3. As the original rule, the new one considers all conjunc-
tive terms constructed from combinations of all crosscuts of
the aspects involved. In contrast to the original rule, prop-
agation of adapted compositions first subjects all pairs and
individual terms built from A1 and A~ to the crosscuts of
O: if one of these crosscuts Ck ° matches, the transformers
(uk, bk) are applied to the corresponding inserts Ai and Aj.
The prioritization of the choice operator ensures that the
transformers are applied whenever possible.

4.3 Conflict resolution
Composition operators and adaptors can be used as a

means to resolve conflicts of interacting aspects. More pre-
cisely, a programmer can use them to get rid of the nonde-
terminism introduced by aspect compositions.

The analysis of strong independence (Section 2.1) returns
a sequential aspect. The occurrences of rules of the form
C [>/1~I2 indicate potential interactions. These interae-
tious can be resolved one by one. For each C I> Ii1~I2, the
programmer may replace each rule C t> I1~I~ by C E>/3
where ls is a new insert which combines I1 and I2 in some
way. This option is flexible but can be tedious. Instead of
writing a new insert for each conflict, the programmer may
use composition adaptors to indicate how to compose inserts
at the aspect level.

Composition operators can be used to this end. For ex-
ample, the aspects E1 and E2 introduced above for error
handling interact at all erroneous states if composed in par-
allel. The sequence E1 -createLog()--~ E2 can then be used
to resolve interactions by ensuring that only one aspect is
active at a time.

Composition adaptors can be applied as an expressive
means to resolve conflicts. The binary transformers b used
in an adapted composition allow conflicts to be resolved by

means of, for instance, orderings between inserts (e.g., using
the binary function seq) or ignoring some insert (e.g., using
fst).

As an example, let us consider the following definitions:

E2 = ~ua.^error('~) [> wri teLog(m); a
Es = ^logout 0 ~ c loseLogO;

pa .^er ror (x) ~ beep0; a

E2 is the same aspect as above (expressing that errors should
be writ ten to a log file). E3 closes the log file as part of a
logout and afterward errors are only marked by beeps The
simple composition E2 II Es yields interactions at all error
join points occurring after logouts.

We can resolve these interactions using the adapted com-
position E~ Iio E3, where

0 = ^logout 0 ~ (id, skip);
#a.^error (y) t> (id, snd); a

This composition yields the aspect:

p a . ^ e r r o r (~) ~ ~rriteLog(m); a
0 ^logout 0 ~> closeLogO;

pb.^error(x) ~> beeF(); b

where the propagation rule for adapted composition causes
conflicts appearing in the nested loop (using recursion vari-
able b) to be resolved using snd. After l o g o u t 0 , the stateful
operator O eliminates inserts from E2 at each conflict (i.e.,
each occurrence of e r ro r) .

A useful class of composition operators are stateless oper-
ators, denoted liT, which use a composition adaptor defined
as

pa.~rue t> (id ~ f) ; a

These operators use the same function for resolving all con-
flicts. As an example, let us consider two error handling as-
pects: Aabor~ matches every e r r o r (m) and may abort (some)
programs depending on the message m; A~o,~ct matches ev-
ery e r r o r (m) and may correct (some) errors depending on
m. Parallel compositions of these two aspects interact on
all errors, but their inserts abort on some errors and cor-
rect some errors. Different strategies can be used to resolve
conflicts:

• Aabort [[~ Aco~rect only allows the correction of non-
fatal errors, e.g., to avoid corrections potentially lead-
ing to later problems.

• Aco,.~ect [[s~q Aabo~t gives priority to error correction.

