
Concurrent Aspects

Rémi Douence, Didier Le Botlan, Jacques Noyé, Mario Südholt
OBASCO project

École des Mines de Nantes/INRIA, LINA
Département Informatik,́Ecole des Mines de Nantes, 44307 Nantes cedex 3, France

www.emn.fr/{douence,lebotlan,noye,sudholt}

Abstract
Aspect-Oriented Programming (AOP) promises the modularization
of so-called crosscutting functionalities in large applications. Cur-
rently, almost all approaches to AOP provide means for the descrip-
tion of sequential aspects that are to be applied to a sequential base
program. In particular, there is no formally-defined concurrent ap-
proach to AOP, with the result that coordination issues between
aspects and base programs as well as between aspects cannot pre-
cisely be investigated.

This paper presents Concurrent Event-based AOP (CEAOP),
which addresses this issue. Our contribution can be detailed as
follows. First, we formally define a model for concurrent aspects
which extends the sequential Event-based AOP approach. Thedef-
inition is given as a translation into concurrent specifications us-
ing Finite Sequential Processes (FSP), thus enabling use ofthe
Labelled Transition System Analyzer (LTSA) for formal property
verification. Further, we show how to compose concurrent aspects
using a set of general composition operators. Finally, we sketch a
Java prototype implementation for concurrent aspects, which gen-
erates coordination specific code from the FSP model definingthe
concurrent AO application.

Categories and Subject DescriptorsD.1.3. Software [Program-
ming Techniques]: Concurrent Programming

General Terms Languages, Verification

Keywords Aspect-oriented programming, concurrency, formal
verification, implementation, Java

1. Introduction
Aspect-Oriented Programming (AOP) [1, 14] promises means for
the modularization of so-called crosscutting functionalities, which
cannot be reasonably modularized using traditional programming
means, such as objects and components. The proper modulariza-
tion of such concerns constitutes a major problem for the devel-
opment of large-scale applications. Crosscutting concerns occur, in
particular, in many concurrent applications, at various levels. Let us
consider, for instance, request handling in web servers, event han-
dling in graphical user interfaces, monitoring and debugging, and
coordination.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE ’06 Oct. 22–26, Oregon.
Copyright © 2006 ACM 1-XXXXX-YYY-Z/06/AAAA. . . $5.00

Up to now a large number of approaches for AOP of sequential
programs have been proposed, most notably AspectJ [4]. In these
systems, aspects, which allow modularization of crosscutting con-
cerns, are woven into a base application resulting in an executable
sequential application. Concurrency can be added in these systems
only by exploiting existing libraries for concurrent programming.
By contrast, there are no AOP languages with facilities for the def-
inition of concurrently executing aspects as well as for thecoordi-
nation of aspects and concurrent base programs directly in terms
of AOP-specific concepts. Such an approach would permit, forin-
stance, to synchronize more easily advice of different aspects ap-
plied at the same join point, or conversely, to allow these advice to
be executed in parallel.

As a running example, we consider a simplified e-commerce ap-
plication. Its concurrent activities include actions of remote users as
well as (potentially extensive) changes to the underlying databases
of that system (which, in turn, entail modifications to the current
view of the user of that database). We wish to deal with these cross-
cutting functionalities concisely, by expressing actionsin terms of
advice executed at appropriate times and by controlling their con-
current execution directly with high-level coordination operators,
that is, without the need of a different mechanism (aspect-oriented
or otherwise) whose only purpose is to introduce synchronization-
related code. As a result, the programmer can concisely express
synchronization constraints between advice without having to con-
sider low-level synchronization issues.

In this paper we address three major issues concerning the co-
ordination of concurrent aspects: (i) aspects should be defined in
terms of sequences of execution events triggering actions which
are to be coordinated, (ii) coordination not only of complete actions
(“advice”) but also parts thereof should be supported in order to al-
low flexible coordination policies, and (iii) different coordination
strategies should be supported in case that multiple adviceapply at
one execution point, for instance, in order to compose independent
advice in a concurrent fashion while enabling prioritization through
synchronization if necessary. Furthermore, we strive for acom-
positional model of concurrent AOP, which supports coordination
through suitable aspect composition operators, applied toarbitrary
aspects. In addition, because of the inherent difficulty of developing
correct concurrent programs, to which aspects may even contribute
(through their scattered effects on base executions), a model for
concurrent aspects should support the use of automatic verification
techniques, such as model checking techniques. Finally, the model
should be intuitive and enable practical implementations,in par-
ticular supporting generation of implementations from themodels
used to define concurrent aspects.

In this paper we investigate means to address such AO-specific
coordination issues. We base our investigation on the modelof
Event-based AOP (EAOP) [10, 11]. This model provides an intu-
itive and simple model for sequential AOP, whose notion of aspects,

0 1

login

checkout

update

update

browse

(0) Server = login → InSession
| update → Server,

(1) InSession = checkout → Server
| update → InSession,
| browse → InSession.

Figure 1. A model of a simple e-commerce base program

defined in terms of regular sequences of execution events, isread-
ily amenable for extension to concurrent executions. We present the
model of Concurrent EAOP (CEAOP), which explicitly addresses
the AO-specific coordination issues and requirements mentioned
above. First, CEAOP aspects, more specifically advice and part
of advice, are concurrent entities that can be woven with a con-
current base program. Aspects and aspect weaving is formally de-
fined by an automatic transformation into the calculus of Finite Se-
quential Processes (FSP) [15]. Second, coordination is supported
by a set of general composition operators. Third, aspects and AO
programs can be manipulated, simulated and can be automatically
model checked using the tool Labeled Transition Systems Analyzer
(LTSA) [15]. Finally, we present an implementation of CEAOPin
Java which is realized by the generation of coordination-specific
code from the FSP model defining the concurrent AO application.

