Aspects and Software Components
A case study of the FRACTAL Component Model

Houssam Fakih !

GIP Department
Ecole des Mines de Douai
Douai, France

LirL Laboratory, UMR CNRS 8022
Lille University of Science and Technology
Lille, France

Noury Bouragadi 2

GIP Department
Ecole des Mines de Douazi
Douai, France

Laurence Duchien 3

LirL Laboratory, UMR CNRS 8022
Lille University of Science and Technology
Lille, France

Abstract

Component-Based Software Development (CBSD) swears software reuse but it suf-
fers from code scattering and tangling. Aspect Oriented Programming (AOP) deals
with these problems. We present in this paper, Fractal-AOP, an add-on to the Frac-
tal component model that combines AOP and CBSD into an overall model. Com-
bining is achieved by applying AOP principles on the Fractal component model.
Indeed, we define new control interfaces on functional components that expose join
points. Aspects are defined using plain Fractal generic components. Weaving relies
only on classical operations on components, namely: Configuration and assembly.
The configuration allows the definition of pointcuts. The assembly connects the
components defining aspects with the rest of application components.

Key words: Aspect, Software Component, AopP, CBSD,
Integration of aspects and components, FRACTAL component
model

FAKIH AND AL.

1 Introduction

Recently, several works that aim to integrate aspects [8,6] and software compo-
nents [21], had emerged. We highlighted in [7] three facets allowing to achieve
this goal:

(i) The first facet componentises aspect [10,14], i.e., enhances aspects using
properties that make software components attractive (e.g. reuse, deploy-
ment). Base code could be expressed by either object-based languages or
procedural ones. The challenge is to find the equivalent of component’s
characteristics for aspects.

(ii) The second facet applies AOP on software components [20,3], i.e., defines
aspects that must be able to intercept normal component execution in
order to perform advices. The aim is to define join points on software
components and the way aspects and components must be woven together
in order to produce the final enhanced application.

(iii) The third facet unifies aspects and software components [19,12,17]. This
facet consists of defining a component model general enough to encompass
not only ‘traditional’ software component concepts, but also AOP ones.

It worth noting that there is a variety of component models. Thus, the
integration of AOP concepts into components depends surely on properties of
the chosen component model. Indeed, solutions vary from a flat component
model (i.e., a model without the composite concept) to a hierarchical model
(i.e., a model with the composite concept).

We address in this paper the unification of aspects and components issue.
We have chosen the FRACTAL component model [1] as a case study. This
choice is related, on the one hand, to the FRACTAL model characteristics as
the modularity, the extensibility, the support of the composite concept, and
on the other hand, to its programming model and its architecture description
language (ADL) [13] both simpler than those of actual industrial components
as the Corba Component Model (CcM) [15] and the Entreprise Java Beans
(EaB) [5].

The remainder of this paper is organised as follows: In section 2, we present
an overview on the FRACTAL Component model then we define a diary ap-
plication by means of FRACTAL components. Next, in section 3, we describe
FRACTAL-AOP our add-on to the FRACTAL component model that makes for
the unification of aspects and components. Then, in section 4, we show the
related works. Finally, we conclude, in section 5, with a short summary and

1 Email: fakih@ensm-douai.fr
2 Email: bouragadi@ensm-douai.fr
3 Email: duchien@lifl.fr

FAKIH AND AL.

future works.

2 The FRACTAL Component Model

2.1 An overview of FRACTAL

FRACTAL [1,2] is a tightly-typed hierarchical component model. It defines
composite components to provide a uniform view of applications for various
levels of abstractions. Besides, one of the FRACTAL specific characteristics is
the sub-component sharing with many composites that aims to model resource
sharing. FRACTAL provides various reflective capabilities for monitoring, de-
ploying and dynamically reconfiguring a running system. Applications built
using FRACTAL components support dynamic structural reconfiguration.

A Fracrar component can only be handled through a set of interfaces.
Interfaces refer to what is called "port" in other component models [21]. The
connection of a client interface to a server one is named binding. Since FRACTAL
is strongly typed, the server interface type must be a sub-type of the client
interface type. Types are checked when we attempt to bind two interfaces.

Components use interfaces when they communicate with each other. A
component that requires a service sends a message through one of its client
interfaces to a server interface of a component providing the desired service.
Each server interface gives access to a set of operations. And, each client
interface defines a set of operations that the component may invoke.

