
6 Modelling with Relational Calculus of Object

and Component Systems - rCOS

Zhenbang Chen1,5, Abdel Hakim Hannousse1, Dang Van Hung1, Istvan Knoll3,
Xiaoshan Li2, Zhiming Liu1,�, Yang Liu1, Qu Nan4, Joseph C. Okika1,3,

Anders P. Ravn3, Volker Stolz1, Lu Yang1, and Naijun Zhan1,4

1 International Institute for Software Technology –
United Nations University, Macao

Z.Liu@iist.unu.edu
2 Faculty of Science and Technology, The University of Macau

3 Department of Computer Science, Aalborg University, Denmark
4 Lab. of Computer Science, Institute of Software, CAS, China

5 National Laboratory for Parallel and Distributed Processing, China

Abstract. This chapter presents a formalization of functional and be-
havioural requirements, and a refinement of requirements to a design for
CoCoME using the Relational Calculus of Object and Component Sys-
tems (rCOS). We give a model of requirements based on an abstraction
of the use cases described in Chapter 3.2. Then the refinement calculus
of rCOS is used to derive design models corresponding to the top level
designs of Chapter 3.4. We demonstrate how rCOS supports modelling
different views and their relationships of the system and the separation
of concerns in the development.

Keywords: Requirements Modelling, Design, Refinement,
Transformation.

6.1 Introduction

The complexity of modern software applications ranging from enterprise to em-
bedded systems is growing. In the development of a system like the CoCoME
system, in addition to the design of the application functionality, design of the
interactions among the GUI, the controllers of the hardware devices and the
application software components is a demanding task. A most effective means
to handle complexity is separation of concerns, and assurance of correctness is
enhanced by formal modelling and formal analysis.

Separation of concerns. Separation of concerns is to divide and conquer. At
any stage of the development of a system, the system is divided into a number
� Team Leader and corresponding author, UNU-IIST, P.O.Box 3058, Macao. This

work is supported by the projects HighQSoftD and HTTS funded by Macao Sci-
ence and Technology Development Fund; Nordunet3; the 973 Project of China
2005CB321802; the 863 Project of China 2006AA01Z165; and the NSFC Projects
60573081, 60573085, and 90612009.

A. Rausch et al. (Eds.): Common Component Modeling Example, LNCS 5153, pp. 116–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modelling with Relational Calculus of Object and Component Systems 117

Increasing Views

Increasing
Detail

M
A
1

M
A

2 M
B

2

M
B
1

.

.

.

.

.

.

. . .

. . .

Fig. 1. rCOS approach with views and refinements

of views or aspects: the static structural view, the interaction view, the dy-
namic view and their timing aspects. These views can be modeled separately
and their integration forms a model of the whole system. Different concerns re-
quire different models and different techniques; state-based static specifications
of functionality and their refinement is good for specification and design of the
functionality, while event-based techniques are the simplest for designing and an-
alyzing interactions among different components including application software
components, GUI components and controllers of hardware devices.

Formalization. In recent UML-based development, the static structural view
is modeled by packages of class diagrams and/or component diagrams, dynamic
behavior by state diagrams, and interactions by sequence diagrams. However,
UML has a formal syntax only, and its semantics is not formally definable with-
out imposing strong restrictions.

To assure correctness, we need to incorporate semantic reasoning through
specification, refinement, verification and analysis into the development process.

To provide formal support to multi-view and multi-level modelling and anal-
ysis in a model-driven development process, a desirable method should

1. Allow to model different views of the system at different levels of abstraction,
2. Provide analysis and verification techniques and tools that assist in showing

that the models have the desired properties,
3. Give precise definitions of correctness preserving model transformations, and

provide effective rules and tool support for these transformations.

Based on these considerations, we have recently developed a refinement calcu-
lus, named rCOS, for design of object and component oriented software systems
[9,14,10,5]. It provides a two dimensional refinement framework, that is, consis-
tent increments to the models for the multiple parallel (‖) views in the horizontal
dimension, and refinement, a relation (�) between models at different levels of
abstraction in the vertical dimension.

118 Z. Chen et al.

6.1.1 Goals and Scope of the Component Model

rCOS is an extended theory of Hoare and He’s Unifying Theories of Programming
(UTP) for object-oriented and component-based programming. The key concepts
in the rCOS approach are:

– A component is an aggregation of objects and processes with interfaces. Each
interface has a contract, that specifies what is needed for the component to
be used in building and maintaining a software without the need to know its
design and implementation. A contract only specifies the functional behavior
in terms of pre and post conditions and a protocol defining the permissible
traces of method invocations.