The remainder of the paper is structured as follows. In Section 2,
we introduce and formally define the basic instrumentation tech-
nique underlying the coordination of concurrent aspects and base
programs in the context of the special case of sequential AO pro-
grams. Section 3 generalizes the model to concurrent aspects and
base programs, while Section 4 presents concurrent composition
operators. An implementation in Java is sketched in Section5. Sec-
tion 6 details related work and Section 7 gives a conclusion and
presents future work.

2. Sequential EAOP
In this section we briefly review how regular aspects are defined
in sequential EAOP (which also forms the sequential subset of
CEAOP) and introduce the weaving strategy of CEAOP for this
special case. An aspect is a modular unit whose purpose is to mod-
ify the execution of a program, called the base program, by insert-
ing behavior and possibly skipping some of its steps. The piece of
code describing the modification is called an advice. Pointcut ex-
pressions match sets of execution point (joinpoints) and thus define
execution points where control has to be transferred in order to ex-
ecute the advice. In most AOP approaches, an aspect is a collection
of pairs (pointcut, advice) and pointcut matching as well asadvice
execution depends on the local state of the base program at the join-
point matched by the pointcut. The EAOP model is richer. Instead
of denoting a set of individual joinpoints, a pointcut denotes a set
of joinpoint sequences. Along a given sequence, different parts of
the advice are executed, depending on the history of the execution,
i.e.,EAOP directly supports stateful aspects.

To illustrate the concepts introduced in this paper, we use arun-
ning example inspired by typical e-commerce applications.Let us
consider the following e-commerce base program. Clients connect
to a website and mustlog in to identify themselves, then they may
browse an online catalog. The session ends atcheckout, that is,

as soon as the client has paid. In addition, an administratorof the
shop canupdate the website at any time by publishing a work-
ing version. We model this using a simple control flow automaton
as shown at the top of Figure 1 or its equivalent textual definition
(bottom of Figure 1).

Let us now consider the problem of cancelling updates during
sessions to the client-specific view of the e-commerce shop,e.g.,
to ensure consistent pricing to the client. Using EAOP [10, 11] we
can define a suitable aspect, calledConsistency as follows:

µa.
`

login; µa′.
`

(update � skip log; a′) 2 (checkout; a)
´´

This aspect initially starts in statea and waits for alogin event from
the base program (other events are just ignored). When thelogin
event occurs, the base program resumes by performing thelogin,
and the aspect proceeds to statea′ in which it waits for either an
update event or acheckout (other events being ignored). Ifupdate
occurs first, the associated adviceskip log causes the base program
to skip the update command (skip is a keyword) and the aspect
performs thelog command. Then the base program resumes and
the aspect returns to statea′. If checkout occurs first, the aspect
returns to statea and the base program execution resumes. Since
updates are ignored in statea, updates occurring out of a session
are performed, while those occurring within sessions (state a′) are
skipped.

Our approach essentially provides mechanisms to synchronize
an advice with the base program execution as well as with other
advice that applies at the same execution point. In the example,
an advice that generates new indexes when an update takes place
would have to be synchronized with the consistency aspect above.

Modeling of aspects. This behavior can be formally defined by
translating the aspect definition into FSP. Note that this transla-
tion remains entirely valid for the concurrent case. Yet, wechose
to present and define it first for the sequential case for its simpler
presentation. FSP is one of the formalisms used by LTSA (La-
belled Transition System Analyser) [15]. This tool combines two
formalisms, FSP and LTS, to model concurrent behavior usingfi-
nite state machines that can be either described textually as Finite
State Processes (FSP) and graphically as Labelled Transition Sys-
tems (LTS). Labelled transition systems can then be used to animate
or verify the model using standard model checking techniques.

A sequential process is modeled as a sequence of atomic actions
using recursion, the sequence operator→, the choice| operator, and
guarded actions (that we will not use in the following). Sequen-
tial processes can be combined into concurrent processes using the
parallel operator‖ . Interactions are modeled by shared actions.
When an action is shared among several processes, the sharedac-
tions must be executed at the same time by these processes. Two
operators on actions, a renaming operator and a hiding operator,
make it possible to define generic processes that can be “connected”
in various ways to other processes. Any sequential process can be
straightforwardly represented as a labelled transition system (sub-
processes of the process correspond then to states in the automa-
ton), and parallel composition is a form of synchronized product. In
the following, in order to simplify the presentation, we will some-
times ignore some specific syntactic details of FSP (e.g.,we will
not use capital letters for process names).

The interest of FSP/LTS is that it provides a fairly simple model
of concurrency that is well documented (with a good understading
of how to implement models in Java) and supported by a valuable
tool, LTSA (all the examples in this paper have been tested using
this tool).

Let us come back to the translation of our example. The trans-
lation performs two operations. First, it introduces synchroniza-
tion events that will be used to coordinate the aspect and the
base program. In fact, we consider advice to consist of threeparts

b ps a whereps is one of the keywordsproceed or skip, speci-
fying respectively whether the base action at the matched joinpoint
is executed or not, andb, a denote sequences of actions that are
executed respectively before and afterps. Synchronization events
are used to be able to synchronize these three sequences of actions
with the base program. Synchronization events will therefore be in-
troduced in the base program as well. Second, it deals with events
ignored by the aspect by introducing loops (henceforth called wait-
ing loops) that automatically resume the base program.

The consistency aspect defined above is translated as shown in
Figure 2. In this and the following figure, non-highlighted code
stems verbatim from the aspect definition, while highlighted code
corresponds to the instrumentation, namely waiting loops and syn-
chronization events. As an example of synchronization events,
line 4 introduces two pairs of events: the paireventB update and
eventE update mark respectively the beginning and end of the ad-
vice attached to theupdate event. The second pairskipB update
and skipE update is used to control the base program by send-
ing a (begin and end) skip message. We show below how the base
program is instrumented accordingly to deal with such control mes-
sages.

