Concurrent Aspects

Rémi Douence, Didier Le Botlan, Jacques Noyé, Mario Sitdh

OBASCO project
Ecole des Mines de Nantes/INRIA, LINA
Département Informatikcole des Mines de Nantes, 44307 Nantes cedex 3, France
www.emn.fr/{douence,lebotlan,noye,sudholt}

Abstract

Aspect-Oriented Programming (AOP) promises the modwdtitn

of so-called crosscutting functionalities in large apafions. Cur-
rently, almost all approaches to AOP provide means for tiserije

tion of sequential aspects that are to be applied to a segubase
program. In particular, there is no formally-defined coment ap-
proach to AOP, with the result that coordination issues betw
aspects and base programs as well as between aspects camnot p
cisely be investigated.

This paper presents Concurrent Event-based AOP (CEAOP),
which addresses this issue. Our contribution can be ddtaite
follows. First, we formally define a model for concurrent esis
which extends the sequential Event-based AOP approachddthe
inition is given as a translation into concurrent specifars us-
ing Finite Sequential Processes (FSP), thus enabling uskeof
Labelled Transition System Analyzer (LTSA) for formal pesty
verification. Further, we show how to compose concurreneetsp
using a set of general composition operators. Finally, vetctka
Java prototype implementation for concurrent aspectsghwhéen-
erates coordination specific code from the FSP model defthiag
concurrent AO application.

Categories and Subject DescriptorsD.1.3. Software Program-
ming TechniqudsConcurrent Programming

General Terms Languages, Verification

Keywords Aspect-oriented programming, concurrency, formal
verification, implementation, Java

1. Introduction

Aspect-Oriented Programming (AOP) [1, 14] promises means f
the modularization of so-called crosscutting functiotiedi, which
cannot be reasonably modularized using traditional prograng
means, such as objects and components. The proper modelariz
tion of such concerns constitutes a major problem for thesldev
opment of large-scale applications. Crosscutting corgcecaur, in
particular, in many concurrent applications, at variousle Let us
consider, for instance, request handling in web serveestévan-
dling in graphical user interfaces, monitoring and debnggand
coordination.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE '06 Oct. 22-26, Oregon.
Copyright © 2006 ACM 1-XXXXX-YYY-Z/06/AAAA. . . $5.00

Up to now a large number of approaches for AOP of sequential
programs have been proposed, most notably AspectJ [4]eBeth
systems, aspects, which allow modularization of crossmutton-
cerns, are woven into a base application resulting in anutable
sequential application. Concurrency can be added in theseras
only by exploiting existing libraries for concurrent pragnming.
By contrast, there are no AOP languages with facilitiesfierdef-
inition of concurrently executing aspects as well as foraberdi-
nation of aspects and concurrent base programs directigrinst
of AOP-specific concepts. Such an approach would permiinfor
stance, to synchronize more easily advice of different etspap-
plied at the same join point, or conversely, to allow thesacdto
be executed in parallel.

As a running example, we consider a simplified e-commerce ap-
plication. Its concurrent activities include actions ah@e users as
well as (potentially extensive) changes to the underlyiatblases
of that system (which, in turn, entail modifications to therent
view of the user of that database). We wish to deal with thessese
cutting functionalities concisely, by expressing actiongerms of
advice executed at appropriate times and by controlling tios-
current execution directly with high-level coordinatiopesators,
that is, without the need of a different mechanism (aspeented
or otherwise) whose only purpose is to introduce syncheditn-
related code. As a result, the programmer can conciselyesgpr
synchronization constraints between advice without hgtancon-
sider low-level synchronization issues.

In this paper we address three major issues concerning the co
ordination of concurrent aspects: (i) aspects should beettfin
terms of sequences of execution events triggering actidrishw
are to be coordinated, (ii) coordination not only of comglattions
(“advice”) but also parts thereof should be supported ireotd al-
low flexible coordination policies, and (iii) different caination
strategies should be supported in case that multiple adyiply at
one execution point, for instance, in order to compose iaddpnt
advice in a concurrent fashion while enabling prioritizatthrough
synchronization if necessary. Furthermore, we strive famom-
positional model of concurrent AOP, which supports coaation
through suitable aspect composition operators, appliediibrary
aspects. In addition, because of the inherent difficultyssdbping
correct concurrent programs, to which aspects may evenmilcote
(through their scattered effects on base executions), ahfod
concurrent aspects should support the use of automatiicetion
techniques, such as model checking techniques. Finaflynibdel
should be intuitive and enable practical implementationgar-
ticular supporting generation of implementations from tinedels
used to define concurrent aspects.

In this paper we investigate means to address such AO-gpecifi
coordination issues. We base our investigation on the mofiel
Event-based AOP (EAOP) [10, 11]. This model provides an-intu
itive and simple model for sequential AOP, whose notion pkass,

browse

login

update

checkout update

(0) Server = login — InSession
| update — Server,
(1) InSession checkout — Server

update — InSession,
browse — InSession.

Figurel. A model of a simple e-commerce base program

defined in terms of regular sequences of execution eventsais
ily amenable for extension to concurrent executions. Weeethe
model of Concurrent EAOP (CEAOP), which explicitly addesss
the AO-specific coordination issues and requirements oeadi
above. First, CEAOP aspects, more specifically advice amd pa
of advice, are concurrent entities that can be woven withra co
current base program. Aspects and aspect weaving is foriahed|
fined by an automatic transformation into the calculus oftEiBe-
guential Processes (FSP) [15]. Second, coordination iposted
by a set of general composition operators. Third, aspeatsAgh
programs can be manipulated, simulated and can be autathatic
model checked using the tool Labeled Transition Systemdy&ea
(LTSA) [15]. Finally, we present an implementation of CEAGP
Java which is realized by the generation of coordinaticecijz
code from the FSP model defining the concurrent AO applinatio

The remainder of the paper is structured as follows. In 8e&;j
we introduce and formally define the basic instrumentatemrh+t
nique underlying the coordination of concurrent aspects lzase
programs in the context of the special case of sequential O p
grams. Section 3 generalizes the model to concurrent aspadt
base programs, while Section 4 presents concurrent cotiguosi
operators. An implementation in Java is sketched in Seéti@ec-
tion 6 details related work and Section 7 gives a conclusimh a
presents future work.