The FRACTAL component structure is breaking down into two parts:

e A content which consists of a finite set of operations, attributes and possibly
sub-components, and

e A membrane which contains component’s interfaces. This membrane mon-
itors the component content by intercepting incoming and outgoing opera-
tion invocations. We use this feature for supporting AOP (see section 3).

A FRACTAL membrane contains two kinds of interfaces: The functional
interfaces and the control ones. Functional interfaces are related to the com-
ponent business domain. While control interfaces allow to introspect and to
reconfigure components (e.g. life cycle, interfaces, attributes, bindings).

2.2 An example: A diary application using FRACTAL

We illustrate, in Figure 1, an example showing the core business of a diary
application built by making use of FRACTAL. Each diary provides a Meeting
Manager (MM) interface that permits to invoke two operations: addMeeting
and removeMeeting. Each Meeting Organiser component helps organise meet-
ings between diary’s owners. This component provides a Meetings Organiser
(MO) interface that permits to invoke one operation: arrangeMeeting. It re-

FAKIH AND AL.

quires also a MM collection® client interface that could be bound with the
MM server interfaces of multiple diaries. Upon receipt of arrangeMeeting call,
Organiser manages to find a date to put meeting in appropriate time for all
participants.

It should be noted that, by convention, functional server interfaces are
represented at the left of the component and functional client ones at the
right. We omit, in Figure 1, to show controller interfaces allowing for the
introspection and the reconfiguration of components.

]

Meetings I Director
MO Organiser MM MM Disry
MO I_ Meetings | MM | \ Secretary’s
Organiser | MM Diary
- f‘“‘t‘f“‘;‘;‘jna MM Meeting Manager interface
l MO Meetings Organiser interface

- Binding
— F Interface

Fig. 1. A Diary application with FRACTAL

3 FRACTAL-AOP: An AoP Add-on to the FRACTAL model

The diary application presented in section 2.2 has to deal with crosscutting
concerns, i.e., aspects. Examples of such aspects are concurrency of requests
for meetings addition and removal, persistence of diaries and security which
includes the authenticity of entities before allowing them to change meetings
in a diary.

We describe, in this section, FractaL-Aopr an add-on to the FracTaL com-
ponent model that supports Aop. We show that Fracrar-Aop enables the
definition of aspects building blocks by making use of components. In this
context, the weaving consists of the assembly of those components with ap-
plication functional components.

Please note that we make use of the diary example throughout this section
to illustrate our approach.

4 We mean by collection a property of a FRACTAL interface type that indicates how many
interfaces of this type a given component may have.

FAKIH AND AL.

3.1 The FractaL-Aopcomponent model

To support Aop in Fractar, we add on the FracTaL component model a new
membrane that holds two extra control interfaces namely the Ezecution Con-
troller (cEc) and the Proceed Controller (sPc) (see Figure 2).

sPc
Pc Proceed Controller
F EC Execution Controller
Functional S S‘fr ver
component c client
—p Binding
P T Aspect
*
CEcC

Fig. 2. A FractaL-Aor functional component

The cEc interface is a client-control interface. It exposes join points into
the component execution flow. This exposition is totally transparent to the
application functional code developper, since it relies only on the membrane
interception capabilities.

The sPc interface is a server-control interface. It allows to proceed any
captured join point.

Both cEc and sPc interfaces have the same signature (see Figure 3).
FracTaL-Aopr defines as join points the send and the reception of operations
invocations. Join points set includes also the attribute read / write access,
the modification of the component’s life cycle state, the connection / discon-
nection of two components, the addition / removal of a sub-component to /
from a composite.

Both join points related to the connection / disconnection of two compo-
nents and the addition / removal of a sub-component to / from a composite
are specific to the component model. These join points can be useful in the
case of

package org.objectweb.fractal.api.aop;
interface ExecutionController {
receiveMessage(string aMessage, any[] args,
Interface itfReceiver, Component receiver,
Interface itfSender, Component sender) ;
sendMessage (string aMessage, any[] args,
Interface itfSender, Component sender,
Interface itfReceiver, Component receiver);
getAttribute(string attributeName, any newValue, Component cmp) ;
setAttribute(string attributeName, any newValue, Component cmp);
connect (Interface itfl, Component cmpl, Interface itf2, Component cmp2);
disconnect (Interface itfl, Component cmpl, Interface itf2, Component cmp2);
addSubComponent (Component subComponent, Component composite);
removeSubComponent (Component subComponent, Component composite);
changeState(string newState, Component cmp);

Fig. 3. Execution Controller APT written in the FRACTAL IDL

FAKIH AND AL.