As an example of waiting loops, in statea, loops have been
added for the eventsupdate on line 2, and forcheckout andbrowse
on line 3. The nature ofupdate is different from the two others.
Indeed,update is a so-calledskippableevent, that is, it corresponds
to an operation of the base program that may be skipped. As a
consequence, it needs synchronization events that controlthe base
program. On the contrary,checkout andbrowse are simple non-
skippable events. Note that the partitioning between skippable and
non-skippable events has to be determined by the programmer.

Similarly, the base program abstraction of Figure 1 bottom must
be transformed as shown in Figure 3. Transitions on the non-
skippable eventslogin, checkout, andbrowse are preserved with-
out changes (lines 1, 5, and 9, respectively). Transitions for the
skippable eventupdate is translated toeventB update followed
by a choice (lines 2 and 6). Intuitively, the base program emits this
event to the aspect. Then the base program waits for a controlevent
from the aspect which is eitherproceedB update (lines 3 and 7)
or skipB update (lines 4 and 8). In the first case, the original event
update is emitted (i.e.,the base program performs the update oper-
ation, which may take some time), then it emitsproceedE update
to yield control to the aspect. Finally, it waits for the end of the ad-
vice eventE update. In the second case, the original base program
resumes the advice by emittingskipE update and waits for the end
of the advice in order to resume its own execution.

The semantics of the woven program is modeled by the parallel
composition of the base program and the aspect in FSP. Automata
representations of such compositions can be generated using the
LTSA tool, thus enabling property checking based on model check-
ing techniques in order to verify,e.g.,that noupdates but onlylogs
occur during sessions. To this end we can check trace-based quiv-
alence of FSP expressions using the model checking techniques
introduced by Magee and Kramer (see,e.g., [12]). We show the
output of our example composition in Figure 4. The left-handside
cycle performsupdates outside of sessions. The right-hand side
cycle skipsupdate commands during sessions and does some log-
ging. The middle cycle starts and ends sessions.

We can picture the control flow between the base program and
the aspect as shown below for the case of aproceeding advice.
Only the four synchronization events are shown, which are denoted
eb, ee, pb andpe, as in Figure 4. The arrows represent the control
flow.

0

1
2

3
4

eb

pb

update

pe

ee

5 6

7

8

9

eb
sb

se

log

ee

browse

login

checkout

where the following abbreviations are used:

eb = eventB update
ee = eventE update
pb = proceedB update
pe = proceedE update
sb = skipB update
se = skipE update

Figure 4. Woven example

Base Program eb p
b

p
e

ee

Aspect eb p
b

p
e

ee

Before advice

Proceed

After advice

Formal definition of instrumentation. Now that we have shown
the idea of the encoding on our example, we formally define the
general transformation (which is also valid for the concurrent case).
The control flow of the base program is abstracted into a finitestate
automaton described by the grammarB at the top of Figure 5.
Each variableb represents a state and theei represent transitions
labels. The recursion operatorµ makes it possible to define cycles.
In the following, we assume that all variablesb are different (this
can be ensured easily byα-renaming). The transformationTB

translates such a base program into FSP. The first rule generates
a list of equations forb and its successors. The second rule stops
the equation generation. The third rule translates a sequence(e; B)
starting with a non-skippable event, identified bye ∈ E , into a
FSP sequencee → name(B), wherename(B) is the process
name associated toB. Finally, the fourth equation introduces the
synchronization events and translates a transition with a skippable
event (e ∈ S) into two branches (either the base program proceeds,
executing the base instruction, or it skips the instruction).

Similarly, Figure 6 defines the syntax of aspects and their trans-
lation TA into FSP. The grammarA of aspects is similar to the
grammarB, but each event is followed by an adviceS (for the
sake of simplicity, either a sequence of events introduced by � and
containingproceed or skip, or an empty adviceǫ). Moreover, we
assume that an advice is empty if and only if its associated event
cannot be skipped. The first and the second rule of the transforma-
tion TA are similar toTB in Figure 5. When the evente is non-
skippable, the transition is translated directly. When theevente
is skippable, the advice is translated by inserting synchronization
events in its definition.

The previous transformation translates an aspect into FSP but
does not account for waiting loops. In order to take ignored events
into account and to avoid deadlock, we modify and extend the
previous transformation by introducing waiting loops as shown in
Figure 7. The core of the transformation remains the same, but the
transformation now completes the transitions of every state with
waiting loops that ignore the other events (and also allow the base
program to proceed in case of a skippable event).

Server = login → InSession,
InSession = checkout → Server

| browse → InSession.
Update = update → Update.

‖ Base = (Server ‖ Update).

Figure 8. A model of a simple e-commerce base concurrent pro-
gram

This transformation concludes our formal semantics of sequen-
tial EAOP. In the next section, we show how some synchronization
events can be ignored in order to introduce concurrency.

3. Concurrent EAOP
Our model in Section 2 is purely sequential: the base program
consists of a unique thread and weaving of aspects is modeled
with coroutining, that is, synchronization events ensure that only
the aspect or the base program runs at a given time. We now adapt
our model to the concurrent world by modifying two parameters.

First, the base program is no longer a single process but a
combination of several processes. Each thread is modeled byan
FSP automaton and the base program is defined as their parallel
composition as exemplified in Figure 8.

Second, aspects are viewed as independent processes that run in
parallel and synchronize with the base program. Possible synchro-
nization points between the aspect and the base program are point-
cuts (e.g.,eventB update), end of advice (e.g.,eventE update),
and control events (proceed or skip). Yet, there is some variabil-
ity in the amount of synchronization that may be introduced.One
extremum enforces strong synchronization by weaving sequential
aspects in a concurrent program. This corresponds to the encoding
done in Section 2. Another option is not to synchronize on some
synchronization events, so as to allow more concurrency between
the program and the aspect. In particular, aspect and base program
may not synchronize on the eventeventE update at the end of the
advice. This is expressed in FSP simply by removing this event
from the base program and the aspect definitions using the hiding
operator\{eventE update} before composing them.