2. Sequential EAOP

In this section we briefly review how regular aspects are ddfin
in sequential EAOP (which also forms the sequential subset o
CEAOP) and introduce the weaving strategy of CEAOP for this
special case. An aspect is a modular unit whose purpose iede m
ify the execution of a program, called the base program, bgrin
ing behavior and possibly skipping some of its steps. Theepid
code describing the modification is called an advice. Poires-
pressions match sets of execution point (joinpoints) and tefine
execution points where control has to be transferred inrdodex-
ecute the advice. In most AOP approaches, an aspect is atawile
of pairs (pointcut, advice) and pointcut matching as wethagice
execution depends on the local state of the base program jaiih
point matched by the pointcut. The EAOP model is richer.dagt
of denoting a set of individual joinpoints, a pointcut des®ot set
of joinpoint sequences. Along a given sequence, differantspof
the advice are executed, depending on the history of thaugmec
i.e., EAOP directly supports stateful aspects.

To illustrate the concepts introduced in this paper, we us@a
ning example inspired by typical e-commerce applicatitues.us
consider the following e-commerce base program. Clientsect
to a website and mustg in to identify themselves, then they may
browse an online catalog. The session endslackout, that is,

as soon as the client has paid. In addition, an administodttive
shop canupdate the website at any time by publishing a work-
ing version. We model this using a simple control flow autamat
as shown at the top of Figure 1 or its equivalent textual défimi
(bottom of Figure 1).

Let us now consider the problem of cancelling updates during
sessions to the client-specific view of the e-commerce sbap,
to ensure consistent pricing to the client. Using EAOP [1] vie
can define a suitable aspect, calléshsistency as follows:

pa. (login; pa’. ((update t> skip log;a’) O (checkout; a)))

This aspect initially starts in stateand waits for dogin event from

the base program (other events are just ignored). Wheiogfie
event occurs, the base program resumes by performintpgie

and the aspect proceeds to statén which it waits for either an
update event or acheckout (other events being ignored).dpdate
occurs first, the associated advisép log causes the base program
to skip the update commandkip is a keyword) and the aspect
performs thelog command. Then the base program resumes and
the aspect returns to staté If checkout occurs first, the aspect
returns to state and the base program execution resumes. Since
updates are ignored in state, updates occurring out of a session
are performed, while those occurring within sessionséstgtare
skipped.

Our approach essentially provides mechanisms to synceoni
an advice with the base program execution as well as withr othe
advice that applies at the same execution point. In the eleamp
an advice that generates new indexes when an update takes pla
would have to be synchronized with the consistency aspesteab

Modeling of aspects. This behavior can be formally defined by
translating the aspect definition into FSP. Note that thasdla-
tion remains entirely valid for the concurrent case. Yet,chese
to present and define it first for the sequential case for iitgpk&r
presentation. FSP is one of the formalisms used by LTSA (La-
belled Transition System Analyser) [15]. This tool comisirte/o
formalisms, FSP and LTS, to model concurrent behavior ufing
nite state machines that can be either described textualiirate
State Processes (FSP) and graphically as Labelled T@an§tis-
tems (LTS). Labelled transition systems can then be useduete
or verify the model using standard model checking techrsque

A sequential process is modeled as a sequence of atomiasictio
using recursion, the sequence operatgithe choicd operator, and
guarded actions (that we will not use in the following). Seau
tial processes can be combined into concurrent processesthe
parallel operatoi| . Interactions are modeled by shared actions.
When an action is shared among several processes, the sttared
tions must be executed at the same time by these processes. Tw
operators on actions, a renaming operator and a hiding tmpera
make it possible to define generic processes that can beéctedf
in various ways to other processes. Any sequential procsbe
straightforwardly represented as a labelled transitictesy (sub-
processes of the process correspond then to states in thaaut
ton), and parallel composition is a form of synchronizeddpiai. In
the following, in order to simplify the presentation, we Mgbme-
times ignore some specific syntactic details of F8R.(we will
not use capital letters for process names).

The interest of FSP/LTS is that it provides a fairly simpledaio
of concurrency that is well documented (with a good unddista
of how to implement models in Java) and supported by a vaduabl
tool, LTSA (all the examples in this paper have been testawjus
this tool).

Let us come back to the translation of our example. The trans-
lation performs two operations. First, it introduces syodiza-
tion events that will be used to coordinate the aspect and the
base program. In fact, we consider advice to consist of theets

b ps a whereps is one of the keywordgroceed or skip, speci-
fying respectively whether the base action at the matcheggint
is executed or not, antl a denote sequences of actions that are
executed respectively before and afper Synchronization events
are used to be able to synchronize these three sequencd®aotac
with the base program. Synchronization events will thereebe in-
troduced in the base program as well. Second, it deals wéhtsv e,
ignored by the aspect by introducing loops (henceforthredalait- be e browse
ing loops) that automatically resume the base program.

The consistency aspect defined above is translated as shown i
Figure 2. In this and the following figure, non-highlightedde where the following abbreviations are used:
stems verbatim from the aspect definition, while highlightede

update

corresponds to the instrumentation, namely waiting loomssyn- & = eventB_update
chronization events. As an example of synchronization tsyen e = eventE.update
line 4 introduces two pairs of events: the paientB_update and P, = proceedB_update
eventE_update mark respectively the beginning and end of the ad- Pe = proceedE_update
vice attached to thepdate event. The second paikipB_update sy = skipB.update

se = skipE_update

and skipE_update is used to control the base program by send-
ing a (begin and end) skip message. We show below how the base
program is instrumented accordingly to deal with such abmtes-
sages.

