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ABSTRACT 
Aspect-Oriented Programming promises separa t ion  of con- 
cerns at  the  implementat ion level. However, aspects are 
not  always orrthogonal and  aspect interact ion is a fundamen-  
tal  problem. In this  paper,  we extend previous work on a 
generic framework for the  formal definition and  interact ion 
analysis of s tateful  aspects. We propose three  impor t an t  ex- 
tensions which enhance expressivity while preserving stat ic  
analyzabil i ty  of interactions. First ,  we provide suppor t  for 
variables in aspects in order to share informat ion  between 
different execution points. This  allows the  definit ion of more 
precise aspects  and to avoid detect ion of spurious conflicts. 
Second, we introduce generic composit ion operators  for as- 
pects. This  enables us to provide expressive suppor t  for the  
resolution of conflicts among interact ing aspects.  Finally, we 
offer a means  to define applicability condit ions for aspects.  
This  makes interact ion analysis more precise and  paves the  
way for reuse of aspects by making explicit requirements  on 
contexts  in which aspects mus t  be used. 

K e y w o r d s :  aspect oriented programming,  formal  model,  
s ta t ic  analysis, aspect interactions,  aspect  composit ion,  reuse 
of aspects.  

1. INTRODUCTION 
Aspect-Oriented Programming (AOP) [10] promises the  

systemat ic  t r ea tmen t  of separat ion of concerns at  the  imple- 
men ta t i on  level. Research on AOP is far from being ma tu re  
in many  respects and  there remain fundamenta l  problems. 
In this  paper  we consider three  of these problems: devising 
an appropr ia te  not ion of aspect composit ion,  suppor t  for 
reuse of aspects,  and automat ic  analysis of conflicts among 
non-or thogonal  aspects. Currently, there  is only a small  
body of work addressing such issues and  even fewer such 
work wi th  a sound formal basis. Most  frequently, program- 
mers dispose of only rudimentary  notions of aspect  composi- 
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t ion and no explicit suppor t  for aspect  reuse. Moreover, they 
are responsible for identifying interact ions  between conflict- 
ing aspects and  have to implement  conflict resolution code 
wi thou t  suppor t  for this  task. 

We address these problems based on the  generic and  for- 
mal  framework in t roduced in [4]. This  framework is very 
general: it does not  depend on  a specific p rogramming  lan- 
guage and  is expressive enough to allow the  definition of 
stateful  aspects. Stateful aspects are defined in t e rms  of se- 
quences of join points;  they take into account  the  his tory of 
computa t ion  ins tead of a single jo in  point.  Ano the r  ma jo r  
proper ty  of the  framework is to  pe rmi t  the  s tat ic  and  auto- 
mat ic  analysis of interact ions between (stateful) aspects.  

In this  article, we propose three  impor t an t  extensions 
to t ha t  framework. First ,  we augment  the  under lying as- 
pect  language by in t roducing variables allowing the  shar ing  
of information between different par t s  of an  aspect.  The  
language becomes much more expressive but  the  absence 
of interactions between aspects  can still be checked s ta t i -  
cally. Second, we int roduce new composi t ion opera tors  for 
aspects. Once again, this  extension fits nicely wi th in  the  
framework and  the  s ta t ic  analyzabi l i ty  of interact ions is pre- 
served. These  operators  are par t icular ly  useful to  resolve 
conflicts between interact ing aspects.  Interact ions arise when  
dist inct  aspects m a t c h  the  same join points.  Making  the  
composit ion of aspects  a t  such interact ion points  precise per-  
mits  to resolve conflicts. Finally, we introduce a not ion  of 
explicit requirements  on base programs for the  applicabil i ty 
of aspects. We show how such contextual  aspects can be  
used to make our  in teract ion analysis  more precise and  how 
they suppor t  a not ion  of aspect  reuse. 

The  paper  is organized as follows. In Section 2, we intro- 
duce our formal framework and provide an  informal overview 
of the  extensions presented in the  following three  sections. 
Section 3 makes the  under ly ing aspect  language more ex- 
pressive th rough  suppor t  for inter-crosscut variables and  
presents an  associated in terac t ion analysis. Section 4 defines 
the  new composi t ion facilities and  thei r  appl icat ion to con- 
flict resolution. Section 5 int roduces  explicit requi rements  
for aspects, discusses how th is  informat ion makes in terac t ion 
analysis more precise, and how it facilitates reuse of aspects.  
Finally, Section 6 presents  related work and  concludes. 

2. PRELIMINARIES 
In this section, we briefly present  the  generic framework 

(introduced by the  au thors  in [4]) on which the  current  work 
is based. Then,  we give an  overview of the  extensions de- 



fined in the  current  article for the  analysis of interactions,  
composit ion and reuse of stateful  aspects. 

2.1 Basic Framework 
We model AOP th rough  weaving by means of a dynamic  

monitor,  which observes the  execution of the  program and  
inserts instruct ions according to execution states. 

Execution traces. The  relevant par t  of an execution for 
weaving is called the  observable execution trace. It  can be 
formally defined on the  basis of a small-step semantics  of the  
base programming language. The  observable t race is a se- 
quence of join points which are abstract ions  of the  execution 
s ta te  of the  program. 

Aspects. The  primit ive const i tuents  of our aspect language 
are basic rules C t> I where C is a crosscut and I an insert. 
Crosscuts are pa t t e rns  match ing  join points whereas inserts  
are templates.  The  intui t ion behind a basic rule is t h a t  
when the  crosscut matches  the  current  join point,  it yields a 
subs t i tu t ion  which is applied to the  insert  before executing 
it. The basic rule error(m) ~> abo r t ( )  abor ts  the  current  
execution when a join  point  is encountered which matches  
the  call to the  one pa rame te r  routine e r r o r .  

Aspects combine basic rules using three  operators:  pre- 
fixing of basic rules to  aspects,  choice between two aspects 
and repetition of an aspect .  Aspects match  sequences of 
join points  and  they evolve according to the  join points  they 
match.  For example, an  aspect  intended to log warning mes- 
sages in a log file may wai t  for the  log file to be opened and 
then store warnings repeatedly in t ha t  file. Such aspects are 
called stateful: a s ta te  is needed to represent their  evolution. 

Aspects  are defined using the  following grammar:  

A ::= /za.A ; recursive definition (a E T~ec) 
I C C> I; A ; prefixing 
I C C> I; a ; end of sequence (a E T~ec) 
I A1 [] A2 ; choice 

An aspect is either: 

• A recursive definition. 

• A sequence formed using the prefix operat ion C i> I ;  X ,  
where X is an  aspect  or a variable. When  the  crosscut 
C matches  the  program point and  its variables have 
a unique solution,  we write C j = ¢ where ¢ is a 
subs t i tu t ion  mapp ing  the  variables in C to their  so- 
lution. The  variables in C used in I are replaced by 
their  solution and  X becomes the  aspect to be woven. 
Otherwise,  we say t h a t  the  crosscut does not  match  
the  program point  and  we write C j = f a i l .  