0

1

2

3

ebpb

update pe

4
5

6
7

eb

sb

se

log

browse

browse

login

checkout

Figure 9. A concurrent program woven with an aspect

In our example, once the update is skipped, the base program
resumes while the advice concurrently creates a log. Figure9 shows
the automaton of the woven program computed by LTSA: the user
can resume its browsing before a log is created (note thebrowse
transition in state 7). The picture below illustrates the control flow
in this case between the base program and the concurrent aspect,
using the abbreviations defined in the previous section.

Base Program eb pb pe ee

Aspect eb p
b

p
e

ee

Another option can be considered. When the eventsupdateE-
proceed and updateE-skip are hidden, the rest of the advice is
executed in parallel with theupdate event (which may be executed
or not).

4. Concurrent Aspect Composition
The previous sections have shown how to coordinate concurrent
execution of a single aspect applied to a base program. In this sec-
tion, we consider two aspects and show how composition operators
can be designed to compose them in different ways. We illustrate
our approach by detailing two composition operators and by dis-
cussing a few more. The generalization to more than two aspects is
possible either by iterating binary composition, or by extending the
operators so that they accept more than two arguments.

First, let us augment the e-commerce example introduced in
Section 2 by a second aspect:

Safety
∆
= µa′′.(update � rehash proceed backup; a′′)

Each time the website is updated (i.e., the administrator publishes
an internal working version), this safety aspect rehashes adatabase
of links before the publication, and backups the database after-
ward. Note that rehashing and backups are rather time-consuming
operations whose concurrent execution, if possible, with other e-
commerce functionalities is desirable. We translate this aspect into
FSP using the technique described previously and obtain thefol-
lowing result:

a” = (eventB update → rehash → eventB proceed
→ eventE proceed → backup → eventE update → a”)

Sequential functional composition. The first operator,Fun, we
consider corresponds to a fully sequentialized functionalcomposi-
tion of two aspects. When two advice must be executed at the same
joinpoint, the compositionFun(aspect1,aspect2) executes the ad-
vice of its first argument. If this advice proceeds, it executes the ad-
vice of the second argument. If this second advice proceeds,it exe-
cutes the corresponding action in the base program. Using aninfor-
mal notion of substitution,Fun(aspect1,aspect2) is a composite
advice that intuitively behaves likeadvice1[advice2/proceed].
Furthermore, the (optional) action sequences before and after the
proceed are correspondingly nested.

Reconsidering our example aspects, the advice of the consis-
tency aspect of Section 2 applies toupdate events only during ses-
sions, where it skips updates and adds a log. In contrast, theadvice
of the safety aspect applies both during and out of a session.So,
as the compositionFun(Consistency,Safety) executes the consis-
tency advice first, it skips updates during sessions and addsa log,
but does not run the safety advice. On the contrary, out of a ses-
sion, the safety advice is applied toupdate events and the update
is performed.

This composition is modeled in FSP by renaming some syn-
chronization events in the aspect definitions and by defininga pro-
cessFun that dynamically renamesskip messages. Its definition is
shown in Figure 10. To ease the understanding of this composition,
we represent its control flow in the case where both adviceproceed.
Here, double arrows correspond to renamings.

Base Program eb p
b

p
e

ee

Aspect-1 eb p
b

p
e

ee

Aspect-2 eb pb pe ee

call e ret e

When the base program emits aeventB update event, here
denoted byeb, the advice of the first aspect is executed until it
proceeds (eventpb above). In order to link the beginning of the
second aspect to theproceed command of the first aspect, we
rename bothpb in the first aspect andeb in the second aspect
to the same labelcall e. This renaming is depicted by a double
arrow. The eventspb andpe of the second aspect are not renamed,
so that they synchronize with the base program. Both the end
of the second adviceee and pe of the first aspect are renamed
to the same labelret e, so that when the second advice ends, it
resumes the execution of the first aspect. Finally, the end ofthe first
aspect emitsee, which resumes the base program. These renamings
appear in Figure 10, using FSP syntax. The processesFunArg1

andFunArg2 correspond to the renamings of the first and second
aspect, respectively. As forskip commands, they cannot be handled
by renamings only. Indeed, both the first aspect and the second
aspect may emit askip command to the base program. In contrast,
only the second aspect may emit aproceed command to the base
program. As a result, we must renameskip commands differently
in each aspect (by appending an identifier1 or 2) and introduce an
extra processFun that performs dynamic renaming.

The semantics of the woven program is the parallel composition
of the three FSP processes in Figure 10 with the base program.The
resulting automaton is:

0

1

2

3

ebrehash

update backup

4

5eb

log

browse

browselogin

checkout

For the sake of clarity, we have hidden most synchronizationevents
in the woven program, keeping only essential ones. Outside of
session, only the safety aspect is woven (see the left hand side
cycle). During sessions, as shown by the right hand side cycle, the
consistency aspect is woven. It skips the safety aspect and only
creates a log. In the meantime the user can still browse in parallel
with the advice as modeled by the transitionbrowse in each state.

As in Section 3, concurrency can be introduced by hiding syn-
chronization events before composing in parallel the FSP defini-
tions. For instance, wheneventE e is hidden, the post-proceed part
of the first advice is executed in parallel with the base program.

Parallel conjunctive composition. Concurrency can also be in-
troduced by considering composition operators that imposeless
synchronization. For instance, let us consider theParAnd operator.
When two advice can be applied at the same joinpoint, their before
action sequences are executed in parallel, but there is a rendez-vous
on proceed and skip. If both of them wish to proceed, they will
proceed in parallel. If (at least) one of them wishes to skip,both
will skip in parallel. In our example,ParAnd(Consistency,Safety)
composes both advice during sessions to get, using informalsyn-
tax, backup skip (log ‖ rehash), which ensures that all database
management actions are performed, if reasonable, in parallel.

TheParAnd operator is defined in FSP as shown in Figure 11.
First, theskip andproceed events of aspects are renamed so that

they do not synchronize anymore together or with the base pro-
gram. Second, the processParAnd implements a rendez-vous be-
tween these events of the two aspects by distinguishing fourcases.
In the first three cases, there is at least one eventskip so the base
program must also skip. If both aspects proceed, the base program
also proceeds.