As an example of waiting loops, in state loops have been p d
added for the eventspdate on line 2, and fotheckout andbrowse rocee

on line 3. The nature ofipdate is different from the two others. Base Program m

Indeedupdate is a so-callegkippablesvent, that is, it corresponds

Figure4. Woven example

to an operation of the base program that may be skipped. As a A

; e spect €e
consequence, it needs synchronization events that caherddase P m
program. On the contrargheckout and browse are simple non- Before advice After advice

skippable events. Note that the partitioning between sifgpand
non-skippable events has to be determined by the programmer

Similarly, the base program abstraction of Figure 1 bottamstm
be transformed as shown in Figure 3. Transitions on the no
skippable eventtgin, checkout, andbrowse are preserved with-
out changes (lines 1, 5, and 9, respectively). Transitiamste
skippable eventipdate is translated teventB_update followed
by a choice (lines 2 and 6). Intuitively, the base programtethis
event to the aspect. Then the base program waits for a cavieat
from the aspect which is eith@roceedB_update (lines 3 and 7)
or skipB_update (lines 4 and 8). In the first case, the original even
update is emitted {.e.,the base program performs the update oper-
ation, which may take some time), then it emiteceedE_update
to yield control to the aspect. Finally, it waits for the erfdre ad-
vice eventE_update. In the second case, the original base program
resumes the advice by emittiekipE_update and waits for the end
of the advice in order to resume its own execution.

The semantics of the woven program is modeled by the paralle
composition of the base program and the aspect in FSP. At&oma
representations of such compositions can be generated tign
LTSA tool, thus enabling property checking based on modetkh
ing technigues in order to verifg.g.,that noupdates but onlylogs
occur during sessions. To this end we can check trace-based
alence of FSP expressions using the model checking teamiqu
introduced by Magee and Kramer (sexg.,[12]). We show the
output of our example composition in Figure 4. The left-haiu®
cycle performsupdates outside of sessions. The right-hand side
cycle skipsupdate commands during sessions and does some log-
ging. The middle cycle starts and ends sessions.

We can picture the control flow between the base program and
the aspect as shown below for the case gfréceeding advice.
Only the four synchronization events are shown, which anetiel
ey, €e, P, aNdp,, as in Figure 4. The arrows represent the control
flow.

Formal definition of instrumentation. Now that we have shown

the idea of the encoding on our example, we formally define the
n- general transformation (which is also valid for the conenticase).

The control flow of the base program is abstracted into a fatéte

automaton described by the gramnfarat the top of Figure 5.

Each variable represents a state and tegrepresent transitions

labels. The recursion operatemakes it possible to define cycles.
In the following, we assume that all variablesre different (this
can be ensured easily hy-renaming). The transformatiofiz
t translates such a base program into FSP. The first rule gesera
a list of equations fob and its successors. The second rule stops
the equation generation. The third rule translates a segenB)
starting with a non-skippable event, identified bye &, into a
FSP sequence — name(B), wherename(B) is the process
name associated tB. Finally, the fourth equation introduces the
synchronization events and translates a transition witigpable

| event ¢ € S) into two branches (either the base program proceeds,

executing the base instruction, or it skips the instrugtion

Similarly, Figure 6 defines the syntax of aspects and thaistr
lation 74 into FSP. The grammad of aspects is similar to the
grammarB, but each event is followed by an adviée(for the
sake of simplicity, either a sequence of events introduged nd
containingproceed or skip, or an empty advice). Moreover, we
assume that an advice is empty if and only if its associatedtev
cannot be skipped. The first and the second rule of the tranafo
tion 74 are similar toZg in Figure 5. When the event is non-
skippable, the transition is translated directly. When ¢hente
is skippable, the advice is translated by inserting synalzedion
events in its definition.

The previous transformation translates an aspect into k&P b
does not account for waiting loops. In order to take ignoneshts
into account and to avoid deadlock, we modify and extend the
previous transformation by introducing waiting loops aeveh in
Figure 7. The core of the transformation remains the santehbu
transformation now completes the transitions of everyesteth
waiting loops that ignore the other events (and also alleihise
program to proceed in case of a skippable event).

Server = login — InSession,

InSession = checkout — Server
| browse — InSession.

Update = update — Update.

|| Base = (Server || Update).

Figure 8. A model of a simple e-commerce base concurrent pro-
gram

This transformation concludes our formal semantics of saqu
tial EAOP. In the next section, we show how some synchroitizat
events can be ignored in order to introduce concurrency.

3. Concurrent EAOP

Our model in Section 2 is purely sequential: the base program
consists of a unique thread and weaving of aspects is modeled
with coroutining, that is, synchronization events ensina pnly
the aspect or the base program runs at a given time. We now adap
our model to the concurrent world by modifying two paramgter

First, the base program is no longer a single process but a
combination of several processes. Each thread is modeleth by
FSP automaton and the base program is defined as their paralle
composition as exemplified in Figure 8.

Second, aspects are viewed as independent processesithmat ru
parallel and synchronize with the base program. Possiltiehsg-
nization points between the aspect and the base progranoiate p
cuts €.g.,eventB_update), end of advice €.9.,eventE_update),
and control eventsptoceed or skip). Yet, there is some variabil-
ity in the amount of synchronization that may be introdud@de
extremum enforces strong synchronization by weaving s@ie
aspects in a concurrent program. This corresponds to trelemg
done in Section 2. Another option is not to synchronize onesom
synchronization events, so as to allow more concurrencydwst
the program and the aspect. In particular, aspect and bageapn
may not synchronize on the evevientE_update at the end of the
advice. This is expressed in FSP simply by removing this teven
from the base program and the aspect definitions using tlieghid
operator\ {eventE_update} before composing them.

checkout
browse

Figure9. A concurrent program woven with an aspect

Base Program

()

v

Aspect

Another option can be considered. When the eveptiateE-
proceed and updateE-skip are hidden, the rest of the advice is
executed in parallel with thepdate event (which may be executed
or not).