• A choice cons t ruc t ion  A1 [] A2 which chooses the  first 
aspect  t h a t  ma tches  a join point ( the other  is thrown 
away). If  b o t h  m a t c h  the  same join point,  A1 is chosen. 

For instance, a logging aspect  which, after opening a log file, 
logs warnings but  abo r t s  program execution when an error 
occurs can be expressed as follows: 

ErrLog = 

openLog 0 C> skip; ~a.warning(m) ~> writeLog(m); a 
[] error(m) > abort(); a 

where the insert skip is the instruction doing nothing. 

We consider only closed aspects,  i.e., with no free vari- 
ables in inserts  nor  free 7~ec variables. To ensure tha t  as- 
pect  are finite state,  recursion occurs only as tail recursive 
calls. Aspects  keep t ry ing  to ma tch  the  join points of the  
execution trace and never t e rmina te  (note t h a t  the  aspect  
ErrLog formally does not  s top but  t h a t  it causes the base 
program execution to be abor ted) .  

Aspect  weaving. Aspects  addressing different issues, e.g., 
different error handl ing  strategies,  security and  profiling, are 
composed using a parallel operator. Weaving defines how 
match ing  of crosscuts and  execution of inserts  is interleaved 
wi th  the  base program's  execution. Intuitively, the  weaver 
takes a parallel composi t ion of n aspects All[ . . .  [[An and  
performs the  following steps at  each join point: 

• The  applicable basic rules (whose crosscuts match  the  
current  join point)  are de termined  by a function sel.  

For instance,  in case of the  aspect  ErrLog defined above, 
se l  yields the  rule openLog 0 [> s k i p  at  the  f i r s t  join 
point  opening the  log file. The  empty  set is yielded 
for, among others,  all log-opening join points  after the  
first one. 

All selected basic rules are applied (i.e., their  inserts  
executed) in no specific order. 

In the  case of the  first rule of ErrLog, nothing would 
be done because the  insert  sk ip  is applied. 

The  evolution of A1 H - . .  H An is computed  by a function 
n e x t .  

For ErrLog this  means  t h a t  after  the  first jo in  point  
which opens the  log file has  been handled,  the  aspect  
to be considered (i.e., the  result  of n e x t )  is 

~a .warn ing (m)  ~ ~rziteLog(m); a 
[] error(m) t> abor t ( ) ;  a 

Note t ha t  the  aspect  ErrLog does not  evolve from its 
initial s ta te  before encounter ing the  join point  t h a t  
opens the  log file. 

• A s t andard  execution s tep of the  base program is per- 
formed, yielding a new current  join  point.  

These steps are i terated wi th  the  new aspect and the  next  
join point  until  the  base program terminates .  

More formally, the  weaver makes use of sel  which takes 
a composit ion of aspects and  extracts  the  rules to apply at  
the  current  join point  j .  

s e l j  (AI[[ . . . [ [An)  = ( s e l j  A1) U . . . U  (sel  j An) 
sel  j (#a.A) = se l  j A 
sel  j (C D I;  A) = @ if C j = f a i l  

= {C C> I} otherwise 
sel  j (At [] A2) = se l  j A1 if se l  j A1 ~ 0 

= se l  j A2 otherwise 

The evolution of an aspect  after the  application of a basic 
rule is described by the  n e x t  function. It  takes a composite 
aspect, the  current  join  point  and yields the  aspect to be 
applied to the  next  join  point.  I t  makes use of the  function 
sel  which takes an  aspect  and  extracts  the  rule to  apply at  
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the current join point j .  

n e x t  j (Ai[[ . . . [ [An) 
n e x t  j (#a.A) 
n e x t  j (C t> I;  A) 

n e x t  j (A1 [] Az) 

= ( n e x t  j Ax)[[ . . .  [[(next j An) 
= n e x t  j A[pa.A/a] 
= C t > I ;  A i f C j = f a i l  
= A i f C j = ¢  
= n e x t  j Ax if sel j Ax 5~ 0 
= n e x t  j A2 if sel  j A2 ~ 
= (A1 t3 A2) otherwise 

The woven execution performed relative to a composite as- 
pect  A is formalized in Figure 1. The entry mad exit of a 

Wo'13en execution 

[j,P,a] sel j A ~=~ aa (j,P,a~) ---~ ( j ' ,P,a ' )  

(A , j ,P ,a)  ~ (nex t  j A , j ' ,P ,a ' )  

Monitor 

b',P,~] ~ ~=. 

S = {C t> I} U,S' C j = ¢  (~ ,¢I ,a) - -~( l ,¢ I ,a ' )  
[j,p,~]s ~=. b,p,~,lS' 

F i g u r e  1: W e a v i n g  

program are denoted by two special join points: I and T, 
respectively. The transition relation --~ represents the stan- 
dard execution. Let o'0 be the initial state, the observable 
execution trace of a program P is of the form: 

( l ,P,  ao) . . . . .  (j~,P,a 0 . . . .  

If the reduction terminates, there exists a an such that  
(~,P, ao) --~ (T,P, an), where ~ denotes the transitive, re- 
flexive closure of --,. The woven execution ~ is defined by 
the application of the monitor followed by a standard execu- 
tion step. It  yields the aspect ( n e x t  j A) to be applied to the 
following join point. At each join point, the applicable rules 
are selected (sel j A). The monitor (relation ~ ) applies 
the selected rules in no specific order: if the crosscut of the 
current rule matches the current join point, the correspond- 
ing substitution is applied to the insert and ¢ I  is executed. 
To end the discussion of the weaver, note that  stateful as- 
pects are implementable efficiently using static analysis and 
transformation techniques (see, [2]). 

Interaction analysis. Two distinct aspects are said to in- 
teract when they match the same join point. Two aspects 
are independent if their crosscuts never match the same join 
point simultaneously. Independence of two aspects ensures 
that  their parallel composition is well-defined: they can be 
woven in any order. To the contrary, dependent (i.e., in- 
teracting) aspects require the programmer to resolve the in- 
teractions by changing aspects or making the composition 
more precise. 

Consider, for example, the aspect A~c~-uptio,~ that  matches 
some method calls and encodes their argument and an as- 
pect Atoggi~g that  logs some method calls. If some method 
calls are matched by both Ae,~,~pt~o,~ and Alogg~,g, the as- 
pects interact and their parallel composition is not well- 
defined. In this case, since Ae,~c~p,o~ [I Atog~ng does not spec- 

ify any execution order for inserts, weaving is non-determi- 
nistic. 