5. R E Q U I R E M E N T S A N D A S P E C T REUSE
In general, an aspect definition is reasonable for only some

base programs. In this section, we propose an extension to
the basic framework in order to make this fact explicit by
defining validity domains in terms of the sequences of join
points that base programs are required to generate. These
explicit requirements allow us to define a notion of inde-
pendence which is weaker than strong independence: taking
into account the expected behavior of base programs elim-
inates numerous spurious conflicts. Moreover, such contex-
tual information makes aspect oriented programming safer:
requirements can be checked when an aspect is to be woven
with a specific base program, i.e., before execution. Finally,

147

let

and
and

then

A

A'

0

A Iio A'

= (C1 D I1; A,) 0 . . . 0 (Gin D In ; Am)

= (c~ > 11; Ai) o . . . o (C'~ > 2'~; A~,)

= (C1 ° E> (ul @ bl); O1) [] . . . [] (Co ° C> (uo @ bo); Oo)

O~=1 j=1.,n,k=l..oCi AC~ ACk ° t> bk(I~,I~); (A~ IIo~ A~)
D. L.Ji=l..nrlJ=l"m C.z A Cj > (I ~ I j) ; (Ai IIo A~)

[] mk=~'°~ ACk° >u~(£); (A~ llok A') L.Ji~ 1,,n ~s

[] 0 ,=1. . , C~ D h; (A~ IIo A')
r'~ k = l . . ° fT{ [] ~ = ~ m ~ ^ c~ ° ~ ~ (6) ; (A IIo~ A;)

[] E]j=l.,m C~ > ~ ; (A Iio Aj)

F i g u r e 3: P r o p a g a t i o n o f c o m p o s i t i o n o p e r a t o r s

we show that explicit validity domains make aspect defini-
tions more reusable: provided that an arbitrary base pro-
gram satisfies the necessary requirements, it is guaranteed
that the corresponding aspect can be woven with it.

5.1 Aspect requirements
As a simple example why requirements on the intended

validity domain of aspects are useful, let us consider the
following aspect Log:

Log = p a l . ^ C a l l (l o g i n (~)) i> addLog(uid);
Da2. ^call(logoutO) C> skip; a~

[] "call(read(f)) > addLog(f); a2

This aspect is intended to log file accesses during sessions
(i.e., from a call to log in to the next call to logout). More-
over, the user identity uid is logged at the beginning of a
session. When the base program performs the following se-
quence of actions:

login("Bob") ; read("file1") ; login("Sam") ;
read("file2") ; logoutO ; logoutO ;

the aspect logs that f i l e l and f i l e 2 are accessed by Bob.
Indeed, the Log aspect ignores the second login when it is
looking for logout or read. Imagine that this behavior is
deemed not correct and Log should only be woven with base
programs implementing non-nested sessions. We propose to
specify such a requirement using an additional aspect:

Flat = #a. ^call(login(~)) C> skip;
(^call(logout()) > skip; a
[] ̂ call(login(2)) > abort(); a)

[] ^ c a n (l o g o u t O) ~ abort(); a

The aspect Flat monitors the desired requirement: it matches
sequences of flat sessions, doing nothing in such cases. The
rules "call(login(x))l>abort 0 and ^call(logout0)l>abort 0
stop execution when an unexpected join point occurs, that is
when a login (resp. a logout) occurs within (resp. outside)
a session.

5.2 Contextual interaction analysis
When aspects interact it is possible that their interactions

exclusively stem from execution traces which never occur
when these aspects are applied to concrete base programs.

We propose to take aspect requirements into account in or-
der to get a more precise interaction analysis. This analy-
sis lies between strong independence analysis (which shows
that aspects never interact regardless of the base program to
which they are applied) and the weak independence analysis
introduced in [4] (which shows that aspects do not interact
for a specific base program). By taking into account re-
quirements, the contextual interaction analysis proofs that
aspects do not interact for a set of related base programs.

Reconsidering the previous example, the aspect Log should
be used only in the context of fiat sessions. The parallel
composition LogIIFlat returns an instrumented version of
Log that either terminates the execution when the require-
ment is violated or generates logs otherwise. Simplifying the
parallel composition we get:

FlatLog ---- Logll Flat =
Hal .*ca l l (l og in (~)) ~ addLog(uid);

(Ha2. ^call(logoutO) I> skip; al
[] ^call(read(f)) l> addLog(f); a2
[] ^call(login(x)) I> abort(); a2)

[]*call(logout0) {> abort(); al

Let us now consider the complementary aspect SULog that
logs super user calls to read between sessions:

SULog = Dal.^call(read(7)) I> addSULog(/); al
O(^call(login(uid)) ~> skip;

^call(logoutO) [> skip; al)

In general, Log and SULog are not strongly independent.
However, SULog also requires flat sessions. So, interaction
analysis can take into account these requirements by consid-
ering the parallel composition of the instrumented versions
of both aspects:

(SV Logll Flat)I[(Logll Flat) = (S V Log[I Log)II Flat =
i/al.^can(read(y)) ~ addSULog(f); al

[] "call(login(uid)) C> addLog(uid);
(#a2. "call(logoutO) ~> skip; al

[] ̂ call(read(f)) l> addLog(f); a2
[] "can(mogin(x)) ~ abort(); a2)

[] ^cal l(logout0) ~ abort(); al

After simplifications, this resulting aspect is conflict free. In
this derivation, apart from the laws of Figure 2, we have also
used the law: (abort()~4I) = (I~abort()) = abort().

148

Note that the requirements of a composed aspect A1 [IA2
are determined by the parallel composition of the require-
ments of both constituent aspects. In our example, since
Flat is required by both aspects and Flat[[Flat = Flat, it is
also a requirement for (SULog[[Log).

5.3 Checking requirements
When an aspect is to be woven with a specific base pro-

gram, it is necessary to check that the base program satisfies
the aspect requirements. We now detail how this check can
be done. We assume that the result of a control flow anal-
ysis (CFA from here on) of the base program t is expressed
using the following grammar of regular expressions:

J : := f J1 . . . Jn [? ; abstract j o in point
S ::= # s . S ; rec. def. (s E 'Rec)

] (J1 --~ $1)~ . . .](J,, ~ S~) ; union of sequences
I s ; end of recursion

The result of a CFA denotes sequences (traces) of (abstract)
join points J . An abstract join point is a term with un-
known values noted '? ' . A sequence S is either a recursive
definition, or a union of several execution sequences (each
sequence starts with a join point). For instance, the traces of
a base program performing sequences of flat sessions could
be abstracted as follows:

B a s e = ~ s . c a l l (l o g i n (?)) ~ c a l l (l o g o u t 0) ~ s

An instrumented aspect can be specialized for such a con-
text. The specialization algorithm is mainly b a n d on the
law shown in Figure 4. The algorithm terminates due to
the regular nature of the language of sequences. There axe
three cases. First, both the aspect and the abstract base
program evolve when the current aspect matches the cur-
rent join point. Second, only the aspect evolves when the
current crosscut definition cannot match any joint point of
the abstract base program (i. e., when the abstract base pro-
gram cannot be crosscut by the current rule of the aspect).
Third, only the abstract base program evolves when the cur-
rent join point is not relevant for the aspect.

Once an aspect has been specialized and simplified w.r.t, a
base program, the result may or may not contain the special
insert abor t () (which is part of the requirements). If this
insert does not occur anymore, the base program satisfies
the aspect requirements and the specialized aspect can be
woven. If it still occurs, the base program may not satisfy
the aspect requirements. In this last case, the user could
either use another aspect, or modify the base program so
that it satisfies the aspect requirements. Note that static
CFAs yield safe approximations of the dynamic behavior;
base prograrus that dynamically satisfy the requirement may
thus seem unsuitable. So, another option would be to weave
the specialized aspect (with occurrences of abor t O). The
aspect will then perform dynamic checks in order to detect
actual violations of the requirements.

As an example, specialization of the instrumented log as-
pect FlatLog w.r.t, context Base yields:

Spec(F l a t L o g , Base) =
Izal. ^call(login(uid)) t> addLog(uid);

/.ta2. ^call(logoutO) t> skip; al
I] ^ca l l (r ead (f)) I> addLog(f); a2

tNote that the (possibly expensive OO features, e.g., , taking into
account nested calls) CFA of the base program must be performed
only once and can be reused for different aspects.

The insert abort () does not occur in the specialized aspect.
The aspect Log can be woven with the program analyzed as
Base , because it satisfies the aspect requirements.