4. Concurrent Aspect Composition

The previous sections have shown how to coordinate condurre
execution of a single aspect applied to a base program.drséu-
tion, we consider two aspects and show how composition tgrsra
can be designed to compose them in different ways. We idtestr
our approach by detailing two composition operators andiby d
cussing a few more. The generalization to more than two ésjEc
possible either by iterating binary composition, or by extiag the
operators so that they accept more than two arguments.

First, let us augment the e-commerce example introduced in
Section 2 by a second aspect:

Safety 2 pa”.(update > rehash proceed backup;a”)
Each time the website is updatdce(, the administrator publishes
an internal working version), this safety aspect rehaslusgabase
of links before the publication, and backups the databate-af
ward. Note that rehashing and backups are rather time-ogngu
operations whose concurrent execution, if possible, witieioe-
commerce functionalities is desirable. We translate thigeat into
FSP using the technique described previously and obtaifothe
lowing result:

"

a

(eventB_update — rehash — eventB_proceed
— eventE_proceed — backup — eventE_update — a")

Sequential functional composition. The first operatorFun, we
consider corresponds to a fully sequentialized functicoahposi-
tion of two aspects. When two advice must be executed at the sa
joinpoint, the compositiofrun(aspect,aspect2) executes the ad-
vice of its first argument. If this advice proceeds, it exesuhe ad-
vice of the second argument. If this second advice procétssis-
cutes the corresponding action in the base program. Usiing@n
mal notion of substitutionFun(aspect1,aspects) is a composite
advice that intuitively behaves likedvice:[advices/proceed).
Furthermore, the (optional) action sequences before aed thie
proceed are correspondingly nested.

Reconsidering our example aspects, the advice of the econsis
tency aspect of Section 2 appliesuipdate events only during ses-
sions, where it skips updates and adds a log. In contrasadiee
of the safety aspect applies both during and out of a sesSion.
as the compositiofrun(Consistency,Safety) executes the consis-
tency advice first, it skips updates during sessions and adig,
but does not run the safety advice. On the contrary, out oka se
sion, the safety advice is applied dpdate events and the update

In our example, once the update is skipped, the base programis performed.

resumes while the advice concurrently creates a log. F@shews

the automaton of the woven program computed by LTSA: the user
can resume its browsing before a log is created (notebtbese
transition in state 7). The picture below illustrates thaetoa flow

in this case between the base program and the concurrerdtaspe
using the abbreviations defined in the previous section.

This composition is modeled in FSP by renaming some syn-
chronization events in the aspect definitions and by defiaipgp-
cessFun that dynamically renameskip messages. Its definition is
shown in Figure 10. To ease the understanding of this coriposi
we represent its control flow in the case where both adwiceeed.
Here, double arrows correspond to renamings.

they do not synchronize anymore together or with the base pro

B Program i

ase Frogra gram. Second, the proceBarAnd implements a rendez-vous be-
tween these events of the two aspects by distinguishingdases.

Aspect-1 . In the first three cases, there is at least one esléptso the base
program must also skip. If both aspects proceed, the bagegmno
Ca”‘e re" . also proceeds.
Aspect-2 ee The semantics of the woven program is the parallel compositi

of the processes of Figure 11 with the base program. Botlcespe
share the eventsventB_e andeventE_e so the beginning and the
end of advice are synchronized. Before (and atfiei) or proceed,
advice of the aspects are executed in parallel. The wovegramo

is represented by the following automaton, where unlableleps
correspond tdrowse events).

When the base program emitseaentB_update event, here
denoted bye;,, the advice of the first aspect is executed until it
proceeds (eventp, above). In order to link the beginning of the
second aspect to thgroceed command of the first aspect, we
rename bothp, in the first aspect and, in the second aspect
to the same labetall_e. This renaming is depicted by a double
arrow. The eventp, andp, of the second aspect are not renamed,
so that they synchronize with the base program. Both the end
of the second advice. and p, of the first aspect are renamed
to the same labelet_e, so that when the second advice ends, it rehash
resumes the execution of the first aspect. Finally, the etltkedirst
aspect emits., which resumes the base program. These renamings
appear in Figure 10, using FSP syntax. The proceEsa#rg: update
andFunArg, correspond to the renamings of the first and second
aspect, respectively. As fekip commands, they cannot be handled
by renamings only. Indeed, both the first aspect and the decon
aspect may emit skip command to the base program. In contrast, |t makes clear that the advice are executed in parallel: beth
only the second aspect may emip@ceed command to the base quenceslog backup and backup log are valid. Furthermore, the
program. As a result, we must renasiép commands differently yser can still browse in parallel with the advice. As presigu
in each aspect (by appending an identifiar 2) and introduce an giscussed, concurrency can be introduced by hiding theteven

extra proces§u_n that performs dynamic r_enaming. ~ eventE_e before the parallel composition.

The semantics of the woven program is the parallel compositi Other operators can be defined similarly. For instance, dhe a
of the three FSP processes in Figure 10 with the base progiten. yice composed witiParOr proceed when at least one of them pro-
resulting automaton is: ceeds.

5. Implementation in Java

We have implemented a prototype of CEAOP for Java as a model-
driven aspect-weaver. This weaver takes a base prograrnemviit
Java, complemented with a description of the events of ester
and a composition of aspects and produces a concurrentgpnogr
which is correct with respect to the model by construction.