– Components can be composed hierarchically by plugging, renaming, hid-
ing and feedback. These operators are defined by a relational semantics for
object-oriented programs. Procedural programs are special cases of object-
oriented programs in rCOS.

– Composition is supported by required and provided interfaces.
– The refinements are verifiable through rCOS laws. The compatibility of the

compositions in the concrete example have been checked for the protocols
using the FDR tool, and some of the functionality specifications have been
checked using JML.

– Application aspects are dealt with in a use-case driven Requirements Mod-
elling phase. Each use case is specified as a contract of the provided interface
of a component, in which the interaction protocol is specified by a set of
traces and illustrated by a UML sequence diagram. The functionalities of
the provided interface methods are given by the their pre and post condi-
tions, the dynamic behavior is given by guarded design and depicted by a
UML state diagram. The data and class structure are specified by class dec-
larations and depicted by a class diagram. The consistency conditions of the
requirements include the consistency between the interaction protocol and
the dynamic behavior for each use case, and system invariants that relate all
use cases.

– The use cases are then designed by using object-oriented refinements, includ-
ing functionality delegation (via the expert pattern), class decomposition and
data encapsulation. Such a model of object-oriented design describes how the
interface methods (i.e. methods of the use cases) are realized via interaction
of internal domain objects of the class diagram. This model is then trans-
formed into a component-based architecture, called a model of logical design,
by wrapping related objects into components and identifying the interfaces
among them from interactions between objects in different components.

– The logical design is refined and refactored to a specific component archi-
tecture suitable for a given technical platform, and each component can be
further refined to a model which is ready for coding (or code generation).

– The approach does not address deployment but can include code to the
extent that the implementation language is given an rCOS semantics.

Modelling with Relational Calculus of Object and Component Systems 119

6.1.2 Modelled Cutout of CoCoME

For the example, we have covered the following:

– The aspects of Requirements Modelling, Logical Design and Component Ar-
chitecture Design are illustrated. Testing can be done using JML, although
translation of an rCOS functionality specification of a class to its JML coun-
terpart is carried out manually. Deployment has not been done.

– The rCOS approach is not currently able to handle dynamic composition.
– The strong parts of the treatment are formal component specifications, re-

finement and multi-view consistency checks.
– The weak parts are extra-functional properties and missing tool support.
– We did not model the exact architecture of the CoCoME because we fo-

cused on the systematic refinements step from requirements to a component
architecture very similar to the one of CoCoME implementation.

– The protocol and multi-view consistency were verified for the logical design
using FDR and JML respectively.

6.1.3 Benefit of the Modelling

In a model driven development process, the rCOS approach offers:

– A formal specification and analysis of different views including static struc-
ture, interactions and functionalities.

– High-level refinement rules for adding details in moving from one level of
design to another.

– How different tools for verification and analysis may be incorporated.

6.1.4 Effort and Lessons Learned

Getting acquainted with rCOS requires three months with reasonable back-
ground in formal methods in general. In the context of the CoCoME experi-
ment, the current treatment took experienced rCOS people about 2 work months
(about 5 people over 1.5 calendar month). We estimate that a complete treat-
ment of the example to the level of a component architecture design would
require about 12 work months.

In more detail, one experienced formal rCOS expert spent one day working
out the specification of UC 1, and the other six use cases took a 4-person week
of PhD students, supervised by the experienced person. The OO design of UC 1

took the rCOS expert less than one hour with writing, but the design of the
other use cases took another 4-student week. A lot of effort had to be spent
on ensuring model consistency manually. Just from the presented design we
have derived around 65 Java classes with over 4000 lines including comments
and blank lines. The packages of the classes for the resulting component-based
model are shown in Appendix B.

Among the important lessons from the exercise are that after developing the
functional specifications, the other tasks follow almost mechanically. However,

120 Z. Chen et al.

there is still much room in both design and implementation for an efficient
solution, taking into account for example, knowledge about the uniqueness of
keys in lookups resulting from existential quantification.

6.1.5 Overview

In the next section the fundamental concepts and ideas of the rCOS Compo-
nent Model are introduced. Section 6.3 shows an rCOS formalization of the
requirements for the common example including specifications of classes with
local protocols and functional specification. Based on the functional specifica-
tions, an object-oriented design is generated. This is refined to components that
are fitted into the prescribed architecture of the exercise. In Section 6.4, we dis-
cuss Extra-functional properties and related Tool Support. Finally, Section 6.5
concludes and discusses the perspectives and limitations of the solution. In par-
ticular we comment on how extra-functional properties can be included through
observables, and likely approaches to extensive tool support.