In software engineering, explicit hypotheses, such as pre-
and post-conditions in programming by contract, or depen-
dencies in module systems, support software reuse. The
explicit requirements we propose should similarly support
reuse of aspects. However, reusable aspects should be based
on abstract concepts at the design level. For instance, ses-
sions could be described at the design level in terms of
session beginning (i.e., log in) , session end (i.e., logout)
and user identity (e.g., uid). Once a base program is pro-
vided, design-level concepts should be translated into imple-
mentation-level notions. Session-related design-level con-
cepts could be translated to concrete method calls avail-
able on the implementation level, such as openSession 0
and disconnect() executed in the context of an instance of
the class User. Such a correspondence could be expressed
by specifications such as:

login(ui--d) is implemented by ~.openSession 0
logout(uid) is implemented by Server.disconnect(uid)

which perform the corresponding simple substitutions in the
crosscut definitions of aspects at weaving time.

6. RELATED WORK AND CONCLUSION
Use of the history of execution events as a basic mecha-

nism for the definition of aspects has been proposed inde-
pendently by several researchers, in particular Fi lman [8],
Walker et al. [18], as well as the authors [2, 6, 5].

As to the formalization of aspects and weavers, different
approaches have been advocated. Wand et al. propose a de-
notational semantics for a subset of ASPECTJ [19]. Li~mrnel
formalizes method-call interception using a big-step seman-
tics [12]. Douence et al. [6] model crosscut definitions with
execution trace parsers and weavers with execution moni-
tors. De Volder et al. [16] propose a meta-programming
framework based on Prolog where crosscuts axe specified by
predicates on abstract syntax trees. Walker et al. [17] intro-
duce an abstract machine to define the operational seman-
tics of ML extended with aspects; Tucker and Krishnamurthi
[15] rely on abstract machines as well. Andrews [1] models
AOP by means of algebraic processes. In the t radi t ion of
process calculi, Jagadeesan et al. [9] propose a calculus of
AOP where aspects axe primitive abstractions.

Such models are a prerequisite to formally study proper-
ties such as aspect interactions. However, despite its impor-
tance, very few work has previously been done on aspect in-
teraction and conflict resolution. Douence et al. [6] present
an approach for manual proofs of independence. Sereni et
al. [13] generalize AspectJ ' s of low using regular expressions
on the call stack. They focus on optimization but they point
out that their technique could also be used to detect inter-
actions. Finally, interaction issues also arise in closely re-
lated fields of software engineering. For instance, Sihman
et a/. [14] use model checking to detect superimposition in-
teractions and a large body of work is devoted to feature
interactions (e.g., Felty et al. [7]).

Concerning reuse, aspects are often advocated as reusable
pieces of software. It is true that AOP can sometimes avoid
duplicating code. However, in order to make them fully
reusable, module and software composition techniques should
be adapted to aspects. Kienzle et al. [11] represent proper-
ties of aspects (namely, whether they provide, require and

149

let
and
and
and
then

A = (Cx t> Ix; Ax) [] . . . [] (C,~ t> Is; A,~)
S = (J~ ----~ S~) ~ ... ~ (J~ ~ Sin)
Ca = ^J where each occurrence of ? is replaced by a different fresh variable
c~ = ~(V~.j.is c j)
Spec(A, S) ~= "" = [~=1..~ C~ACj~ t>li; Spe(A~,Sj)

[] D~=l..n Ci A Cs t> I~; Spe(Ai, S)
[] Dj=l..m Cs~ t> skip; Spa(A, Sj)

Figure 4: Aspect specia l iza t ion w.r.t, a base p rog ram abs t r ac t i on

remove services) with a graph. An aspect can be reused in
a configuration when it can be inserted into the correspond-
ing dependencies graph. Sihman et al. [14] modulaxize proof
obligations for superimpositions and perform checks before
a superimposition is applied (i.e., when an aspect is woven).