Each element of the the whole composition (base program, as-
pects, operators), implemented as an active object, carede s
as an LTS that progresses concurrently with the other LT8s T
progress is controlled by a monitor (a monitor in the genacakp-
tation of the term, actually implemented as a passive Jajecob
using the monitor associated to the object). The role ofrtiosi-
tor is to guarantee that the concurrent shared actionsrpeztbby
the individual LTSs are performed in an atomic wig,, that they
strictly follow the semantics of the LTS synchronized produ

The weaver is responsible for instrumenting the base pnogra
so that it properly interacts with the monitor as well as foliyf
generating the active objects for the aspects and the aperat
Parallel conjunctive composition. Concurrency can also be in- It does so by reusing Java building blocks provided as.a®

browse

For the sake of clarity, we have hidden most synchronizati@mts

in the woven program, keeping only essential ones. Outside o
session, only the safety aspect is woven (see the left hated si
cycle). During sessions, as shown by the right hand sidescyfog
consistency aspect is woven. It skips the safety aspect alyd o
creates a log. In the meantime the user can still browse @llpbr
with the advice as modeled by the transitloowse in each state.

As in Section 3, concurrency can be introduced by hiding syn-
chronization events before composing in parallel the FSmide
tions. For instance, whesventE_e is hidden, the post-proceed part
of the first advice is executed in parallel with the base pogr

troduced by considering composition operators that imgess interface and a corresponding prototypical implementatie an
synchronization. For instance, let us considerRheAnd operator. LTSImpl class, which are used to interact with a generic monitor,
When two advice can be applied at the same joinpoint, théarbe implemented as an instance of tienitor class.

action sequences are executed in parallel, but there islazerous In the following, we discuss the principles of the execution
on proceed andskip. If both of them wish to proceed, they will ~ essential to get a behavior consistent with the model, werithes
proceed in parallel. If (at least) one of them wishes to skigh the above-mentioned building blocks and show how they agd us
will skip in parallel. In our exampleParAnd(Consistency,Safety) by the aspect weaver to generate the application.

composes both advice during sessions to get, using infosymal
tax, backup skip (log || rehash), which ensures that all database
management actions are performed, if reasonable, in phrall In this section we discuss the crucial point in executing £TS

The ParAnd operator is defined in FSP as shown in Figure 11. the sharing of actions between different processes and bow t
First, theskip andproceed events of aspects are renamed so that implement choices between shared actions.

5.1 Principlesof LTS execution

In order to execute shared actions atomically, two barger s
chronizations are required. A first barrier stops the LT 3slyeto
perform a shared action until all the LTSs sharing the actitn
ready to proceed with the action. When all the LTSs have ghiae
secondexit barrier is used in order to make sure that all the LTSs
have indeed performed the action before proceeding. Wittiisi
second barrier, some LTSs could proceed too fast and thieneéo-
form new actions that would be wrongly interleaved with tke-e
cution of the current shared action.

Of course, all the LTSs composing the application are compet
ing for performing the action their are interested in. Feilog a
standard implementation of synchronization barriers,ntwitor
manages counters, one counter per shared action, recavdinh
LTSs are ready to proceed with which action. As soon as a eount
reaches its bound, the associated LTSs can proceed withaheds
action.

In order to keep the counters coherent, new attempts to snodif
the counters are then blocked (we will say that the monitor is
busy until all the LTSs have exited the exit barrier, at whichggta
the related counter value is again zero. Useless notifitatial

the monitor is busy. The appropriate counters are decradent
and the LTSs on the wait set of the selected counter are mbtifie
(their selectedAction instance variable is set to the selected
action). A specialized version of this method with a single
action as a parameter is used to deal with the cases when there
is no choice (no counter decrementing is required).

* void synchronizeOnExit() is called when an LTS has per-
formed its part of the shared action. The counter correspgnd
to the selected action is decremented. When it reachesthero,
monitor is no longer busy. The LTSs on its wait set are notified

522 TheLTS interface and the LTSImpl class

Each LTS, on top of beingRunnable as an active ob-
ject, implements theLTS interface, which includes the single
method required by the monitor in order to interact with the
LTSs:void setAction(Action action). This method must be
synchronized. It is used by the monitor to inform the LTS that
it can proceed with the selected actiatition. It simply sets the
selectedAction instance of the LTS and callsotifyAll to

awakening of blocked LTSs are avoided by using the wait sets wake up the waiting LTS.

of the LTSs as well as the wait set of the monitor. After an LTS
has incremented a counter of the monitor but is not readyogyet t
proceed, it waits for a notification on its own wait set. Th&t IaT'S
reaching the barrier can then, via the counter, notify &l ather

Its corresponding prototypical implementation, theSImpl
class, is a basic implementation of an LTS based on a definitio
of the LTS by its alphabet (instance variaklephabet) and its
transfer function, implemented as a combination of a haghasa

LTSs that they can proceed. When the monitor is busy, the new sociating an action to an indexdtionMap) and an array asso-

LTSs ready to execute a shared action wait on the monitorsgait
They are notified that they can proceed by the last LTS lea¥iag
exit barrier.

Finally, a last point to take care of is the case when an LTS
has a choice of shared actions, which then depends on theepsog
of other LTSs. This happens, for instance, when the basegmog
may proceed or skip, depending on the execution of an adice.
this case, the LTS increments several counters: the caunger
lated to its choice of actions. If one of the counters readtses
bound, this means that the corresponding action is selettesl
LTS decrements the counters that it may have just been ircred
for other possible actions and notifies the other LTSs afeiny
set theirselectedAction instance variable (which plays the role
of a condition variable). Before proceeding with the actitirese
other LTSs decrement the counters associated to the réjacte
tions of the choice.

5.2 Javabuilding blocks

The Java implementation relies on three building blockassts
representing the monitor supervising the execution, idda LTS
processes, and actions. We now discuss these in turn.

5.2.1 Themonitor

The monitor is implemented as a clagsnitor. It includes an
instance variableselectedAction, which is non-null when the
monitor is busy (its value is the selected action), and aectiin
of counters. It provides the following methods (which at®lic
andsynchronized):

° void register(LTS 1lts, List<Action> actioms) s
used to initialize the system. Before starting its own ttrea
each LTS, seen as an object implementing the interfatse
(see below), has to register to the monitor with this method.
The parametenctions corresponds to the alphabet of the
LTS. Itis used by the monitor to set up the counters.