6.2 Component Model

We introduce the basic syntax of rCOS that we will use in the case study, with
their informal semantics. We will keep the introduction mostly informal and
minimal that is enough for the understanding of the rCOS models of CoCoME.
For detailed study, we refer the reader to our work in [9,14,10,5].

The Relational Calculus of Object and Component Systems (rCOS) has its
roots in the Unified Theory of Programming (UTP) [11].

UTP - The background of rCOS. UTP is the completion of many years
of effort in the formalization of programming language concepts and reasoning
techniques for programs by Tony Hoare and He Jifeng. It combines the reasoning
power of ordinary predicate calculus with the structuring power of relational
algebra. All programs are seen as binary relations on a state space which is a
valuation of a set X of program variables or other observables. An example of an
observable is a variable ok′, which is true exactly when a program terminates. In
all generality, the partial relation for a sequential program P is specified by a pair
of predicates over the state variables, denoted by pre(x) � post(x, x′) and called
a design, where x represents the values of the variables before the execution of
the program and x′ denotes the new values for the variables after the execution,
pre(x) is the precondition defining the domain of the relation, and post(x, x′) is
the postcondition defining the relation itself.

The meaning of the design pre(x) � post(x, x′) is defined by the predicate:
pre(x) ∧ ok ⇒ ok′ ∧ post(x, x′), asserting that if the program is activated from a
well-defined state (i.e. its preceding program terminated) that satisfies the pre-
condition pre(x) then the execution of the program will terminate (i.e. ok′ = true)
in a state such that the new values in this state are related with the old values
before the execution by post. For example, an assignment x := x + y is defined as
true � x′ = x + y.

Modelling with Relational Calculus of Object and Component Systems 121

In UTP, it is known that designs are closed under all the standard program-
ming constructs like sequential composition, choice, and iteration. For example,
D1; D2 is defined to be the relational composition ∃x0 : (D1(x0/x′) ∧ D2(x0/x)).

For concurrency with communicating processes, additional observables record
communication traces; communication readiness can be expressed by guard pred-
icates. A major virtue of using a relational calculus is that refinement between
programs is easily defined as relation inclusion or logical implication.

It is clear that UTP needs adaptation to specific programming paradigms,
and rCOS has emerged from the work of He Jifeng and Zhiming Liu to for-
malize the concepts of object oriented programming: classes, object references,
method invocation, subtyping and polymorphism [9]. They have continued to
include concepts of component-based and model-driven development: interfaces,
protocols, components, connectors, and coordination [10,5]. Thus rCOS is a solid
semantic foundation for component-based design. Also, its refinement calculus
has been further developed such that it offers a systematic approach to deriving
component based software from specifications of requirements.

With a programming language like Java, OO and component-based refine-
ment can effectively ensure correctness. Most refinement rules have correspond-
ing design patterns and thus Java implementations. This takes refinement from
programming in the small to programming in the large.

6.2.1 Object Modelling in rCOS

Just as in Java, an OO program in rCOS has class declarations and a main
program [9]. A class can be public or private and declares its attributes and
methods, they can be public, private or protected. The main program is given
as a main class. Its attributes are the global variables of program and it has
a main method main(), that implements the application processes. Unlike Java,
the definition of a method allows specification statements which use the notion
of design pre � post. Notice that the use of the variables ok and ok′ implies that
rCOS is a total correctness model, that is if the precondition holds the execution
terminates correctly.

Types and Notations. Another difference of rCOS from an OO programming
language is that we distinguish data from objects and thus a datum, such as
an integer or a boolean value does not have a reference. For the CoCoME case
study, we assume the following data types:

V ::= long | double | char | string | bool

Assuming an infinite set CN of symbols, called class names, we define the fol-
lowing type system, where C ranges over CN

T ::= V | C | array[1..n](T) | set(T) | bag(T)

where array[1 : n](T) the type of arrays of type T, and set(T) is the type of sets of
type T. We assume the operations add(T a), contains(T a), delete(T a) and sum()

on a set and a bag with their standard semantics. For a variable s of type set(T),

122 Z. Chen et al.

the specification statement s.add(a) equals s′ = s ∪ {a}, s.sum() is the sum of all
elements of s, which is assumed to a set of numbers. We use curly brackets
{e1, . . . , en} and the square brackets [[e1, . . . , em]] to define a set and a bag. For
set s such that each element has an identifier, s.find(id) denotes the function
that returns the element whose identifier equals id if there is one, it returns null

otherwise. Java provides the implementations of these types via the Collection

interface. Thus these operations in specifications can be directly coded in Java.
In specifications, C o means that object o has type C, and o �= null means that

o is in the object heap if the type of o is a class, and that o is defined if its type
is a data type. The shorthand o ∈ C denotes that o �= null and its type is C.