3.2 An aspect in FRACTAL-AOP

An aspect in FractarL-Aop is composed of a set of generic (and hence reusable)
components and specific ones. These components are of two kinds: Advice
components and Weaving components. The weaving is enabled while these
components are connected to application functional components as shown in
Figure 4.

2 |
I_ SEc l- -lCPC I'
F - 1 - '
Tk
C?C Ic Introduction Controller

Ec Execution Controller
S server
c client
—» Binding
O Aspect

Fig. 4. FRACTAL-AOP: An approach applying AOP on FRACTAL

3.2.1 Advice components

Advice component is a fractal component that defines aspect’s computations
belonging to only one crosscutting concern or property. Advice components
are defined in a generic way, i.e., independently of any context. Operations in
the interfaces of a given Advice component are related to the core business of
an aspect.

3.2.2 Weaving components

Weaving components act as a “meta-components” ° . It controls the behaviour
of some functional component since it decides what to do for each join point in
the application execution flow. When a join-point matches one of the aspect’s
point-cuts, the weaving component triggers the right operations in the advice
component. Attributes of the weaving component define point-cuts, and which
operations to trigger before and/or after join-points.

The Weaving component makes use of the SPC interface to proceed func-
tional code at each join-point. So, once the weaving component has triggered
the "before processing”, it allows the join-point execution to proceed, and
then it triggers the "after processing” if any. Note that the weaving compo-
nent could interfere on the execution of the join-point. For example, it can
avoid the execution of the join-point, or make it proceed with new parameter
values.

5 We made here an analogy with meta-object found in works related to reflection in OO
languages [11].

FAKIH AND AL.

The Weaving component addresses also conflicts resolution known as the
feature interaction problem [18], i.e., the case of several aspects that must act
upon the same join point.

3.3 Weaving mechanism in FRACTAL-AOP

Aspects are defined as an assembly of components. Weaving aspects with func-
tional components is broken down into two steps, i.e., the assembly mechanism
and the definition of weaving rules:

e The first step consists of the definition of point-cuts and weaving rules at
these point-cuts on functional components. That includes where and when
this additional behaviour will be included. This step is represented in Figure
4 by the Weaving component, and

e The second step consists of the assembly of a functional component with
the Weaving one, i.e., the Weaving component is aware of the component
reference. This step is represented, in Figure 4, by links that bind, on the
one hand, both cEc and SEC interfaces of the functional component, and,
on the other hand, both sSPC and cPc.

The binding/unbinding of these interfaces can be made at the runtime.
Then the weaving and unweaving of an aspect and a component can be per-
formed at runtime by stopping the functional component execution without
restarting them.

3.4 The authentication aspect of the diary application

Authentication is one aspect of the diary application presented in section 2.2.
We illustrate in Figure 5 how the authentication aspect can be supported by
making use of FRACTAL-AOP.

We employ the upfront login authentication approach [9] that consist of
asking the caller for the user name and the password when he requests access
to the diary.

The authentication Advice component provides an Authentication Man-
ager (AM) interface that contains two operations: login and isAuthenticated.
The former operation takes two parameters: The user name and the password,
and checks the authenticity of a user. The latter operation checks if a user is
already authenticated or not.

The authentication aspect includes two Weaving components: The one
installed at the caller side (the Weaving component 1) and the other installed
at the callee side (the Weaving component 2).

We show, in Figure 6, how the aspect takes control, at the callee side, of
the execution flow upon the sending of a message from the MM interface of
the Meeting Organiser component.

Firstly, he knows that a join point (the send of the message addMeeting
from the interface MM of the Meetings Organiser) is occurred. It compares

FAKIH AND AL.

sPC SPC
T T
Meetings I .
MOI- S gs - ML b4 Director’s
Organiser My ;
Diary
ke - -
EC
! 2\
sech o cpc
Authenti-
cation
Weaving2 N |

AM |' Authenti-
} cation

Advice

MM Meeting Manager interface
MO Meetings Organiser interface
AM Authentication Manager
—» FRACTAL Binding

=T Authentication aspect

Fig. 5. the definition of an authentication aspect on the director’s diary

the join point with point-cuts defined in the Weaving component 1. So, it
finds that the join point matches the point-cut. It performs the before advice
that consist of a logging operation to be authenticated. Then it proceeds the
original message.