° void synchronizeOnEntry(List<Action> choice) s
called by an LTS ready to perform a choice. It starts with a
guard requiring the monitor not be busy. It increments the
appropriate counters. If one of the counter bounds is rehche

ciating a (source) state and an index to a (target) stateget).
LTSImpl can be subclassed to define alternative implementations,
for instance to implement aspects and operators (see hebam)e

of its methods are used by the aspect weaver to instrumebage
program:

* void synchronizeOnEntry(List<Action> choice) ini-
tializesselectedAction to null, tells the monitor about the
choice by calling the monitor version sfnchronizeOnEntry,
waits for an action to be selected and finally decrementsphe a
propriate counters. A specialized version of this methaalsle
with single actions.

* void synchronizeOnExit() simply calls the monitor ver-
sion of synchronizeOnExit.

Once registered to the monitor, an instance IASImpl
repeatedly evaluates the action choice associated to the cu
rent state, calls its methodynchronizeOnEntry, calls its
method void eval(int actionIndex), which, by default,
change states depending on the selected action, and satlstihod
synchronizeOnEntry.

5.2.3 TheAction class

An Action instance carries two pieces of information: a name and
a value. This value is used to transmit the parameters of¢he
occurrence of an action to iteceive occurrences. For instance,
when an action of the base program (typically a method cadl) i
cludes parameters, these parameters are made part of tiee cor
spondingeventB action so that they are available to the interested
aspects. On the receiver's side, the action value is ilyitiai11,

but when the action has been selected, the sender’s acpassed
back as the selected action to the receivers.

5.3 Theaspect weaver

Finally, weaving requires the base program to be instruetcahd
the suitable code for the aspects and composition opersitdre
generated.

531

We assume the availability of the source code of the basegmg
implemented as an active object, and of its actions of istere
separated into skippable and non-skippable events, Bescas
AspectJ named pointcuts.

Aspect] is then used to turn the base program into an
LTS as follows. First, inter-type declarations are used to
add the LTS interface to the base class and complement
this class with the necessary fields and methods taken from
LTSImpl: monitor, selectedAction, alphabet, actionMap,
setAction(), getActionIndex() (this returns the index of
the selected action)register(), synchronizeOnEntry(),
synchronizeOnExit (), andsynchronize(), a combination of
the two previous methods. Inter-type declarations are ats
to add methods required for the instrumentation of the skifgp
events. For instance, here is the method used to instrurhent t
update event in our example (we have used strings rather than
proper actions in order to simplify the code), the patteraligays
the same:

Instrumentation of the base program

void instrumentedUpdate() {
synchronize ("eventB_update") ;
synchronizeOnEntry(buildChoice ("proceedB_update",
"skipB_update")) ;
if (getActionIndex() == 6) { // proceed
synchronizeOnExit () ;
synchronizeOnEntry ("update") ;
proceed () ;
synchronizeOnExit () ;
synchronize ("proceedEnd") ;
synchronize ("eventEnd") ;
else {
synchronizeOnExit () ;
synchronize ("skipEnd") ;
synchronize ("eventEnd") ;

// skip

Second, AspectJ advice is used to:

* Include a call taregister before starting the thread associated
to the active object (assuming that nothing else than thaodet
start is used).

*Include a call to synchronizeOnEntry and
synchronizeOnExit, respectively before and after each
non-skippable event.

* Replace each skippable event with its instrumentation.

Alternatively, the same kind of transformation can be penfed
on bytecode using a tool able to conveniently perform baticst
tural and behavioral transformations such as Reflex [19, 18]

5.4 Generation of the aspects and operators

The aspects are essentially described as FSPs but with singrle
Java syntax, which makes it possible to add parametersitmact
for parameter passing purposes. Here is how the consistaspect
looks like (blocks are used to denote choices):

Aspect Consistency {

void comnsistency() {
login(); consistencyl();

}

void comnsistencyl() {
{update(); skip(); log();}
{checkout(); consistency()}

}

The basic idea consists of subclassing Impl while providing
the proper alphabet and transfer function computed froraspect
FSP. The methodval () makes it possible to perform the advice.
Here is how the consistency aspect looks lik2 {s used to com-
plete the target array for the pairs (source state, actidnigwdo
not appear in the automaton):

public class Consistency extends LTS {
public Comnsistency() {
super ("Consistency") ;

String [] actions

{"login", "checkout", "browse", "update",
"eB", "eE", uan, "pE", "sB", "sE", "10g"};
setActions(actions);
int [J1[] target

// 1 c b ueB eE pB pE sB sE log
{{4, 0, 0,-2, 1,-2,-2,-2,-2,-2,-2}, // state O
{-2,-2,-2,-2,-2,-2, 2,-2, 2,-2,-2}, // state 1
{-2,-2,-2,-2,-2,-2,-2, 3,-2,-2,-2}, // state 2
{-2,-2,-2,-2,-2, 0,-2,-2,-2,-2,-2}, // state 3
{4, 0, 4,-2, 5,-2,-2,-2,-2,-2,-2}, // state 4
{-2,-2,-2,-2,-2,-2,-2,-2, 6,-2,-2}, // state 5
{-2,-2,-2,-2,-2,-2,-2,-2,-2, 7,-2}, // state 6
{-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, 8}, // state 7
{-2,-2,-2,-2,-2, 4,-2,-2,-2,-2,-2}, // state 8
};
setTarget (target) ;
¥
protected void eval(int actionIndex) {
if (actionIndex == 10)
log();

super.eval (actionIndex) ;

}

The principle is the same for the operators.

6. Related Work

There are many proposals for AOP, but little work devoted to
concurrent AOP. In AspectJ, the base program is paused when a
advice is executed. AspectJ also does not provide explipip@rt

for concurrent programs: advice must explicitly create#ds and

the programmer must manually deal with synchronization.