In this article, we have extended our generic formal frame-
work for statefial aspects in three directions. The introduc-
tion of variables improves the expressive power of the frame-
work and makes it possible to define more precise aspects.
The main challenge was to design such an extension while
retaining static interaction analysis capabilities. We have
proposed a composition language built upon the same base
as aspects. It is very general and can take into account
the history of computation. Composition adaptors provide
expressive means to deal with conflicts among interacting
aspects. We have shown that the composition operators
introduced in [4] can now be easily defined using this gen-
eral composition language. Requirements were also defined
using the same operators as stateful aspects. They address
reusability by making explicit the validity domain of aspects.
This extension makes interaction analysis more precise be-
cause requirements rule out some spurious interactions. Re-
quirements can be seen as providing a pragmatic interaction
analysis lying between strong independence (which can be
too strong a condition) and weak independence [4] (which
can be too costly).

7. REFERENCES
[1] J. H. Andrews. Process-algebraic foundations of

aspect-oriented programming. In Proc. of the 3rd Int.
Conf. on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection), LNCS, pages
187-209. Springer Verlag, 2001.

[2] T. Colcombet and P. Fradet. Enforcing trace
properties by program transformation. In Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POLP-O0),
pages 54-66, N.Y., Jan. 19-21 2000. ACM Press.

[3] H. Comon. Disunifieation: A survey. In Computational
Logic: Essays in Honor of Alan Robinson. MIT Press,
Cambridge, MA, 1991.

[4] R. Douence, P. Fradet, and M. Siidholt. A framework
for the detection and resolution of aspect interactions.
In Proc. of the Conf. on Generative Programming and
Component Engineering, pages 173-188, 2002.

[5] R. Douence, P. Fradet, and M. Siidholt. Trace-based
aspects. In M. AE2it et al., editors, Aspect-Oriented
Software Development. Addison-Wesley, 2004. to
appear.

[6] R. Douence, O. Motelet, and M. Siidholt. A formal
definition of crosscuts. In Proc. of the 3rd Int. Conf.

on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection), volume 2192 of
LNCS, pages 170-186. Springer Verlag, 2001.

[7] A. P. Felty and K. S. Namjoshi. Feature specification
and automated conflict detection. ACM Transactions
on Software Engineering and Methodology (TOSEM),
12(1):3-27, 2003.

[8] R. E. Filman and K. Haveltmd. Realizing aspects by
transforming for events. In IEEE, editor, Automated
Software Engineering (ASE), Sept. 2002.

[9] It. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In Proc. of
ECOOP 2003, pages 415-427, 2003.

[10] G. Kiczales et al. Aspect-oriented programming. In
Proc. of ECOOP, volume 1241 of LNCS, pages
220-242. Springer Verlag, 1997.

[11] J. Kienzle, Y. Yu, and J. Xiong. On composition and
reuse of aspects. In Proc. of the 2nd Foundations of
Aspect-oriented Languages Workshop at AOSD 2003,
pages 17-24, 2003.

[12] R. L~mmel. A semantics for method-call interception.
In 1st Int. Conf. on Aspect-Oriented Software
Development (A OSD'02), 2002.

[13] D. Sereni and O. de Moor. Static analysis of aspects.
In Proc. of the 2nd Int. Conf. on Aspect-oriented
Software Development, pages 30-39. ACM Press, 2003.

[14] M. Sihman and S. Katz. Superimpositions and
aspect-oriented programming. The Computer Journal,
46(5):529-541, 2003.

[15] D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In Proceedings of the
2nd international conference on Aspect-oriented
software development (AOSD), pages 158-167. ACM
Press, 2003.

[16] K. D. Voider. Aspect-oriented logic meta
programming. In P. Cointe, editor, Meta-Level
Architectures and Reflection, Second International
Conference, Reflection'99, volume 1616 of LNCS,
pages 250--272. Springer Verlag, 1999.

[17] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In Proc. of the Int. Conf. on Functional
Programming, 2003.

[18] R. J. Walker and G. C. Murphy. Joinpoints as ordered
events: Towards applying implicit context to
aspect-orientation. Proc. Int. WS on Advanced
Separation of Concerns at ICSE, 2001.

[19] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In FOOL 9, pages 67-88, 2002.

150