2.2 Overview of contributions 
One main objective of the present work is to generalize the 

techniques for interaction analysis and conflict resolution in- 
troduced in [4]. Furthermore, we are interested in extending 
the framework by means for the more expressive definition 
of aspects. Concretely, we present three contributions in the 
following: introduction of inter-crosscut variables generaliz- 
ing the aspect language suitable for static analysis, gener- 
alized means for aspect composition and conflict resolution, 
and new means for the expression of applicability require- 
ments of aspects which support reuse of aspects. 

Inter-crosscut pattern variables 
In many cases, information must be passed between cross- 
cuts of a complex aspect. Suppose, for example, tha t  Alogm,~u 
should log only file deletions referring to the user currently 
logged in. (i.e., between calls to login(uid) and l o g o u t 0 ) .  
The aspect must wait for a login, record the corresponding 
user identity (uid), and log calls referring to this uid (e.g. 
rra(uid, file)). When the session ends ( logout  0 occurs), 
the aspect  proceeds by waiting for the next login and so 
on. The identity of the current user (uid) has to be passed 
between crosscuts and this is done using pat tern  variables. 
Section 3 presents an expressive aspect language featuring 
pat tern variables and the associated interaction analysis. 

Aspect  composition and conflict resolution 

In Section 4, we introduce a sequence composition operator 
for aspects. This sequence operator explicitly uses a "termi- 
nation crosscut": if this crosscut matches, the first aspect in 
the sequence is stopped and the second is activated. The  op-- 
erator gives rise to a flexible notion of scope of aspects which 
enables the scope of an aspect to be delimited by execution 
events. We also introduce a set of composition operators 
for the adaptation, i.e., transformation, of aspects. These 
composition adaptors specify transformations on inserts of 
aspects. They are therefore highly useful to resolve conflicts 
in non-deterministic aspects resulting from a parallel com- 
position. For example, it is easy to define the composit ion 
operator IIr~i (resp. II~) which sequentializes inserts (resp. 
applies only the first insert) at each interaction. By com- 
posing the logging and encryption aspects introduced before 
we can then resolve conflicts using these operators: 

• Atog~ng [Is---q- Aencr~tion generates logs for super users 
by logging method calls with original arguments,  

• Aencr~tion I1~ Atog~,u generates logs for basic users 
where the encrypted methods do not appear.  

Requirements and aspect reuse 
In general, an aspect is not valid for all base programs, 
but  only for some because it relies on certain implicit  con- 
text  conditions. For example, in our previous description of 
Alog~g, we implicitly assumed that  sessions were non-nested 
(otherwise, l ogou t  0 would not necessarily mean leaving the 
top-level session). We show in Section 5 tha t  such condi- 
tions can be made explicit in our framework as requirements 
on base programs. These requirements define which base 
programs can correctly be woven with an aspect. Such re- 
quirements can be expressed as a companion aspect, i.e. as 
sequences of join points. For example, non-nested sessions 
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can be specified by an  aspect checking t ha t  no login call oc- 
curs between each login(uid) and l o g o u t  0 .  We also show 
how aspect requirements can be used to make interact ion 
analysis more precise. Finally, we give evidence t h a t  require- 
ments  suppor t  reuse of aspects by checking compat ibi l i ty  of 
aspects w.r.t, requirements  defining use contexts  (similar to  
how pre- and  post-condit ious in programming by cont rac t  
are used to suppor t  software reuse). 

3. INTER-CROSSCUT VARIABLES AND 
INTERACTION ANALYSIS 

In this  section, we present an  expressive aspect  language 
and the associated interact ion analysis. Technically, we ex- 
tend the  base framework by inter-crosscut pa t t e rn  variables, 
which permits  to define aspects more precisely and  to  avoid 
detect ion of spurious conflicts. 

3.1 The aspect language 
As in the  base framework, aspects are regular expressions 

(defined using the  g rammar  A introduced in the  previous 
section) of rules of the  form: C t> I where C denotes  a 
crosscut and I an  insert.  

Crosscuts 

Crosscuts are buil t  from terms, t ha t  is to say, finite trees of 
the  form: 

T : :=f  T1 . . .T~ I x 

where f is an  mary  (n _> 0) symbol and x 6 Vars is a 
pa t t e rn  variable. 

Crosscuts are made of conjunctions,  disjunctions and  nega- 
tious of equations on terms: 

C : : = v = "  T I C ,  A C 2 I C ,  VC2I-~C v e V a r s  

Assuming a special variable • denoting the  current  join point,  
the  applicat ion of a crosscut to  a join point  C j amounts  to  
solving the  formula obta ined  by subst i tu t ing j for • in C 
(C j = C~j/•]). There  exists an  algori thm to find equa- 
tious solving such formulas [3]. I t  is used by the  interact ion 
analysis of Section 3.2. 

We write def(C) for the  set of variables (C Vats) occur- 
ring a s / h s  of equations in C. These variables are defined by 
the  equations of C and can  be used in the  insert  or later  on 
in the  aspect.  We write false for the crosscut which does not  
match  any join point  and  true for the crosscut t h a t  matches  
all join points.  Let z be a fresh variable then  true can be 
defined by the  crosscut z =" z and  false by ~(z  =" z). 

Inserts 

An insert  I is a t e rm as defined above. The  intui t ion behind  
a rule C I> I is t h a t  when  the  crosscut matches the  cur- 
rent  join point,  i.e., C j = ¢, then  ¢ I  is executed. Hence, 
the  insert  can only use variables defined in C or a previous 
crosscut. The  special insert  s k i p  represents an  instruct ion 
doing nothing.  

Variables and notation 
An equat ion z =" T defines the  variable z whose scope ends at  
the  subsequent  (re)definition of z. Variables can be used to 
pass information between crosscuts. For example, an  aspect 
count ing the  number  of calls of the first method  ever called 
by the  base program can  be  expressed using inter-crosscut 
variables as follows: 

Ai = • --" call x A f "---- x C> first.set(l); 
(~a.- ~ can ] ~ first.inc(); a) 

To simplify the notation, we write ^T for • ~ T and 5 to 
define and use a variable in a pattern. This syntactic sugar 
can be suppressed from a crosscut C using the following 
rules: 

C = C[(• --" T)/^T] 
C = C[z/~] A x--'--z withz a fresh variable 

With these conventions, the aspect Ai can be written: 

^call f > first.set(l); (~a.^call f > first.incO; a) 

Note that without inter-crosscut variables, such an aspect 
would require book-keeping code in inserts  (e.g., memorizing 
the  name of the  first me thod  for comparison in fur ther  calls) 
which would be executed for all calls. 

Weaving 
The  semantics of aspects is given by the  weaver as described 
in Section 2.1. Here, we focus on  the  differences brought  
for th  by inter-crosscut variables. 