The semantics of the woven program is the parallel composition
of the processes of Figure 11 with the base program. Both aspects
share the eventseventB e andeventE e so the beginning and the
end of advice are synchronized. Before (and after)skip or proceed,
advice of the aspects are executed in parallel. The woven program
is represented by the following automaton, where unlabeledloops
correspond tobrowse events).

0

1

2

3

ebrehash

update backup

4

5

6
7

8

eb rehash

backuplog

logbackup

login

checkout

It makes clear that the advice are executed in parallel: bothse-
quenceslog backup and backup log are valid. Furthermore, the
user can still browse in parallel with the advice. As previously
discussed, concurrency can be introduced by hiding the event
eventE e before the parallel composition.

Other operators can be defined similarly. For instance, the ad-
vice composed withParOr proceed when at least one of them pro-
ceeds.

5. Implementation in Java
We have implemented a prototype of CEAOP for Java as a model-
driven aspect-weaver. This weaver takes a base program written in
Java, complemented with a description of the events of interest,
and a composition of aspects and produces a concurrent program,
which is correct with respect to the model by construction.

Each element of the the whole composition (base program, as-
pects, operators), implemented as an active object, can be seen
as an LTS that progresses concurrently with the other LTSs. This
progress is controlled by a monitor (a monitor in the generalaccep-
tation of the term, actually implemented as a passive Java object
using the monitor associated to the object). The role of thismoni-
tor is to guarantee that the concurrent shared actions performed by
the individual LTSs are performed in an atomic way,i.e., that they
strictly follow the semantics of the LTS synchronized product.

The weaver is responsible for instrumenting the base program
so that it properly interacts with the monitor as well as for fully
generating the active objects for the aspects and the operators.
It does so by reusing Java building blocks provided as anLTS
interface and a corresponding prototypical implementation as an
LTSImpl class, which are used to interact with a generic monitor,
implemented as an instance of theMonitor class.

In the following, we discuss the principles of the execution
essential to get a behavior consistent with the model, we describe
the above-mentioned building blocks and show how they are used
by the aspect weaver to generate the application.

5.1 Principles of LTS execution

In this section we discuss the crucial point in executing LTSs:
the sharing of actions between different processes and how to
implement choices between shared actions.

In order to execute shared actions atomically, two barrier syn-
chronizations are required. A first barrier stops the LTSs ready to
perform a shared action until all the LTSs sharing the actionare
ready to proceed with the action. When all the LTSs have joined, a
secondexit barrier is used in order to make sure that all the LTSs
have indeed performed the action before proceeding. Without this
second barrier, some LTSs could proceed too fast and therefore per-
form new actions that would be wrongly interleaved with the exe-
cution of the current shared action.

Of course, all the LTSs composing the application are compet-
ing for performing the action their are interested in. Following a
standard implementation of synchronization barriers, themonitor
manages counters, one counter per shared action, recordingwhich
LTSs are ready to proceed with which action. As soon as a counter
reaches its bound, the associated LTSs can proceed with the shared
action.

In order to keep the counters coherent, new attempts to modify
the counters are then blocked (we will say that the monitor is
busy) until all the LTSs have exited the exit barrier, at which stage
the related counter value is again zero. Useless notification and
awakening of blocked LTSs are avoided by using the wait sets
of the LTSs as well as the wait set of the monitor. After an LTS
has incremented a counter of the monitor but is not ready yet to
proceed, it waits for a notification on its own wait set. The last LTS
reaching the barrier can then, via the counter, notify all the other
LTSs that they can proceed. When the monitor is busy, the new
LTSs ready to execute a shared action wait on the monitor waitset.
They are notified that they can proceed by the last LTS leavingthe
exit barrier.

Finally, a last point to take care of is the case when an LTS
has a choice of shared actions, which then depends on the progress
of other LTSs. This happens, for instance, when the base program
may proceed or skip, depending on the execution of an advice.In
this case, the LTS increments several counters: the counters re-
lated to its choice of actions. If one of the counters reachesits
bound, this means that the corresponding action is selected. The
LTS decrements the counters that it may have just been incremented
for other possible actions and notifies the other LTSs after having
set theirselectedAction instance variable (which plays the role
of a condition variable). Before proceeding with the action, these
other LTSs decrement the counters associated to the rejected ac-
tions of the choice.

5.2 Java building blocks

The Java implementation relies on three building blocks: classes
representing the monitor supervising the execution, individual LTS
processes, and actions. We now discuss these in turn.

5.2.1 The monitor

The monitor is implemented as a classMonitor. It includes an
instance variableselectedAction, which is non-null when the
monitor is busy (its value is the selected action), and a collection
of counters. It provides the following methods (which arepublic
andsynchronized):

• void register(LTS lts, List<Action> actions) is
used to initialize the system. Before starting its own thread,
each LTS, seen as an object implementing the interfaceLTS
(see below), has to register to the monitor with this method.
The parameteractions corresponds to the alphabet of the
LTS. It is used by the monitor to set up the counters.

• void synchronizeOnEntry(List<Action> choice) is
called by an LTS ready to perform a choice. It starts with a
guard requiring the monitor not be busy. It increments the
appropriate counters. If one of the counter bounds is reached,

the monitor is busy. The appropriate counters are decremented
and the LTSs on the wait set of the selected counter are notified
(theirselectedAction instance variable is set to the selected
action). A specialized version of this method with a single
action as a parameter is used to deal with the cases when there
is no choice (no counter decrementing is required).

• void synchronizeOnExit() is called when an LTS has per-
formed its part of the shared action. The counter corresponding
to the selected action is decremented. When it reaches zero,the
monitor is no longer busy. The LTSs on its wait set are notified.