The pointcut model of Aspect] can be extended with trace
matching in order to define sequences of joinpoings,execution
events) [2]. Joinpoints in a sequence definition can shaiablas
(i.e., object references). This allows matching several seqence
at the same time in a sequential Java program. Trace matching
also provides support for concurrent base programs. Arcaspa
match the trace of a single thread (as specified by#ehread
keyword), or the complete traced., the interleaved traces of all
threads). An advice is executed in the thread corresportditige
last event of a sequencee(, the base program is paused). How-
ever, trace matching does not provide explicit support oroair-
rent aspects (advice must create threads explicitly). @eare also
simpler than in our model: there is a single advice per aspect
the end of the corresponding sequence. Benawties introduce
AWED [5], an aspect language for distributed programminigiciv
includes regular sequence aspects. Concurrent executisapr
ported on the language level (i) by pointcuts referring tedls
similar to tracematches but also (ii) by remote advice whiah
be executed asynchronously or synchronously w.r.t. theutixes
of the (distributed) base program and other aspects. Hoywthie
approach, as the others, does not include explicit mearnkdayn-
chronization of multiple advice applying at an executioipo

Process algebras have already been used to model AOP [3].
However, this work does not consider concurrent AOP but show
how to encode sequential AOP in a process calculus. It facose

correctness of aspect-weaving algorithms and discus$fesedit Acknowledgements. The work on the implementation has ben-

notions of equivalence. efited of fruitful discussions with Sebastian Pavel, Jetau@e
Concurrency has also been considered in a domain close toRoyer and Angel Nufiez.

AOP: reflection. The authors of [163,9.,criticize the standard ap-

proach ofproceduralreflection, whereby the base level is blocked References

when the metalevel is active and suggest that both levelglgho
communicate via asynchronous events. The paper sketcrane:-f
work implementing this idea together with its implemerdatin
Java, using J2EE and JMS. Yet, there is no support (language o
model) to reason about synchronization and compositiaress

In the area of distributed algorithms, starting with the kvof
Dijkstra on termination detection [9], there is a long ttamhi of
superimposingpecific algorithms to base applications with a mo-
tivation similar to the aspect approach. Dealing with distied
applications, base applications are naturally modeledizsact-
ing processes. However, the general focus is geared moesdew
specification and verification than towards providing prolaa-
guage support for building distributed applications, vezerwe are
interested in bridging this gap. The work of Sihman and Ka# [
is especially close to ours in that it explores compositissues
and suggests that there are two ways of composing supeliimpos
tions: sequential composition, similar in spirit to the gaogition
obtained with ouFun operator, and merging. But the introduction
of a specific aspect construct suchpasceed changes the overall
picture and leads to a richer set of composition operatodgamn-
strated in our work by th€arAnd operator.

There have been several approaches using regular exmressio
for the specification of concurrent systeneg., path expres-
sions [6] nad concurrent regular expressions [13]. Howehesse
approaches have not considered problems specific to syrizhro
tion in an AO setting. For instance, contrary to that work com-
position operators provide means for the synchronizatfonali-
fications,i.e.,synchronization of an advice, in terms of the structure
of that advice. Furthermore, an AO setting is different iatthd-
vice may introduce new events which are themselves reldeant
synchronization.

Finally, aspects have been considered as a way to implement ¢
ordination [7, 8]. We take here a different point of view. Tdspects
are basic reusable components whose coordination is sgkbifi
the aspect language itself, including the composition atpes, and
its underlying semantics.

7. Conclusion

In this article, we have presented general requirementsnfm-
els of concurrent aspects and a concrete formally-definedemo
CEAOP, meeting these requirements. In particular, our insue
ports concurrency in base programs, concurrent execufi@s-o
pects and advice with base programs, and composition apsrat
for the coordination of concurrent aspects and base pragram

Thanks to our FSP-based semantics, woven programs may be

model-checked with LTSAe.qg., verifying absence of deadlocks,
progress, and trace properties. We have presented a sanpbeo
sition operators of concurrent aspects and base progranveela
as evidence that this set can easily be extended. Finallj)ave
sketched a lightweight prototype implementation in Java.

Our proposal paves the way towards a complete study of con-
current aspect languages and systems. In particular, nieatie
synchronization of complex systems have to be investigMede-
over, we consider future work on the inclusion of a notion &f a
pects of aspects, on property preservation of composifenators,
and on efficiently implementing concurrent aspects in aidisted
setting. A first target are optimisations of our Java impletagon
by partially evaluating the monitor interactions with respto as-
pect definitions in order generate more efficient code.

[1] M. Aksit, S. Clarke, T. Elrad, and R. E. Filman, editoréspect-
Oriented Software Developmemtddison-Wesley Professional, Sept.
2004.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren K&zins,
O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. [€ibb
Adding trace matching with free variables to AspectJPtaceedings
of OOPSLA'05ACM Press, 2005.

[3] J. H. Andrews. Process-algebraic foundations of aspeented
programming. IrProceedings of Reflection 200UNCS 2192, 2001.

[4] Aspect) home pagéttp://www.eclipse.org/aspect]j/.

[5] L. D. Benavides Navarro, M. Sudholt, W. VanderperrenD Fraine,
and D. Suvée. Explicitly distributed AOP using AWED. In
Proceedings of AOSD'0\CM Press, 2006. To appear.

6] R. H. Campbell and A. N. Habermann. The specification afcpss
synchronization by path expressions. In E. Gelenbe and GeKa
editors,Int. Symp. on Operating Systemslume 16 ofLNCS pages
89-102. Springer-Verlag, 1974.

[7] S. Capizzi, R. Solmi, and G. Zavattaro. From endogenaus t
exogenous coordination using aspect-oriented progragmin
Proceedings of COORDINATION’'Q&NCS 2949, 2004.

[8] A. Colman and J. Han. Coordination systems in role-bastaptive
software. InProceedings of COORDINATION'QOBENCS 3454, 2005.