W h e n  a crosscut matches  the  current  join  point,  the  sub- 
s t i tu t ion  found is applied to the  rest  of the  aspect. This  
means  t ha t  variable bindings from the  preceding basic as- 
pect  must  be passed to the  next  one. In order to account 
for this, the  function n e x t  presented in the  previous section 
must  be modified as follows: 

n e x t j  (Ct>I;  A) = Ct>I;  A i f C j = f a i l  
= ¢ A  i f C j = ¢  

Here, the  applicat ion of a subs t i tu t ion  ¢ to an  aspect A is 
defined as follows: 

¢(/za.A) = Ida.CA 
¢(A1 E2 A2) = (¢A1 [] ¢A2) 
¢(C t> I; A) = ¢ ' e  t> ¢'I; ¢ 'A with  ¢ '  = ¢\def(C) 

Applying a subs t i tu t ion  to a crosscut C thus amounts  
to  applying it to each t e rm occurr ing in C. Furthermore,  
variable redefinitions performed in prefix operat ions are ob- 
served by using the  subs t i tu t ion  ¢\def (C) ,  which denotes 
the  restriction of ¢ to  the  variables not  (re)defined in C, in 
the  last case. 

3.2 Interaction analysis 
Our goal is to  keep the  wri t ing of aspects as independent  

as possible from their  composit ion.  Fur thermore,  we do not 
want  to compel the  programmer  to specify a (useless) order 
of application for independent  aspects.  In  our approach, 
aspects are first wr i t ten  and  composed in parallel. Then,  
interactions are detected using s ta t ic  analysis and resolved 
by making the  composi t ion more specific. This  way, the 
composit ion of aspects is specified separately and  only when 
needed. 

There  are several sufficient propert ies  ensuring the  ab- 
sence of interactions. We focus here on strong independence 
t ha t  does not  depend on the  p rogram to be woven: strongly 
independent  aspects do not  in teract  regardless of the  base 
program or the  inserts which can  be woven. Strong inde- 
pendence thus does not  have to be  checked after  each pro- 
gram modification. (A more precise var iant  of the interac- 
t ion analysis which takes into account  the  base program and 
new behavior introduced by other  inserts  has  been presented 
in [4]. We expect t h a t  the extension by variables carries over 
smoothly to t ha t  case as well). 
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[(un)fotd] 
[assoc] 
[commut] 

[elimx] 

[elima] 

[,hip] 
b~rioritu] 
[sed 

[p~pa~] 

pa.A = A[pa.A/a] 

(Ax [] A2) [] As = Ai [] (A2 [] As) 

(Cx t> I1; A1) [] (C2 ~>/2; A 2 ) =  (C2 t>/2; A2) [] (Cx t>/1; A1) 

C [ I = false t> I 

(false t> I; X )  [] A = A 

false t> I; X = false t> I; a 

( sk ipM l )  = (l~skip) = I 
( e l  l> I1; Ax) [] (C2 D I2; A 2 ) = ( C x I > I 1 ;  A1) [] (C2A-~¢ClC>I2; A2) 

C I> I ;  (Oi=x..,Ci t>/~; Ai) = C C> I;  ([],=x..,Ci[C] >/~;  A0  

with Ci[C] = Ci A ¢ C  A~e~ef(c) Cx =" x 

let A = (C l t> /1 ;  Ax) [] . . .  [] ( C , ~ I , ;  An) 
and A'  = (C~t>I~ ;A~)  [] . . .  [ ] ( C ~ > I ' ~ ; A ~ )  
then A ]1 A'  = []j=x..m,~. , 

O~=L.,C~ t> h; (A~ II A') 
[]~=~ ~cl  > ~; (A II A~) 

; if Cx A C2 has no solution 

; if C has no solution 

; a 6 T~ec 

; ¢ is a renaming 
. from Vars to fresh variables 
7 

F i g u r e  2: Laws  for  a s p e c t s  

The algorithm to check strong independence of aspects is 
based on the laws (which can be proved correct w.r . t  the 
weaving semantics) shown in Figure 2. The algorithm, which 
is similar to the algorithm for finite-state product automata,  
propagates and suppresses parallel operators. It  terminates 
due to the finite-state nature of our aspects (the (un)foldlaw 
is used to fold already encountered aspects). If  the com- 
position of aspects can be rewritten into a sequential and 
deterministic aspect then the aspects are independent and 
weaving is well defined. Otherwise, nondeterministic inserts 
occur in the resulting aspect. They represent conflicts to be 
resolved by the techniques presented in Section 4. 

To avoid name capture problems, we assume tha t  the as- 
pects of a parallel composition use disjoint sets of variables. 
We illustrate the analysis and explain the rules on an exam- 
ple. Let Ax be the aspect introduced in Section 3.1 and A2 
the aspect 

~cal l  ~ > skip; Gua.^call h A -~(h =" g) l> o th s r s . i ncO;  a) 

counting the number of calls to all methods except the first 
one called. Intuitively, these aspects do not interact and 
their naive parallel composition is well defined. This is es- 
tablished by the analysis using the rules of Figure 2 as fol- 
lows. 

C = ^ca l l  ] h " c a l l  
C' = ^ c a l l /  A ^ c a l l h  A ~(h=" g) 

Let A~ = ~ a . ' c a l l  f D f i r s t . i n t O ;  a 
AS = ~ a . ' c a l l  h A -~(h =" g) t> o t h e r s . i n c 0 ;  a 

then 
Ax II A2 

= " c a l l  f A ^ca l l  ~ ~> ( sk ip t~ f i r s t . s e t (1 ) ) ;  (AI II A~) 
[] ^call f [> first.set(l); (A~ II A~) 
D "call y > skip; (Ai I[ AS) [pwpag] 
The parallel composition (product) of aspects is performed 

by [propag] which propagates the parallel operator inside the 
aspect definition. It produces a sequence of choices made of 
all the possible pairs of crosscuts from A and A'  and all 
the single crosscuts of A and A'  independently. Conflicts 
are represented using the non-deterministic function (Ixt~I2) 
which returns either I1;I2 or I~;I1 (where ";" denotes the 
sequencing operator of the programming language). In the 

example, ( s k i p N f i r s t . s e t ( 1 ) )  is not  a true conflict since 
the inserts commute. 