5.2.2 The LTS interface and the LTSImpl class

Each LTS, on top of beingRunnable as an active ob-
ject, implements theLTS interface, which includes the single
method required by the monitor in order to interact with the
LTSs:void setAction(Action action). This method must be
synchronized. It is used by the monitor to inform the LTS that
it can proceed with the selected actionaction. It simply sets the
selectedAction instance of the LTS and callsnotifyAll to
wake up the waiting LTS.

Its corresponding prototypical implementation, theLTSImpl
class, is a basic implementation of an LTS based on a definition
of the LTS by its alphabet (instance variablealphabet) and its
transfer function, implemented as a combination of a hash map as-
sociating an action to an index (actionMap) and an array asso-
ciating a (source) state and an index to a (target) state (target).
LTSImpl can be subclassed to define alternative implementations,
for instance to implement aspects and operators (see below). Some
of its methods are used by the aspect weaver to instrument thebase
program:

• void synchronizeOnEntry(List<Action> choice) ini-
tializesselectedAction to null, tells the monitor about the
choice by calling the monitor version ofsynchronizeOnEntry,
waits for an action to be selected and finally decrements the ap-
propriate counters. A specialized version of this method deals
with single actions.

• void synchronizeOnExit() simply calls the monitor ver-
sion ofsynchronizeOnExit.

Once registered to the monitor, an instance ofLTSImpl
repeatedly evaluates the action choice associated to the cur-
rent state, calls its methodsynchronizeOnEntry, calls its
method void eval(int actionIndex), which, by default,
change states depending on the selected action, and calls its method
synchronizeOnEntry.

5.2.3 The Action class

An Action instance carries two pieces of information: a name and
a value. This value is used to transmit the parameters of thesend
occurrence of an action to itsreceive occurrences. For instance,
when an action of the base program (typically a method call) in-
cludes parameters, these parameters are made part of the corre-
spondingeventB action so that they are available to the interested
aspects. On the receiver’s side, the action value is initially null,
but when the action has been selected, the sender’s action ispassed
back as the selected action to the receivers.

5.3 The aspect weaver

Finally, weaving requires the base program to be instrumented and
the suitable code for the aspects and composition operatorsto be
generated.

5.3.1 Instrumentation of the base program

We assume the availability of the source code of the base program,
implemented as an active object, and of its actions of interest,
separated into skippable and non-skippable events, described as
AspectJ named pointcuts.

AspectJ is then used to turn the base program into an
LTS as follows. First, inter-type declarations are used to
add the LTS interface to the base class and complement
this class with the necessary fields and methods taken from
LTSImpl: monitor, selectedAction, alphabet, actionMap,
setAction(), getActionIndex() (this returns the index of
the selected action),register(), synchronizeOnEntry(),
synchronizeOnExit(), andsynchronize(), a combination of
the two previous methods. Inter-type declarations are alsoused
to add methods required for the instrumentation of the skippable
events. For instance, here is the method used to instrument the
update event in our example (we have used strings rather than
proper actions in order to simplify the code), the pattern isalways
the same:

void instrumentedUpdate() {
synchronize("eventB_update");
synchronizeOnEntry(buildChoice("proceedB_update",

"skipB_update"));
if (getActionIndex() == 6) { // proceed
synchronizeOnExit();
synchronizeOnEntry("update");
proceed();
synchronizeOnExit();
synchronize("proceedEnd");
synchronize("eventEnd");

} else { // skip
synchronizeOnExit();
synchronize("skipEnd");
synchronize("eventEnd");

}
}

Second, AspectJ advice is used to:

• Include a call toregister before starting the thread associated
to the active object (assuming that nothing else than the method
start is used).

• Include a call to synchronizeOnEntry and
synchronizeOnExit, respectively before and after each
non-skippable event.

• Replace each skippable event with its instrumentation.

Alternatively, the same kind of transformation can be performed
on bytecode using a tool able to conveniently perform both struc-
tural and behavioral transformations such as Reflex [19, 18].

5.4 Generation of the aspects and operators

The aspects are essentially described as FSPs but with a verysimple
Java syntax, which makes it possible to add parameters to actions
for parameter passing purposes. Here is how the consistencyaspect
looks like (blocks are used to denote choices):

Aspect Consistency {
void consistency() {
login(); consistency1();

}
void consistency1() {
{update(); skip(); log();}
{checkout(); consistency()}

}
}

The basic idea consists of subclassingLTSImpl while providing
the proper alphabet and transfer function computed from theaspect
FSP. The methodeval() makes it possible to perform the advice.
Here is how the consistency aspect looks like (-2 is used to com-
plete the target array for the pairs (source state, action) which do
not appear in the automaton):

public class Consistency extends LTS {
public Consistency() {

super("Consistency");
String [] actions =
{"login", "checkout", "browse", "update",
"eB", "eE", "pB", "pE", "sB", "sE", "log"};

setActions(actions);
int [][] target =
// l c b u eB eE pB pE sB sE log
{{ 4, 0, 0,-2, 1,-2,-2,-2,-2,-2,-2}, // state 0
{-2,-2,-2,-2,-2,-2, 2,-2, 2,-2,-2}, // state 1
{-2,-2,-2,-2,-2,-2,-2, 3,-2,-2,-2}, // state 2
{-2,-2,-2,-2,-2, 0,-2,-2,-2,-2,-2}, // state 3
{ 4, 0, 4,-2, 5,-2,-2,-2,-2,-2,-2}, // state 4
{-2,-2,-2,-2,-2,-2,-2,-2, 6,-2,-2}, // state 5
{-2,-2,-2,-2,-2,-2,-2,-2,-2, 7,-2}, // state 6
{-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, 8}, // state 7
{-2,-2,-2,-2,-2, 4,-2,-2,-2,-2,-2}, // state 8

};
setTarget(target);
}
protected void eval(int actionIndex) {

if (actionIndex == 10)
log();

super.eval(actionIndex);
}

}

The principle is the same for the operators.