[9] E. W. Dijkstra and C. S. Sholten. Termination detectiondiffusing
computationsinformation Processing Letterd1(1):1-4, Aug. 1980.

[10] R. Douence, P. Fradet, and M. Sudholt. A framework fierdetection
and resolution of aspect interactions. Rroceedings of GPCE’'Q2
LNCS 2487, 2002.

[11] R. Douence, P. Fradet, and M. Sudholt. Compositionseeand
interaction analysis of stateful aspects.Proceedings of AOSD’04
ACM Press, 2004.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Modekeda
verification of web service compositions. Rroc. of the 18th IEEE
Int. Conf. on Automated Software Engineering (ASE’'@apes 152—
163. IEEE Computer Society, 2003.

[13] V. K. Garg. Modeling of distributed systems by concatreegular
expressions. Ir2nd Int. Conf. on Formal Description Techniques
for Distributed Systems and Communication Protoculncouver,
Canada, Dec. 1989.

[14] G. Kiczales, J. Lamping, A. Mendhekar, et al. Aspedeoted
programming. IrProceedings of ECOOP’9T.NCS 1241, 1997.

[15] J. Magee and J. KrameEoncurrency: State Models and Jav&iley,

[16] J. Malenfant and S. Denier. ARM : un modele réflexif rlyrone
pour les objets répartis et réactifs. HRroceedings of LMO’03
Hermeés, 2003. RSTI série L'objet, 9(1-2).

[17] M. Sihman and S. Katz. A calculus of superimpositionsdfistributed
systems. IrProceedings of AOSD’0OACM Press, 2002.

[18] E. Tanter and J. Noyé. A versatile kernel for multi-langeiadOP.
In R. Gluck and M. Lowry, editorsRroceedings of GPCE'QA-NCS
3676, pages 173-188, Tallinn, Estonia, Sept./Oct. 2005.

[19] E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partiidvioral
reflection: Spatial and temporal selection of reification.Pfoc. of
OOPSLA 2003pages 27-46. ACM Press, Oct. 2003.

a= (login — a’

| eventB_update — proceedB_update — proceedE_update — eventE_update — a

| checkout — a | browse — a),

checkout — a

a' =(eventB_update — skipB_update — skipE_update — log — eventE_update — a’
|
\

browse — a' | login — a').
g

1

Server = login — InSession

| eventB_update —

(proceedB_update —

Figure2. The consistency aspect in FSP

update — proceedE_update — eventE_update — Server

| skipB_update — skipE_update — eventE_update — Server) ,

InSession = checkout — Server

| eventB_update —

(proceedB_update —

update — proceedE_update — eventE_update — InSession

| skipB_update — skipE_update — eventE_update — InSession) ,

| browse — InSession.

Figure 3. Instrumented base program in FSP

ifeef&

B u= ph(Qiy e Bi) | b
TB(/j,b,(Di ei;BZ)) 2 b= 1(7%(61,31)) , TB(Bl) s ey TB(Bn)~
A
TB(b) — €
T5(e; B ée—>name(B)
T5(e; B 2

eventB_e — (skipB_e — skipE_e — eventE_e — name(B)
| proceedB_e — e — proceedE_e¢ —

eventE_e — name(B)) ifecS

name(b) EY)

A

Figureb5. Abstract base program syntax and instrumentation

pa.(U;=, ., €S Ai) ‘ a

S = € ‘ D> e€1p...€Cnb PS €1q - - -

ema Whereps € {proceed, skip}

T4 (pa.([J; €:Si; As))
TA (a)

Ta(e; A)
T4 (eS; A)

1
TA(>et1p .- enb DS €1q - -

. €ma, €)

2 =] Th(eiSi; A, Ta(Ar), ., Ta(An).

2

N :

= e — name(A) ifecé&
2 e TA(S,e) — name(A) ifeeS

1>

eventB_.e — e — ... — ey — psB.e
— psE_e — e14 — ... — emq — eventE_e
whereps € {proceed, skip}

Figure 6. Aspect syntax and their transformation into FSP

Ta(pa. ([, eiSi; Ai)) 2 = |i(TA(e¢Si;A¢) | eegus\w»e”loop(a, e),
Ta(A1), .., Ta(An). o

Ta(a) 2 ¢

loop(a, e) 2 eoa ifeeé&

loop(a, €) 2 eventBe — proceedB_e — proceedE_e — eventE_e — a ifeecS

Figure 7. Translation with waiting loops

|[FunArg; = a/{call_e/proceedB_e, ret_e/proceedE_e, skipB_el/skipB_e, skipE_el/skipE_e}.
|[FunArgs = a” /{call_e/eventB_e, ret_e/eventE_e, skipB_e2/skipB_e, skipE_e2/skipE_e}.

Fun = (skipB_el — skipB_e — skipE_e — skipE_el — Fun
| skipB_e2 — skipB_e — skipE_e — skipE_e2 — Fun).

Figure 10. The Fun composition operator in FSP for the event

|[ParAndArg; = a/{proceedB_el/proceedB_e, proceedE_el/proceedE_e,
skipB_el/skipB_e, skipE_el/skipE_e}.
||[ParAndArgs = a" /{proceedB_e2/proceedB_e, proceedE_e2/proceedE e,
skipB_e2/skipB_e, skipE_e2/skipE_e}.

ParAnd =
(skipB-el — (skipB_e2 — skipB_e — skipE_e — skipE_el — skipE_e2 — ParAnd
| proceedB_e2 — skipB_e — skipE_e — skipE_el — proceedE_e2 — ParAnd)

| proceedB_el — (skipB_e2 — skipB_e — skipE_e — skipE_e2 — proceedE_el — ParAnd
| proceedB_e2 — proceedB_e — proceedE_e —
proceedE_el — proceedE_e2 — ParAnd)).

Figure 11. The ParAnd composition operator in FSP for the event e