= C t> f i r s t . s e t ( I ) ;  (A~ II A~) 
[] " c a l l  7 A ' ~ C  b f i r s t . s e t ( l ) ;  (A~ [I A~) 
[] " c a l l  ~A--~('ca!l i A-~C) > skip; (A~ II A~) 

[skipl, [priority], [~ s~ ]  
The [skip] rule is an instance of the simplification that  

can be done by taking into account the semantics of in- 
serts, whenever two inserts commute. Many similar laws 
could be conceived. In particular, whenever two inserts I1 
and 12 commute, (I,t~I2) is equivalent to 11;12 (or I2;/1)- 
The [priority] rule accounts for the priority rules implicit 
in the choice operator. This makes the analysis more pre- 
cise by allowing simplifications. The  renaming is needed to 
avoid clashes between variables names occurring in the two 
crosscuts (the renaming needs not be applied to Is because 
variables are not visible in a sibling argument of a choice). 
The law [assoc] (as well as [commut] and [(un)folo~) serves 
to put  aspects on a form appropriate for further rewriting. 

= C m f i r s t . s e t ( I ) ;  (Ai II A~) 
D false E> f i r s t . s e t ( l ) ;  (A~ II A~) 
[] false ~> skip; (Ai  II AS) let;roll 
The law [el;roll uses the algorithm of [3] to check if a cross- 

cut has no solution in which case the crosscut is replaced by 
false. In the example, if the join point does not match C it 
is not a call; it cannot match c a l l  f or c a l l  ~ either. 

= C t> f i r s t . s e t ( l ) ;  (Ai II A~) [el/m2] 
The law [elim2] (as [el;real) removes unreachable parts of 

an aspect. 
= C l> first.set(1); 

(Da.C' t> (first.incO~others.incO); a 
[] ^call f t> first.intO; a 
[] ^ c a l l  h A -~(h =" g) C> o t h s r s . i n c 0 ;  a) [propag] 

The expression has been unfolded ([ (un)fol~), the parallel 
operator has been propagated using [propag] and suppressed 
by folding the expression back ([(un)fola~). 

= C D f i r s t . s e t ( I ) ;  
(~za.C'[C] D ( f i r s t . i n c 0 1 ~ o t h e r s . i n c 0 ) ;  a 
0 ( ^ c a l l / ) [ O f  b f i r s t . i n c ( ) ;  a 
[] ('call h A ~(h  =" g))[C] t:> o t h e r s . i n c 0 ;  a) [seq] 

The [seq] rule serves to propagate the constraints on vari- 
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ables introduced by a crosscut. The propagation renames all 
the variables of the crosscut (including 0) by fresh variables 
to avoid name clashes. For our example, C 

• ----" callx A f='x A -----" cally A g--'--y 

has its variables renamed into 

z----" callz] A z2"~-z] A z~callz3 A z4=" Zs 

The useful information is passed by binding the variables in 
def(C) to their renaming. In our example, 

z 2 ~  f A z 4 ~ g  

Therefore, 

c'[c] ^ca l l  f A ^ca l l  h A - ( h  =" g) A 
z ~ c a . l l z x  A z "---- call zs A 

Z2 ~"Zl A Z4-~Z3 A z 2 ~  f A Z4-~g 

which is false: C t implies f ~ g whereas the information 
brought by C implies f = g. The associated rule can be 
removed using [eliml] and [elim2]. 
= C D f i r s t . s e t ( i ) ;  

(~a.(^call/)IV] t> fi~st.inc(); 
[] (^ca l l  h A ~(h ~ g))[C] t> o t h e r s . i n c 0 ;  a) 

So, A1 II A2 has been rewritten into a deterministic, se- 
quential aspect. The aspects A1 and A~ are strongly inde- 
pendent. Without  inter-crosscut wriables, Ai  would have 
been expressed by book-keeping code such as: 

^ ca l l  x C> f i r s t . seZ(1) ;name = x; 
Da.^cal l  y ~> i f  y = =  name then  f i r s t . i n c  0 e l s e  skip;  a 

This aspect matches all calls. It would be found to interact 
with any other aspect matching calls (like As). 

4. ASPECT COMPOSITION AND CONFLICT 
RESOLUTION 

The parallel operator II enables different aspects to be 
combined along with the analysis of their interactions. In 
this section, we generalize aspect composition in two dif- 
ferent ways while preserving feasibility of static analysis of 
interactions. Using these extensions, we then define expres- 
sive support  for conflict resolution of interacting aspects. 

4.1 Sequential composition of aspects 
In Section 3, we have considered three different opera- 

tors allowing to combine aspects: recursion (p), choice ([]) 
and parallel composition (ll)- However, prefixing (C t> I;  X,  
where X is an aspect or a recursion variable) is only defined 
starting with a basic rule. 

Our first extension consists in the new composition 
A1 -C---* A2 which behaves as the aspect A1 until an event 
matches the crosscut C;  in this case, A1 is stopped and the 
aspect A2 is started. This sequence operator can be formally 
defined as 

A1 -C---~ A2 = T[Ai~Ac~ 

where T is the following transformation which eliminates 
sequencing between aspects, thus yielding a "standard" as- 

pect. 

T~pa.A]AC~ = pa.T~A]AC; 
T[Ct> I; A~Ac: = C A C ' t >  I; A'  

[] C '  t> skip; A' 

[] C t> I; T~A]AC; 
T ~ a ~ ;  = a 

T~A1 [] AZ~AC; = TEA,]At; [] T~A2~Ac; 

Here, the interesting case is the transformation of prefixing 
C t> I ;  A, which starts with a basic rule. Three cases must 
be distinguished. First, when the current join point matches 
the "terminating" crosscut C' as well as the crosscut C of 
the basic rule, the insert I is executed, the current aspect 
is terminated and A' is started.* Second, when only C '  is 
matched, no insert (i.e., skip)  is executed and A'  becomes 
the new aspect. Finally, if C '  does not match but C does, 
I is inserted and the transformed version of the aspect A is 
executed. 

As a simple example, consider the following two defini- 
tions: 

E1 = pa .^er ror (x)  l> beepO; a 
E~ = /~a . ' e r ro r (~ )  I> v r i t eLog(m) ;  a 

E1 and E2 define two aspects for error handling: the former 
marks errors by a beep while the latter logs error messages. 
The second error handling strategy obviously is only rea- 
sonable if the log file has previously been created. In order 
to account for that  need we could define error handling as 
E1 -e rea teLog() - -~  E2, which ensures that  errors produce 
beeps up to the point when a log file is created; from that  
point on error messages are logged. 

The composition operator A1 - C - ~  As can be naturally 
interpreted as "A1 until C then A2", i.e., an operator defin- 
ing a flexible notion of scope, which delimits the scope of A1 
based on event occurrences. We could define many different 
other operators supporting such flexible scoping, e.g., "A 
until C" as A -C--~ never  (where never denotes an aspect 
which matches no event), "A from C" as C t> skip;  A, and 
also more complex ones such as "A should be enabled every 
other crosscut". Note that  the expressions constructed from 
such operators can be freely composed with one another. 