In rCOS, evaluation of expressions does not change the state of the system,
and thus the Java expression new C() is not a rCOS expression. Instead, we
take C.New(C x) as a command that creates an object of C and assigns it to
variable x. The attributes of this object are assigned with the initial values or
objects declared in C. If no initial value is declared it will be null. However,
in the specification of CoCoME, we use x′ = C.New() to denote C.New(x), and
x′ = C.New[v1/a1, . . . , ak/vk] to denote the predicate C.New[v1/a1, . . . , ak/vk](x)

that a new object of class C is created with the attributes a1 initialized with vi

for i = 1, . . . , k, and this objects is assigned to variable x.
A design pre � post for a method in rCOS is here written separately as Pre pre

and Post post. For the sake of systematic refinement, we write the specification
of static functionality of a use case handler class in the following format:

class C [extends D] {
attributes T x = d, . . . ,Tk x = d
methods m(T in;V return) {

pre: c ∨ . . . ∨ c
post: ∧ (R; . . . ; R) ∨ . . . ∨ (R; . . . ; R)

∧
∧ (R; . . . ; R) ∨ . . . ∨ (R; . . . ; R) }

.
m(T in;V return) {. }

invariant Inv
}

where

– The list of class declarations can be represented as a UML class diagram.
– The initial value of an attribute is optional.
– Each c in the precondition, is a conjunction of primitive predicates.
– Each relation R in the postcondition is of the form c ∧ (le′ = e), where c

is a boolean condition and le an assignable expression and e is an expres-
sion. An assignable le is either a primitive variable x, or an attribute name,
a, or le.a for an attribute name a. We use if c then le′ = e1 else le′ = e2 for
c ∧ (le′ = e1) ∨ ¬c ∧ (le′ = e2) and if c then le′ = e for c ∧ (le′ = e) ∨ ¬c ∧ skip.
Notice here that the expression e does not have to be an executable ex-
pression. Instead, e is a logically specified expression, such as the greatest
common divisor of two given integers.

Modelling with Relational Calculus of Object and Component Systems 123

We allow the use of indexed conjunction ∀i ∈ I : R(i) and indexed disjunc-
tions ∃i ∈ I : R(i) for a finite set I. These would be the quantifications if the
index set is infinite.

The above format has been influenced by TLA+ [12], UNITY [4] and Java. We
also need a notation for traces; in this setting, they are given by UML sequence
diagrams and the UML state diagrams.

6.2.2 Refinement

In rCOS, we provide three levels of refinement:

1. Refinement of a whole object program. This may involve the change of any-
thing as long as the visible behavior of the main method is preserved. It is an
extension to the notion of data refinement in imperative programming, with
a semantic model dealing with object references. In such a refinement, all
non-public attributes of objects are treated as local (or internal) variables [9].

2. Refinement of the class declaration section Classes1 is a refinement of Classes

if Classes1 • main refines Classes • main for all main. This means that Classes1
supports at least as many functional services as Classes.

3. Refinement of a method of a class. This extends the theory of refinement
in imperative programming, with a semantic model dealing with object ref-
erences. Obviously, Class1 refines Class if the public class names in Classes

are all in Classes1 and for each public method of each public class in Classes

there is a refined method in the corresponding class of Classes1.

An rCOS design has mainly three kinds of refinement: Delegation of functionality
(or responsibility), attribute encapsulation, and class decomposition. Interesting
results on completeness of the refinement calculus are available in [14].

Delegation of functionality. Assume that C and C1 are classes in Classes,
C1 o is an attribute of C and T x is an attribute of C1. Let m(){c(o.x′, o.x)} be a
method of C that directly accesses and/or modifies attribute x of C1. Then, if all
other variables in command c are accessible in C1, we have that Classes is refined
by Classes1, where Classes1 is obtained from Classes by changing m(){c(o.x′, o.x)}
to m(){o.n()} in class C and adding a fresh method n(){c[x′/o.x′, x/o.x]}. This is
also called the expert pattern of responsibility assignment.