Besides, at the caller side, the director’s diary receives an addMeeting
message. Upon the receipt of this message, the aspect takes control and
the Weaving component 2 acts as we had explained above for the weaving
component 1 to check if the join point matches a point cut. The difference
is that the Weaving component 2 checks if it is about an authenticated user
or not. The proceed call is only performed in case of authenticated users.
We don’t show a diagram for the callee side because it is quite similar to the
diagram of Figure 6.

MM : Meeting SPC : Meeting CEC : Meeting SEC fi AM
Organiser Component Organiser Component Organiser Component Weaving Component 1 Advice Component
sendMessage
TolnPGimt matchesPointCut]
JoinPc
performBefore

login

sendMessage N e
= performProceed
addMeeting JomPoint
[R
‘.Ij performAfter

Fig. 6. A sequence diagram among objects in the caller side

FAKIH AND AL.

4 Related Works

Related works can be organised in two groups: Works related to the integration
of aspects and software components and works that propose increments to
FRACTAL.

4.1 Works related to the integration of aspects and components

JASCo [20] applies AOP on the Java Bean component model. JASCO intro-
duces two entities: An aspect bean and a connector. An aspect bean describes
crosscutting behaviours by making use of hooks. Hooks specify when (kind of
abstract point-cuts) the normal execution of component methods should be
intercepted and what (advices) extra behaviour should be executed. A connec-
tor is used for deploying one or more hooks on a specific context. It specifies
where the crosscutting behaviour should be deployed (concrete point-cuts) and
it addresses also the feature interaction problem. Connectors can be loaded
and unloaded at runtime. A special registry called connector registry detects
whether connectors are removed or added to the system which can take then
appropriate actions. FRACTAL-AOP modularizes better the aspects building
blocks. Advices are defined as traditional components. The FRACTAL-AOP
Weaving component defines both the "when" and the "what" of the aspect.
The configuration of this component defines the aspect’s "where". So, all
interactions among functional components and Advice ones are defined in a
Weaving component or composite. To modify these interactions, we should
just modify this Weaving component. In this case, functional and Advice
components remain unchanged.

JB0Oss-Aop [3] has been designed to be used on top of JBOSs, which is a
J2EE-based application server. However it can be used as a standalone AOP
framework. JBOSS-AOP tries to solve the limitation of flat component-based
platforms based on load-time transformations of Java classes. JBOSS-Aop
uses interceptors that work as the advice construct in AspectJ. They can be
used to intercept method invocations, constructor invocations and field access.
Pointcuts and Introductions are defined by making use of XML descriptors.
JB0Sss-AoP applies AOP on java classes and not on component concept itself.

4.2 Works related to increments to FRACTAL

David and al. [4] defines an add-on to the FRACTAL component membrane
that aims to reify all messages it receives. Instead of being sent to its original
target the reified message is sent to a sub-component which implements a
meta-level message invocation interface. The component manages then the
message in a generic way and could perform a pre- or post-processing or even
replaces the original behaviour. The meta sub-component resembles to the
union of the weaving and the advice components in our approach but the use
of Aor concepts is not explicit as in the ours.

FAKIH AND AL.

Pessemier and al. [16] apply Aop on FractaL components. This approach
defines a new controller interface on functional components that captures only
the messages invocation. This interface is limited comparing to our execution
controller interface. The weaving is released by means of a new binding type
called direct crosscut binding. Besides, FractaL-Aop makes use of the tradi-
tional types of binding defined in the FracTaL specification to achieve weaving.

5 Conclusions and perspectives

In this paper, we have presented Fractar-Aop our approach that makes for the
unification of aspects and components. An aspect, in FRACTAL-AOP, consists
of two parts: The specific one and the generic one.

e the specific part is composed of weaving components that define pointcuts,
weaving rules and conflict resolution.

e the generic part is composed of advice components that define the core
business of an aspect.

FrACTAL-AoP has been implemented on the top of FRACTALK ¢, the Smalltalk
implementation of the FRACTAL Component Model.

One perspective of our work is to study how to deal with composite com-
ponents. We must address especially how an aspect would be weaved with
sub-components of a composite.