4.2 Composition adaption 
The second extension geared towards aspect composition 

we propose enables adaptation, i.e., transformation, of par- 
allel compositions. Technically, we purport  composition adap- 
tors, operators O constructed using the following grammar: 

O ::= pa.O ; recursive definition 
I C t> F; 0 ; prefixing 
I C t> F i a  ; end of sequence 
I 01 [] 02 ; choice 

F ::= (U ~9 B)  ; pair of transformers 
U ::= id I skip ; unary transformers 
B ::= t~ I seq I fs t  I snd I skip ; binary transformers 

In a pair of transformers (u~Bb), u : I --~ 1 and b : I × I ~ I 
are unary and binary transformers of inserts, respectively. 
The function skip is the constant function yielding skip,  

*This ease means that our operator includes the behavior of the left 
aspect at "termination points"; applying skip at those points (i.e., 
excluding the behavior) would give a different sequence operator. 
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seq(ll, I2) yields /1;/2,  and fst (snd) the first (second) ar- 
gument. Many other unary and binary functions could be 
considered. 

We note composition operators which use a composition 
adaptor O as []o. Intuitively, an adapted aspect composition 
A = A1 ]10 A2 evolves throughout the composition the same 
way as the plain aspect composition A1 ]] A2. The different 
composition functions (u ~ b) occurring in a basic rule r of 
the composition adaptor 0 are applied to inserts of A1 and 
A2 at join points matching the crosscut of r and at least one 
of the corresponding crosscuts of A~ and A2. If  only one of 
the two aspects matches, u is applied to the corresponding 
insert, whereas b is applied when the two aspects interact. 
This way, adaptors allow the selective modification of inserts 
generated by a composition. Note that  the plain parallel 
composition can be expressed as the following composition 
operator: 

[I = IIx ~ith X =/~a.true D (id ~ ~) ;  a 

The adaptor X matches all join points and composes con- 
flicting inserts using ~. 

An adapted composition (Ai[[oA2 say) can be analyzed 
for strong independence by taking into account the evolution 
of the adaptat ion operator O along with those of the aspects 
A1 and A2. At join points where O and A1 or A2 interact, 
the  adaptat ion ftmction defined in the corresponding insert 
of O is applied to the corresponding insert of the parallel 
composition of the two aspects. 

The interaction analysis remains the same except that  the 
rule [propag] of Figure 2 is replaced by the rule shown in Fig- 
ure 3. As the original rule, the new one considers all conjunc- 
tive terms constructed from combinations of all crosscuts of 
the aspects involved. In contrast to the original rule, prop- 
agation of adapted compositions first subjects all pairs and 
individual terms built from A1 and A~ to the crosscuts of 
O: if one of these crosscuts Ck ° matches, the transformers 
(uk, bk) are applied to the corresponding inserts Ai and Aj. 
The  prioritization of the choice operator ensures that  the 
transformers are applied whenever possible. 

4.3 Conflict resolution 
Composition operators and adaptors can be used as a 

means to resolve conflicts of interacting aspects. More pre- 
cisely, a programmer can use them to get rid of the nonde- 
terminism introduced by aspect compositions. 

The analysis of strong independence (Section 2.1) returns 
a sequential aspect. The occurrences of rules of the form 
C [>/1~I2  indicate potential interactions. These interae- 
tious can be resolved one by one. For each C I> Ii1~I2, the 
programmer may replace each rule C t> I1~I~ by C E>/3 
where ls  is a new insert which combines I1 and I2 in some 
way. This option is flexible but  can be tedious. Instead of 
writing a new insert for each conflict, the programmer may 
use composition adaptors to indicate how to compose inserts 
at the aspect level. 

Composition operators can be used to this end. For ex- 
ample, the aspects E1 and E2 introduced above for error 
handling interact at all erroneous states if composed in par- 
allel. The  sequence E1 -createLog()--~ E2 can then be used 
to resolve interactions by ensuring that  only one aspect is 
active at a time. 

Composition adaptors can be applied as an expressive 
means to resolve conflicts. The binary transformers b used 
in an adapted composition allow conflicts to be resolved by 

means of, for instance, orderings between inserts (e.g., using 
the binary function seq) or ignoring some insert (e.g., using 
fst). 

As an example, let us consider the following definitions: 

E2 = ~ua.^error('~) [> wri teLog(m);  a 
Es = ^logout  0 ~ c loseLogO; 

pa .^er ror (x)  ~ beep0;  a 

E2 is the same aspect as above (expressing that  errors should 
be writ ten to a log file). E3 closes the log file as part  of a 
logout and afterward errors are only marked by beeps The 
simple composition E2 II Es yields interactions at all error 
join points occurring after logouts. 

We can resolve these interactions using the adapted com- 
position E~ Iio E3, where 

0 = ^logout  0 ~ (id, skip); 
#a.^error (y)  t> (id, snd); a 

This composition yields the aspect: 

p a . ^ e r r o r ( ~ )  ~ ~rriteLog(m); a 
0 ^logout 0 ~> closeLogO; 

pb.^error(x) ~> beeF(); b 

where the propagation rule for adapted composition causes 
conflicts appearing in the nested loop (using recursion vari- 
able b) to be resolved using snd. After l o g o u t 0 ,  the stateful 
operator O eliminates inserts from E2 at each conflict (i.e., 
each occurrence of e r ro r ) .  

A useful class of composition operators are stateless oper- 
ators, denoted liT, which use a composition adaptor defined 
as 

pa.~rue t> (id ~ f ) ;  a 

These operators use the same function for resolving all con- 
flicts. As an example, let us consider two error handling as- 
pects: Aabor~ matches every e r r o r ( m )  and may abort  (some) 
programs depending on the message m; A~o,~ct matches ev- 
ery e r r o r ( m )  and may correct (some) errors depending on 
m. Parallel compositions of these two aspects interact on 
all errors, but  their  inserts abort  on some errors and cor- 
rect some errors. Different strategies can be used to resolve 
conflicts: 

• Aabort [ [ ~  Aco~rect only allows the correction of non- 
fatal errors, e.g., to avoid corrections potentially lead- 
ing to later problems. 

• Aco,.~ect [[s~q Aabo~t gives priority to error correction. 