6. Related Work
There are many proposals for AOP, but little work devoted to
concurrent AOP. In AspectJ, the base program is paused when an
advice is executed. AspectJ also does not provide explicit support
for concurrent programs: advice must explicitly create threads and
the programmer must manually deal with synchronization.

The pointcut model of AspectJ can be extended with trace
matching in order to define sequences of joinpoints (i.e.,execution
events) [2]. Joinpoints in a sequence definition can share variables
(i.e., object references). This allows matching several sequences
at the same time in a sequential Java program. Trace matching
also provides support for concurrent base programs. An aspect can
match the trace of a single thread (as specified by theperthread
keyword), or the complete trace (i.e., the interleaved traces of all
threads). An advice is executed in the thread correspondingto the
last event of a sequence (i.e., the base program is paused). How-
ever, trace matching does not provide explicit support for concur-
rent aspects (advice must create threads explicitly). Advice are also
simpler than in our model: there is a single advice per aspect, at
the end of the corresponding sequence. Benavideset al. introduce
AWED [5], an aspect language for distributed programming, which
includes regular sequence aspects. Concurrent execution is sup-
ported on the language level (i) by pointcuts referring to threads
similar to tracematches but also (ii) by remote advice whichcan
be executed asynchronously or synchronously w.r.t. the executions
of the (distributed) base program and other aspects. However, this
approach, as the others, does not include explicit means forthe syn-
chronization of multiple advice applying at an execution point.

Process algebras have already been used to model AOP [3].
However, this work does not consider concurrent AOP but shows
how to encode sequential AOP in a process calculus. It focuses on

correctness of aspect-weaving algorithms and discusses different
notions of equivalence.

Concurrency has also been considered in a domain close to
AOP: reflection. The authors of [16],e.g.,criticize the standard ap-
proach ofproceduralreflection, whereby the base level is blocked
when the metalevel is active and suggest that both levels should
communicate via asynchronous events. The paper sketches a frame-
work implementing this idea together with its implementation in
Java, using J2EE and JMS. Yet, there is no support (language or
model) to reason about synchronization and composition issues.

In the area of distributed algorithms, starting with the work of
Dijkstra on termination detection [9], there is a long tradition of
superimposingspecific algorithms to base applications with a mo-
tivation similar to the aspect approach. Dealing with distributed
applications, base applications are naturally modeled as interact-
ing processes. However, the general focus is geared more towards
specification and verification than towards providing proper lan-
guage support for building distributed applications, whereas we are
interested in bridging this gap. The work of Sihman and Katz [17]
is especially close to ours in that it explores composition issues
and suggests that there are two ways of composing superimposi-
tions: sequential composition, similar in spirit to the composition
obtained with ourFun operator, and merging. But the introduction
of a specific aspect construct such asproceed changes the overall
picture and leads to a richer set of composition operators asdemon-
strated in our work by theParAnd operator.

There have been several approaches using regular expressions
for the specification of concurrent systems,e.g., path expres-
sions [6] nad concurrent regular expressions [13]. However, these
approaches have not considered problems specific to synchroniza-
tion in an AO setting. For instance, contrary to that work ourcom-
position operators provide means for the synchronization of modi-
fications,i.e.,synchronization of an advice, in terms of the structure
of that advice. Furthermore, an AO setting is different in that ad-
vice may introduce new events which are themselves relevantfor
synchronization.

Finally, aspects have been considered as a way to implement co-
ordination [7, 8]. We take here a different point of view. Theaspects
are basic reusable components whose coordination is specified by
the aspect language itself, including the composition operators, and
its underlying semantics.

7. Conclusion
In this article, we have presented general requirements formod-
els of concurrent aspects and a concrete formally-defined model,
CEAOP, meeting these requirements. In particular, our model sup-
ports concurrency in base programs, concurrent execution of as-
pects and advice with base programs, and composition operators
for the coordination of concurrent aspects and base programs.
Thanks to our FSP-based semantics, woven programs may be
model-checked with LTSA,e.g.,verifying absence of deadlocks,
progress, and trace properties. We have presented a set of compo-
sition operators of concurrent aspects and base programs, as well
as evidence that this set can easily be extended. Finally, wehave
sketched a lightweight prototype implementation in Java.

Our proposal paves the way towards a complete study of con-
current aspect languages and systems. In particular, meansfor the
synchronization of complex systems have to be investigated. More-
over, we consider future work on the inclusion of a notion of as-
pects of aspects, on property preservation of composition operators,
and on efficiently implementing concurrent aspects in a distributed
setting. A first target are optimisations of our Java implementation
by partially evaluating the monitor interactions with respect to as-
pect definitions in order generate more efficient code.

Acknowledgements. The work on the implementation has ben-
efited of fruitful discussions with Sebastian Pavel, Jean-Claude
Royer and Angel Nuñez.

References
[1] M. Akşit, S. Clarke, T. Elrad, and R. E. Filman, editors.Aspect-

Oriented Software Development. Addison-Wesley Professional, Sept.
2004.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to AspectJ. InProceedings
of OOPSLA’05. ACM Press, 2005.

[3] J. H. Andrews. Process-algebraic foundations of aspect-oriented
programming. InProceedings of Reflection 2001, LNCS 2192, 2001.

[4] AspectJ home page.http://www.eclipse.org/aspectj/.

[5] L. D. Benavides Navarro, M. Südholt, W. Vanderperren, B. De Fraine,
and D. Suvée. Explicitly distributed AOP using AWED. In
Proceedings of AOSD’06. ACM Press, 2006. To appear.

[6] R. H. Campbell and A. N. Habermann. The specification of process
synchronization by path expressions. In E. Gelenbe and C. Kaiser,
editors,Int. Symp. on Operating Systems, volume 16 ofLNCS, pages
89–102. Springer-Verlag, 1974.

[7] S. Capizzi, R. Solmi, and G. Zavattaro. From endogenous to
exogenous coordination using aspect-oriented programming. In
Proceedings of COORDINATION’04, LNCS 2949, 2004.