Encapsulation. When we write the specifications of the methods of a class C

before designing the interactions between objects, we often need to directly refer
to attributes of the classes that are associated with C. Therefore, those attributes
are required to be public. After designing the interactions by application of the
expert pattern for functionality assignments, the attributes that were directly
referred are now only referred locally in their classes. These attributes can then
be encapsulated by changing them to protected or private.

The encapsulation rule says that if an attribute of a class C is only referred
directly in the specification (or code) of methods in C, this attribute can be made
a private attribute; and it can be made protected if it is only directly referred in
specifications of methods of C and its subclasses.

124 Z. Chen et al.

Class decomposition. During an OO design, we often need to decompose a
class into a number of classes. For example, consider classes C1 :: D a1, C2 :: D a2,
and D :: T1 x,T2 y. If methods of C1 only call a method D :: m(){...} that only
involves x, and methods of C2 only call a method D :: n(){...} that only involves y,
we can decompose D into D1 :: T1 x; m(){...} and D2 :: T2 y; n(){...}, and change
the type of a1 in C1 to D1 and the type of a2 in C2 to D2. There are other rules for
class decomposition [9,14].

With these and other refinement rules in rCOS, we can prove a big-step re-
finement rule, such as the following expert pattern, that will be repeatedly
used in the design of CoCoME.

Theorem 1 (Expert Pattern)
Given a class declarations section Classes and its navigation paths r1.rf .x,
(denoted by le as an assignable expression), {a11.a1k1 .x1, . . . , a�1.a�k�

.x�},
and {b11.b1j1 .y1, . . . , bt1.atjt .yt} starting from class C, let m() be a method
of C specified as

C :: m(){ c(a11.a1k1 .x1, . . . , a�1.a�k�
.x�)

∧ le′ = e(b11.b1s1 .y1, . . . , bts1.btst .yt) }

then Classes can be refined by redefining m() in C and defining the following fresh
methods in the corresponding classes:

C :: check(){return′=c(a11.getπa11 x1
(), . . . , a�1.getπa�1x�

())}
m(){if check() then r1.do-mπr1

(b11.getπb11y1
(),

. . . , bs1.getπbs1ys
())}

T(aij) :: getπaij
xi

(){return′=aij+1.getπaij+1xi
()} (i : 1..�, j : 1..ki − 1)

T(aiki) :: getπaiki
xi

(){return′=xi} (i : 1..�)

T(ri) :: do-mπri
(d11, . . . , ds1){ri+1.do-mπri+1

(d11, . . . , ds1)}
for i : 1..f − 1

T(rf) :: do-mπrf
(d11, . . . , ds1){x′ = e(d11, . . . , ds1)}

T(bij) :: getπbij
yi

(){return′=bij+1.getπbij+1yi
()} (i : 1..t, j : 1..si − 1)

T(bisi) :: getπbisi
yi

(){return′=yi} (i : 1..t)

where T(a) is the type name of attribute a and πvi denotes the remainder of the
corresponding navigation path v starting at position j.

If the paths {a11.a1k1 .x1, . . . , a�1.a�k�
.x�} have a common prefix up to

a1j, then class C can directly delegate the responsibility of getting the x-attributes
and checking the condition to T(aij) via the path a11. . . . , aij and then follow the
above rule from T(aij). The same rule can be applied to the b-navigation paths.

The expert pattern is the most often used refinement rule in OO design. One
feature of this rule is that it does not introduce more couplings by associations
between classes into the class structure. It also ensures that functional respon-
sibilities are allocated to the appropriate objects that know the data needed for
the responsibilities assigned to them.

Modelling with Relational Calculus of Object and Component Systems 125

An important point to make here is that the expert pattern and the rule of
encapsulation can be implemented by automated model transformations. In gen-
eral, transformations for structure refinement can be aided by transformations in
which changes are made on the structure model, such as the class diagram, with
a diagram editing tool and then automatic transformations can be derived for
the change in the specification of the functionality and object interactions [14].

6.2.3 Component Modelling in rCOS

There are two kinds of components in rCOS, service components (simply called
components) and process components (also simply called processes).

Like a service component, a process component has an interface declaring its
own local state variables and methods, and its behavior is specified by a process
contract. Unlike a service component that is passively waiting for a client to call
its provided services, a process is active and has its own control on when to call
out to required services or to wait for a call to its provided services. For such an
active process, we cannot have separate contracts for its provided interface and
required interface, because we cannot have separate specifications of outgoing
calls and incoming calls. So a process only has an interface and its associated
contract (or code).