5. R E Q U I R E M E N T S  A N D  A S P E C T  REUSE 
In general, an aspect definition is reasonable for only some 

base programs. In this section, we propose an extension to 
the basic framework in order to make this fact explicit by 
defining validity domains in terms of the sequences of join 
points that  base programs are required to generate. These 
explicit requirements allow us to define a notion of inde- 
pendence which is weaker than strong independence: taking 
into account the expected behavior of base programs elim- 
inates numerous spurious conflicts. Moreover, such contex- 
tual information makes aspect oriented programming safer: 
requirements can be checked when an aspect is to be woven 
with a specific base program, i.e., before execution. Finally, 
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let 

and 
and 

then 

A 

A' 

0 

A Iio A' 

= (C1 D I1; A,) 0 . . .  0 (Gin D In ;  Am) 

= (c~ > 11; Ai )  o . . .  o (C'~ > 2'~; A~,) 

= (C1 ° E> (ul @ bl); O1) [] . . .  [] (Co ° C> (uo @ bo); Oo) 

O~=1 . . . .  j=1.,n,k=l..oCi AC~ ACk ° t> bk(I~,I~); (A~ IIo~ A~) 
D. L.Ji=l..nrlJ=l"m C.z A Cj > ( I ~ I j ) ;  (Ai IIo A~) 

[] mk=~'°~ ACk° >u~(£); (A~ llok A') L.Ji~ 1,,n ~s  

[] 0 ,=1. . ,  C~ D h;  (A~ IIo A') 
r'~ k = l . . °  fT{ [] ~ = ~ m  ~ ^ c~ ° ~ ~ ( 6 ) ;  (A IIo~ A;) 

[] E]j=l.,m C~ > ~ ;  (A Iio Aj) 

F i g u r e  3: P r o p a g a t i o n  o f  c o m p o s i t i o n  o p e r a t o r s  

we show that explicit validity domains make aspect defini- 
tions more reusable: provided that an arbitrary base pro- 
gram satisfies the necessary requirements, it is guaranteed 
that the corresponding aspect can be woven with it. 

5.1 Aspect requirements 
As a simple example why requirements on the intended 

validity domain of aspects are useful, let us consider the 
following aspect Log: 

Log = p a l . ^ C a l l ( l o g i n ( ~ ) )  i> addLog(uid); 
Da2. ^call(logoutO ) C> skip; a~ 

[] "call(read(f))  > addLog(f); a2 

This aspect is intended to log file accesses during sessions 
(i.e., from a call to log in  to the next call to logout). More- 
over, the user identity uid is logged at the beginning of a 
session. When the base program performs the following se- 
quence of actions: 

login("Bob") ; read("file1") ; login("Sam") ; 
read("file2") ; logoutO ; logoutO ; 

the aspect logs that f i l e l  and f i l e 2  are accessed by Bob. 
Indeed, the Log aspect ignores the second login  when it is 
looking for logout or read. Imagine that this behavior is 
deemed not correct and Log should only be woven with base 
programs implementing non-nested sessions. We propose to 
specify such a requirement using an additional aspect: 

Flat = #a. ^call(login(~)) C> skip; 
(^call(logout()) > skip; a 
[] ̂ call( login(2))  > abort(); a) 

[] ^ c a n ( l o g o u t O )  ~ abort(); a 

The aspect Flat monitors the desired requirement: it matches 
sequences of flat sessions, doing nothing in such cases. The 
rules "call(login(x))l>abort  0 and ^call(logout0)l>abort 0 
stop execution when an unexpected join point occurs, that is 
when a login (resp. a logout) occurs within (resp. outside) 
a session. 

5.2 Contextual interaction analysis 
When aspects interact it is possible that their interactions 

exclusively stem from execution traces which never occur 
when these aspects are applied to concrete base programs. 

We propose to take aspect requirements into account in or- 
der to get a more precise interaction analysis. This analy- 
sis lies between strong independence analysis (which shows 
that aspects never interact regardless of the base program to 
which they are applied) and the weak independence analysis 
introduced in [4] (which shows that aspects do not interact 
for a specific base program). By taking into account re- 
quirements, the contextual interaction analysis proofs that 
aspects do not interact for a set of related base programs. 

Reconsidering the previous example, the aspect Log should 
be used only in the context of fiat sessions. The parallel 
composition LogIIFlat returns an instrumented version of 
Log that either terminates the execution when the require- 
ment is violated or generates logs otherwise. Simplifying the 
parallel composition we get: 

FlatLog ---- Logll Flat = 
Hal .*ca l l ( l og in (~ ) )  ~ addLog(uid); 

(Ha2. ^call(logoutO) I> skip; al 
[] ^call(read(f))  l> addLog(f); a2 
[] ^call( login(x))  I> abort(); a2) 

[]*call(logout0) {> abort(); al 

Let us now consider the complementary aspect SULog that 
logs super user calls to read between sessions: 

SULog = Dal.^call(read(7)) I> addSULog(/); al 
O(^call(login(uid)) ~> skip; 

^call(logoutO) [> skip; al) 

In general, Log and SULog are not strongly independent. 
However, SULog also requires flat sessions. So, interaction 
analysis can take into account these requirements by consid- 
ering the parallel composition of the instrumented versions 
of both aspects: 

( SV  Logll Flat)I[ ( Logll Flat) = ( S V  Log[I Log)II Flat = 
i/al.^can(read(y)) ~ addSULog(f); al 

[] "call(login(uid) ) C> addLog(uid); 
(#a2. "call(logoutO ) ~> skip; al 

[] ̂ call(read(f))  l> addLog(f); a2 
[] "can(mogin(x))  ~ abort(); a2) 

[] ^cal l( logout0)  ~ abort(); al 

After simplifications, this resulting aspect is conflict free. In 
this derivation, apart from the laws of Figure 2, we have also 
used the law: (abort()~4I) = (I~abort())  = abort(). 
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Note that  the requirements of a composed aspect A1 [IA2 
are determined by the parallel composition of the require- 
ments of both constituent aspects. In our example, since 
Flat  is required by both aspects and Flat[[Flat = Flat,  it is 
also a requirement for (SULog[[Log).  

5.3 Checking requirements 
When an aspect is to be woven with a specific base pro- 

gram, it is necessary to check that  the base program satisfies 
the aspect requirements. We now detail how this check can 
be done. We assume that  the result of a control flow anal- 
ysis (CFA from here on) of the base program t is expressed 
using the following grammar of regular expressions: 

J : := f J1 . . .  Jn [ ? ; abstract j o in  point 
S ::= # s . S  ; rec. def. (s E 'Rec )  

] (J1 --~ $1)~ . . .  ](J,, ~ S~) ; union of  sequences 
I s ; end of recursion 

The result of a CFA denotes sequences (traces) of (abstract) 
join points J .  An abstract join point is a term with un- 
known values noted '? ' .  A sequence S is either a recursive 
definition, or a union of several execution sequences (each 
sequence starts with a join point). For instance, the traces of 
a base program performing sequences of flat sessions could 
be abstracted as follows: 

B a s e  = ~ s . c a l l ( l o g i n ( ? ) )  ~ c a l l ( l o g o u t 0 )  ~ s 

An instrumented aspect can be specialized for such a con- 
text. The  specialization algorithm is mainly b a n d  on the 
law shown in Figure 4. The algorithm terminates due to 
the regular nature of the language of sequences. There axe 
three cases. First, both the aspect and the abstract base 
program evolve when the current aspect matches the cur- 
rent join point. Second, only the aspect evolves when the 
current crosscut definition cannot match any joint point of 
the abstract base program (i. e., when the abstract base pro- 
gram cannot be crosscut by the current rule of the aspect). 
Third, only the abstract base program evolves when the cur- 
rent join point is not relevant for the aspect. 