Another perspective is to study issues related to the Introduction concept.
The Introduction in components means that we can modify the component’s
behaviour/structure by allowing the addition/removal of operation(s), inter-
face(s) and attributes to/from a component. In this case, we must address
problems related to the modification of a component type.

References

[1] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and Jean-
Bernard Stefani. An Open Component Model and Its Support in Java.
In Proceedings of the International Symposium on Component-based Software
Engineering, Edinburgh, Scotland, May 2004.

[2] Eric Bruneton, Thierry Coupaye, and Jean-Bernard Stefani. The Fractal
Component model specification. ObjectWeb Consortium, France Telecom and
INRIA, February5 2004. http://fractal.objectweb.org.

[3] Bill Burke, Austin Chau, Marc Fleury, Adrian Brock, Andy Godwin, and Harald
Gliebe. JBoss aspect oriented programming. http://www.jboss.org/, February
2004.

5 http://csl.ensm-douai.fr/FracTalk

FAKIH AND AL.

[4] Pierre-Charles David and Thomas Ledoux. Towards a framework for self-
adaptive component-based applications. In Proceedings of DAIS’03, Lecture
Notes in Computer Science, Paris, November 2003. Federated Conferences,
Springer-Verlag.

[5] Linda Demichiel, Umit Yalcinalp, and Sanjeev Krishnan. Enterprise JavaBeans
Specification, Version 2.0. Sun Microsystems Inc., version 2.0 edition, August
2001.

[6] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming,.
Comm. ACM, 44(10):29-32, October 2001.

[7] Houssam Fakih, Noury Bouraqadi, and Laurence Duchien. Towards integrating
aspects and components. In Yvonne Coady and David Lorenz, editors,
Proceedings of the Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software, Lancaster University, UK, March 2004.

[8] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220-242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[9] Ramnivas Laddad. AspectJ in Action. Manning Publications Co., Grennwich,
Conn., 2003.

[10] Karl Lieberherr, David H. Lorenz, and Mira Mezini. Programming with
aspectual components. Technical Report NU-CCS-99-01, College of Computer
Science, Northeastern University, Boston, MA 02115, March 1999.

[11] Pattie Maes. Concepts and experiments in computational reflection. pages
147-155, Orlando, FL, USA, October 1987. ACM Press.

[12] Sean McDirmid and Wilson C. Hsieh. Aspect-oriented programming with jiazzi.
In Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 70-79. ACM Press, 2003.

[13] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEFE Transactions
on Software Engineering, 26(1):70-93, January 2000.

[14] Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In
Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 90-99. ACM Press, 2003.

[15] Object Management Group. Corba Component Model, 1999.

[16] Nicolas Pessemier, Lionel Seinturier, Laurence Duchien, and Olivier Barais.
Partage de composants fractal pour 'aop. In First French Workshop on Aspect-
Oriented Software Development (JFDLPA 2004), Paris, France, September14
2004. In French.

FAKIH AND AL.

[17] Monica Pinto, Lidia Fuentes, and Jose Maria Troya. = DAOP-ADL: an
architecture description language for dynamic component and aspect-based
development. In Proceedings of the second international conference on

Generative programming and component engineering, pages 118-137. Springer-
Verlag New York, Inc., 2003.

[18] E. Pulvermiiller, A. Speck, J.O. Coplien, M. D’Hondt, and W. DeMeuter,
editors. Proceedings of the Workshop on Feature Interaction in Composed
Systems; In Association with the 15th European Conference on Object-Oriented
Programming (ECOOP) 2001. Universitaet Karlsruhe, June 2001.

[19] Davy Suvée. Fusej: Achieving a symbiosis between aspects and components.
In 5th GPCE Young Researchers Workshop 2003, Erfurt, Germany, September
2003.

[20] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo: an aspect-
oriented approach tailored for component based software development. In
Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 21-29. ACM Press, 2003.

[21] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York, NY, 1998.

	Introduction
	The Fractal Component Model
	An overview of Fractal
	An example: A diary application using Fractal

	Fractal-Aop: An Aop Add-on to the Fractal model
	The Fractal-Aopcomponent model
	An aspect in Fractal-Aop
	Weaving mechanism in Fractal-Aop
	The authentication aspect of the diary application

	Related Works
	Works related to the integration of aspects and components
	Works related to increments to Fractal

	Conclusions and perspectives
	References