Compositions for disjoint union of components and plugging components to-
gether, for gluing components by processes are defined in rCOS, and their clo-
sure properties and the algebraic properties of these compositions are studied
[5]. Note that an interface can be the union of a number of interfaces. Therefore,
in a specification we can write the interfaces separately.

The contracts in rCOS also define the unified semantic model of implementa-
tions of interfaces in different programming languages, and thus clearly support
interoperability of components and analysis of the correctness of a component
with respect to its interface contract. The theory of refinements of contracts
and components in rCOS characterizes component substitutivity, as well as it
supports independent development of components.

6.2.4 Related Work

The work on rCOS takes place within a large body of work [15] on modelling and
analysis techniques for object-oriented and component based software. Some of
these works we would like to acknowledge.

Eiffel [17] first introduced the idea of design by contract into object-oriented
programming. The notion of designs for methods in the object-oriented rCOS is
similar to the use of assertions in Eiffel, and thus also supports similar techniques
for static analysis and testing. JML [13] has recently become a popular language
for modelling and analysis of object-oriented designs. It shares similar ideas of
using assertions and refinement as behavioral subtype in Eiffel. The strong point
of JML is that it is well integrated with Java and comes with parsers and tools
for UML like modelling.

In Fractal [20], behavior protocols are used to specify interaction behavior
of a component. rCOS also uses traces of method invocations and returns to

126 Z. Chen et al.

model the interaction protocol of a component with its environment. However,
the protocol does not have to be a regular language, although that suffices for the
examples in this chapter. Also, for components rCOS separates the protocol of
the provided interface methods from that of the required interface methods. This
allows better pluggability among components. On the other hand, the behavior
protocols of components in Fractal are the same for the protocols of coordinators
and glue units that are modeled as processes in rCOS. In addition to interaction
protocols, rCOS also supports state-based modelling with guards and pre-post
conditions. This allows us to carry out stepwise functionality refinement.

We share many ideas with work done in Oldenburg by the group of Olderog
on linking CSP-OZ with UML [18] in that a multi-notational modelling language
is used for encompassing different views of a system. However, rCOS has taken
UTP as its single point of departure and thus avoids some of the complexities of
merging existing notations. Yet, their framework has the virtue of well-developed
underlying frameworks and tools.

6.3 The Example

The requirements capture starts with identifying business processes described as
use cases. The use case specification includes four views. One view is the inter-
actions between the external environment, modeled as actors, and the system.
The interaction is described as a protocol in which an actor is allowed to invoke
methods (also called use case operations) provided by the system. In rCOS, we
specify such a protocol as a set of traces of method invocations, and depict it by
a UML sequence diagram (cf. Fig. 2), called a use case sequence diagram.

In the real use of the system the actors interact with the system via the GUI
and hardware devices. However, in the early stage of the design, we abstract from
the GUI and the concrete input and output technologies and focus on specifying
what the system should produce for output after the input data or signals are
received. The design of the GUI and the controllers of the input and output
devices is a concern when the application interfaces are clear after the design of
the application software. Also, a use case sequence diagram does not show the
interactions among the domain objects of the system, as the interactions among
those internal objects can only be designed after the specification of what the
use case operations do when being invoked. There are many different ways in
which the internal objects can interact to realize the same use case.

The interaction trace of a use case is a constraint on the flow of control of the
main application program or processes. The flow of control can be modeled by a
guarded state transition system, that can be depicted by a UML state diagram
(cf. Fig. 4). While a sequence diagram focuses on the interactions between the
actors and the system, the state diagram is an operational model of the dynamic
behavior of the use case. They must be trace equivalent. This model may be
used for verification of deadlock and livelock freedom by model checking state
reachability.

Modelling with Relational Calculus of Object and Component Systems 127

Cashier

:Cashdesk

startSale()

finishSale()

enterItem(Barcode, Quantity)
loop

[1..*]loop

alt
cardPay(Card)

alt

enterItem(Barcode, Quantity)

[1..max]

cashPay(Amount, Amount)

startSale()

finishSale()

cashPay(Amount, Amount)

[not(ExMode)]

[ExMode]

loop [*]

loop [*]

enableExpress()

disableExpress()

loop [*]

Fig. 2. Use case sequence diagram for UC 1 & 2

Another important view is the static functionality view of the system. The
requirements should precisely specify what each use case operation should do
when invoked. That is, what state change it should make in terms of what new
objects are to be created, what old objects should be destroyed, what links be-
tween which objects are established, and what data attributes of which objects
are modified, and the precondition for carrying out these changes. For the pur-
pose of compositional and incremental specification, we introduce a designated
use case controller class for each use case, and we specify each method of the use
case as a method of this controller class. A method is specified by its signature
and its design in the form pre � post. The signatures of the methods must be
consistent with those used in the interaction and dynamic views. During specifi-
cation of the static functionality of the use case operations, all types and classes
(together with their attributes) required in the specification must be defined.