[8] A. Colman and J. Han. Coordination systems in role-basedadaptive
software. InProceedings of COORDINATION’05, LNCS 3454, 2005.

[9] E. W. Dijkstra and C. S. Sholten. Termination detection for diffusing
computations.Information Processing Letters, 11(1):1–4, Aug. 1980.

[10] R. Douence, P. Fradet, and M. Südholt. A framework for the detection
and resolution of aspect interactions. InProceedings of GPCE’02,
LNCS 2487, 2002.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and
interaction analysis of stateful aspects. InProceedings of AOSD’04.
ACM Press, 2004.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. InProc. of the 18th IEEE
Int. Conf. on Automated Software Engineering (ASE’03), pages 152–
163. IEEE Computer Society, 2003.

[13] V. K. Garg. Modeling of distributed systems by concurrent regular
expressions. In2nd Int. Conf. on Formal Description Techniques
for Distributed Systems and Communication Protocols, Vancouver,
Canada, Dec. 1989.

[14] G. Kiczales, J. Lamping, A. Mendhekar, et al. Aspect-oriented
programming. InProceedings of ECOOP’97, LNCS 1241, 1997.

[15] J. Magee and J. Kramer.Concurrency: State Models and Java. Wiley,
1999.

[16] J. Malenfant and S. Denier. ARM : un modèle réflexif asynchrone
pour les objets répartis et réactifs. InProceedings of LMO’03.
Hermès, 2003. RSTI série L’objet, 9(1-2).

[17] M. Sihman and S. Katz. A calculus of superimpositions for distributed
systems. InProceedings of AOSD’02. ACM Press, 2002.

[18] É. Tanter and J. Noyé. A versatile kernel for multi-language AOP.
In R. Glück and M. Lowry, editors,Proceedings of GPCE’05, LNCS
3676, pages 173–188, Tallinn, Estonia, Sept./Oct. 2005.

[19] E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Proc. of
OOPSLA 2003, pages 27–46. ACM Press, Oct. 2003.

1 a = (login → a’

2 | eventB update → proceedB update → proceedE update → eventE update → a

3 | checkout → a | browse → a),

4 a’ = (eventB update → skipB update → skipE update → log → eventE update → a’

5 | checkout → a

6 | browse → a’ | login → a’).

Figure 2. The consistency aspect in FSP

1 Server = login → InSession

2 | eventB update →

3 (proceedB update → update → proceedE update → eventE update → Server

4 | skipB update → skipE update → eventE update → Server) ,

5 InSession = checkout → Server

6 | eventB update →

7 (proceedB update → update → proceedE update → eventE update → InSession

8 | skipB update → skipE update → eventE update → InSession) ,

9 | browse → InSession.

Figure 3. Instrumented base program in FSP

B ::= µb.(
e

i=1...n
ei; Bi) b

TB(µb.(
e

i
ei; Bi))

∆
= b = i(T

′
B(ei; Bi)) , TB(B1) , .. , TB(Bn).

TB(b)
∆
= ǫ

T ′
B(e;B)

∆
= e → name(B) if e ∈ E

T ′
B(e;B)

∆
= eventB e → (skipB e → skipE e → eventE e → name(B)

| proceedB e → e → proceedE e →
eventE e → name(B)) if e ∈ S

name(µb.(..))
∆
= b name(b)

∆
= b

Figure 5. Abstract base program syntax and instrumentation

A ::= µa.(
e

i=1...n
eiSi; Ai) a

S ::= ǫ � e1b . . . enb ps e1a . . . ema whereps ∈ {proceed, skip}

TA (µa.(
e

i
eiSi; Ai))

∆
= a=

i
T ′

A(eiSi; Ai), TA(A1), .. , TA(An).

TA (a)
∆
= ǫ

T ′
A (e; A)

∆
= e → name(A) if e ∈ E

T ′
A (eS; A)

∆
= e → T ′′

A (S, e) → name(A) if e ∈ S

T ′′
A (�e1b . . . enb ps e1a . . . ema, e)

∆
= eventB e → e1b → . . . → enb → psB e

→ psE e → e1a → . . . → ema → eventE e
whereps ∈ {proceed, skip}

Figure 6. Aspect syntax and their transformation into FSP

TA(µa.(
e

i
eiSi; Ai))

∆
= a=

i
(T ′

A(eiSi; Ai) |
e∈E∪S\(

S

i
ei)

loop(a, e),

TA(A1), .. , TA(An).

TA(a)
∆
= ǫ

loop(a, e)
∆
= e → a if e ∈ E

loop(a, e)
∆
= eventB e → proceedB e → proceedE e → eventE e → a if e ∈ S

Figure 7. Translation with waiting loops

‖FunArg1 = a/{call e/proceedB e, ret e/proceedE e, skipB e1/skipB e, skipE e1/skipE e}.

‖FunArg2 = a”/{call e/eventB e, ret e/eventE e, skipB e2/skipB e, skipE e2/skipE e}.

Fun = (skipB e1 → skipB e → skipE e → skipE e1 → Fun
| skipB e2 → skipB e → skipE e → skipE e2 → Fun).

Figure 10. TheFun composition operator in FSP for the evente

‖ParAndArg1 = a/{proceedB e1/proceedB e, proceedE e1/proceedE e,
skipB e1/skipB e, skipE e1/skipE e}.

‖ParAndArg2 = a” /{proceedB e2/proceedB e, proceedE e2/proceedE e,
skipB e2/skipB e, skipE e2/skipE e}.

ParAnd =
(skipB e1 → (skipB e2 → skipB e → skipE e → skipE e1 → skipE e2 → ParAnd

| proceedB e2 → skipB e → skipE e → skipE e1 → proceedE e2 → ParAnd)

| proceedB e1 → (skipB e2 → skipB e → skipE e → skipE e2 → proceedE e1 → ParAnd
| proceedB e2 → proceedB e → proceedE e →

proceedE e1 → proceedE e2 → ParAnd)).

Figure 11. The ParAnd composition operator in FSP for the event e