Once an aspect has been specialized and simplified w.r.t,  a 
base program, the result may or may not contain the special 
insert abor t ( )  (which is part of the requirements). If  this 
insert does not  occur anymore, the base program satisfies 
the aspect requirements and the specialized aspect can be 
woven. If it still occurs, the base program may not satisfy 
the aspect requirements. In this last case, the user could 
either use another aspect, or modify the base program so 
that  it satisfies the aspect requirements. Note that  static 
CFAs yield safe approximations of the dynamic behavior; 
base prograrus that  dynamically satisfy the requirement may 
thus seem unsuitable. So, another option would be to weave 
the specialized aspect (with occurrences of abor t  O).  The 
aspect will then perform dynamic checks in order to detect 
actual violations of the requirements. 

As an example, specialization of the instrumented log as- 
pect FlatLog w.r.t, context Base yields: 

Spec(  F l a t L o g ,  Base)  = 
Izal. ^call(login(uid) ) t> addLog(uid); 

/.ta2. ^call(logoutO) t> skip; al 
I] ^ca l l ( r ead ( f ) )  I> addLog(f); a2 

tNote that the (possibly expensive OO features, e.g., , taking into 
account nested calls) CFA of the base program must be performed 
only once and can be reused for different aspects. 

The insert abort () does not occur in the specialized aspect. 
The aspect Log can be woven with the program analyzed as 
Base ,  because it satisfies the aspect requirements. 

In software engineering, explicit hypotheses, such as pre- 
and post-conditions in programming by contract, or depen- 
dencies in module systems, support software reuse. The 
explicit requirements we propose should similarly support  
reuse of aspects. However, reusable aspects should be based 
on abstract concepts at the design level. For instance, ses- 
sions could be described at the design level in terms of 
session beginning (i.e., log in) ,  session end (i.e., logout )  
and user identity (e.g., uid). Once a base program is pro- 
vided, design-level concepts should be translated into imple- 
mentation-level notions. Session-related design-level con- 
cepts could be translated to concrete method calls avail- 
able on the implementation level, such as openSession 0 
and disconnect() executed in the context of an instance of 
the class User. Such a correspondence could be expressed 
by specifications such as: 

login(ui--d) is implemented by ~.openSession 0 
logout(uid) is implemented by Server.disconnect(uid) 

which perform the corresponding simple substitutions in the 
crosscut definitions of aspects at weaving time. 

6. RELATED WORK AND CONCLUSION 
Use of the history of execution events as a basic mecha- 

nism for the definition of aspects has been proposed inde- 
pendently by several researchers, in particular Fi lman [8], 
Walker et al. [18], as well as the authors [2, 6, 5]. 

As to the formalization of aspects and weavers, different 
approaches have been advocated. Wand et al. propose a de- 
notational semantics for a subset of ASPECTJ [19]. Li~mrnel 
formalizes method-call  interception using a big-step seman- 
tics [12]. Douence et al. [6] model crosscut definitions with 
execution trace parsers and weavers with execution moni- 
tors. De Volder et al. [16] propose a meta-programming 
framework based on Prolog where crosscuts axe specified by 
predicates on abstract  syntax trees. Walker et al. [17] intro- 
duce an abstract machine to define the operational seman- 
tics of ML extended with aspects; Tucker and Krishnamurthi  
[15] rely on abstract  machines as well. Andrews [1] models 
AOP by means of algebraic processes. In the t radi t ion of 
process calculi, Jagadeesan et al. [9] propose a calculus of 
AOP where aspects axe primitive abstractions. 

Such models are a prerequisite to formally study proper- 
ties such as aspect interactions. However, despite its impor- 
tance, very few work has previously been done on aspect in- 
teraction and conflict resolution. Douence et al. [6] present 
an approach for manual proofs of independence. Sereni et 
al. [13] generalize AspectJ ' s  of low using regular expressions 
on the call stack. They focus on optimization but they point 
out that  their technique could also be used to detect inter- 
actions. Finally, interaction issues also arise in closely re- 
lated fields of software engineering. For instance, Sihman 
et a/. [14] use model checking to detect superimposition in- 
teractions and a large body of work is devoted to feature 
interactions (e.g., Felty et al. [7]). 

Concerning reuse, aspects are often advocated as reusable 
pieces of software. It  is true that  AOP can sometimes avoid 
duplicating code. However, in order to make them fully 
reusable, module and software composition techniques should 
be adapted to aspects. Kienzle et al. [11] represent proper-  
ties of aspects (namely, whether they provide, require and 
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let 
and 
and 
and 
then 

A = (Cx t> Ix; Ax) [] . . .  [] (C,~ t> Is; A,~) 
S = (J~ ----~ S~) ~ ... ~ (J~ ~ Sin) 
Ca = ^J where each occurrence of ? is replaced by a different fresh variable 
c~ = ~(V~.j.is c j )  
Spec( A, S) ~= "" = [~=1..~ C~ACj~ t>li; Spe(A~,Sj) 

[] D~=l..n Ci A Cs t> I~; Spe(Ai, S) 
[] Dj=l..m Cs~ t> skip; Spa(A, Sj) 

Figure  4: Aspect  specia l iza t ion w.r.t, a base p rog ram abs t r ac t i on  

remove services) with a graph. An aspect can be reused in 
a configuration when it can be inserted into the correspond- 
ing dependencies graph. Sihman et al. [14] modulaxize proof 
obligations for superimpositions and perform checks before 
a superimposition is applied (i.e., when an aspect is woven). 

In this article, we have extended our generic formal frame- 
work for statefial aspects in three directions. The introduc- 
tion of variables improves the expressive power of the frame- 
work and makes it possible to define more precise aspects. 
The main challenge was to design such an extension while 
retaining static interaction analysis capabilities. We have 
proposed a composition language built upon the same base 
as aspects. It is very general and can take into account 
the history of computation. Composition adaptors provide 
expressive means to deal with conflicts among interacting 
aspects. We have shown that the composition operators 
introduced in [4] can now be easily defined using this gen- 
eral composition language. Requirements were also defined 
using the same operators as stateful aspects. They address 
reusability by making explicit the validity domain of aspects. 
This extension makes interaction analysis more precise be- 
cause requirements rule out some spurious interactions. Re- 
quirements can be seen as providing a pragmatic interaction 
analysis lying between strong independence (which can be 
too strong a condition) and weak independence [4] (which 
can be too costly). 
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