The type and class definitions in the specification of functionality of the meth-
ods of the use case controls form the structure view of the system. It can be
depicted by a class diagram or packages of class diagrams (cf. Fig. 3). The con-
sistency and integrated semantics of the different views are studied in [6].

128 Z. Chen et al.

Cashdesk

+enableExpress()

+disableExpress()

+startSale()

+finishSale()

+enterItem(c:Barcode,q:int)

+cashPay(a:double)

+cardPay(c:Card)

Sale

+complete: bool

+total: double

+date: Date

Payment

LineItem

+barcode: Barcode

+quantity: int

+subtotal: double

Product

+barcode: Barcode

+price: double

+amount: double

CashPayment

+amount: double

+change: double

CardPayment

Store

line 1
1

store *

1

catalog
1

*

sales

*

1

Clock

+date(): Date

clock 11

CardBank

+authorize(c:Card,a:double): bool

lines1 *

pay

1

1

sale

1

1

issuer
+1+*

connection

*

*

card

*

1

Fig. 3. Use case class diagram for UC 1 & 2

complete
ExMode

¬complete
ExMode

 ¬complete
ExMode

¬complete
¬ExMode

complete
¬ExMode

¬complete
¬ExMode

enterItem
(B

arcode,int)

finishSale()finishSale()

enterItem
(B

arcode, int)

* <max
enterItem(Barcode, int) enterItem(Barcode, int)

Ex
M

od
e

&
 d

is
ab

le
Ex

pr
es

s(
)

¬
ExM

ode &
 enableExpress()

Init

ExMode¬ExMode complete
ExMode

cashPay(double; double)

startSale()startSale()complete
¬ExMode

ca
sh

Pa
y(

do
ub

le
, d

ou
bl

e)

ca
rd

Pa
y(

C
ar

d)

disableExpress()
enableExpress()

startSale()startSale()

Fig. 4. State diagram for UC 1 and 2

UC 1 & UC 2: Process Sale. As both the first and the second use case relate
to a single sale, we handle them in a single section. It would be possible to keep
the mode change in a separate use case, but the combination saves space.

We first model the interaction protocol that the system offers the actor, i.e.
Cashier. This is given in a use case sequence diagram in Fig. 2. As a simplification,

Modelling with Relational Calculus of Object and Component Systems 129

we assume that the Cashier controls switching between normal and express
mode; in the end it makes no difference who does it. In this sequence diagram,
max denotes the maximum number of items that the current sale can process.

The protocol that the sequence diagram defines is specified by the set of traces
represented by the following regular expression:

tr(SDuc1) =

((enableExpress (startSale enterItem(max) finishSale cashPay)∗)
+ (disableExpress (startSale enterItem∗ finishSale (cashPay + cardPay))∗))∗

These traces are accepted by the state diagram given in Fig. 4 (note that labels
of states only serve as documentation and are not UML compliant). We assume
that the ExMode guard is initialized non-deterministically in the Init state.

Functionality Specification. We now start to analyze the functionality of
each of the operations in the use case. An informal understanding of the func-
tionality is to identify the classes, their properties, and to construct an initial
class diagram, see Fig. 3. For the specification of the operations we assume:

1. There exists a Store object, store : Store.
2. The object store owns a set of Product objects with their barcode, amount, and

price, denoted by store.catalog. It accesses the attribute catalog : set(Product)

(we omit properties not relevant to modelling, like product descriptions).
3. The Cashdesk object accesses the store via an association store.
4. There exists a Clock object associated with the desk via the association clock.
5. There is a Bank class with a method authorize(Card c,double a;bool returns),

which checks a credit card transaction with amount a and returns whether
it is valid.

We now specify the functionality of the methods in Cashdesk.
Use Case UC 1: Process Sale

Class Cashdesk
Method enableExpress()

pre: true
post: ExMode’ = true

Method disableExpress()
pre: true
post: ExMode’ = false

Method startSale()
pre: true
post: /* a new sale is created, and its line items initialized to empty,

and the date correctly recorded */
sale′ = Sale.New(false/complete, empty/lines, clock.date()/date)

Method enterItem(Barcode c, int q)
pre: /* there exists a product with the input barcode c */
store.catalog.find(c) �= null
post: /* a new line is created with its barcode c and quantity q */
line′ = LineItem.New(c/barcode,q/quantity)
; line.subtotal′ = store.catalog.find(c).price × q
; sale.lines.add(line)

130 Z. Chen et al.

Method finishSale()
pre: true
post: sale.complete′ = true
∧ sale.total′ = sum[[l.subtotal | l ∈ sale.lines]]

Method cashPay(double a; double c)
pre: a ≥ sale.total
post: sale.pay′=CashPayment.New(a/amount, a-sale.total/change)

/* the completed sale is logged in store, and */
; store.sales.add(sale); /* the inventory is updated */
∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then

p.amount′ = p.amount − l.quantity)

; store.sales.add(sale);
∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then

p.amount′ = p.amount − l.quantity)

Invariants. A class invariant is established on initialization of an instance, i.e.
through the constructor. It must hold after each subsequent method call to that
class. We specify correct initialization of the cash desk as a class invariant:

Class Invariant Cashdesk : store �= null ∧ store.catalog �= null
∧ clock �= null ∧ bank �= null

Static and Dynamic Consistency. When we have the constituents of the
specification document: class diagram, state diagram, sequence diagram and
the functional specification, we need to make sure that they are consistent [6].
The static consistency of the requirement model is ensured by checking that

1. All types used in the specification are given in the class diagram,
2. All data attributes of any class used in the specification are correctly given

in the class diagram,
3. All properties are correctly given as attributes or associations in the class

diagram, and the multiplicities are determined according to whether the type
of the property is set(C) or bag(C) for some class C,

4. Each method given in the functional specification is used in the other dia-
grams according to its signature, that is, the arguments (and return values)
and their types match,

5. Expressions occurring as guards are (type) consistent with their functional
specifications, i.e., of right type, initialised before first use, etc.

Dynamic Consistency. means that the dynamic flow of control and the inter-
action protocol are consistent:

1. If the actors follow the interaction protocol when interacting with the use
case controller, the state diagram should ensure that the interaction is not
blocked by guards. Formally speaking, the traces of method calls defined by
the sequence diagram should be accepted by the state machine.

2. On the other hand, the traces that are accepted by the state diagram should
be allowable interactions in the protocol defined by the sequence diagram.

Modelling with Relational Calculus of Object and Component Systems 131

The above two conditions are formalised and checked as trace equivalence be-
tween the sequence diagram and the state diagram in FDR [23,21]. We point
the interested reader to [22] and [19] for more detailed applications of CSP to
different flavours of state diagrams. However, we note that the reasons for having
a sequence diagram and a state diagram are different:

– The denotational trace semantics for the sequence diagram is easy to use as
the specification of the protocol in terms of temporal order of the events,

– The state diagram has an operational semantics which is easier to use for
verification of both safety and liveness properties.

The event-based sequence diagrams and state diagrams abstract the data func-
tionality away and thus make checking practically feasible—i.e., naive model-
checking of an OO program would require considering all possible values for
attributes and arguments of methods.

6.3.1 Detailed Design

At this point, we illustrate the refinement rules of rCOS (see Sec. 6.2.2) to the
operations that were specified for the use cases in the previous section. We take
each operation of each use case and decompose it, assigning functionalities to use
cases according to attributes of classes. This happens mainly through application
of the refinement rule for functional decomposition, called the expert pattern.

Navigation in the functional specification will be translated to setters and
getters for attributes, and direct access for associations.

Occasionally, refinement will not directly introduce a concrete implementa-
tion, but may also lead to refinement on the functionality specification level. For
an example, observe how the handling of sets in the following examples evolves
first through further refinement before being eventually modeled in code.

Refinement of UC 1 & 2

We successively handle the previously specified operations. The refinement of
the mode handling to code is trivial. We remind the reader that according to the
problem description changing the physical light will be handled by a separate
component.

class Cashdesk:: enableExpress() { exmode := true }
disableExpress() { exmode := false }

The startSale() operation is refined by making the Cashdesk instance invoke the
constructor of the Sale class. As the Clock is an entity located in the Cashdesk, we
have to pass the current Date as an argument. This follows the expert pattern:

class Cashdesk:: startSale() { sale:=Sale.New(clock.date()) }
class Sale:: Sale(Date d)

{ date := d ; complete := false; total := 0 ; lines := empty }

132 Z. Chen et al.

In Java, sets are implemented as a class that implements the interface Collection.
The constructor of the set class initializes the instance as an empty set. The
formal treatment of set operations like find(), add(), and constructors in general
is given in the existing rCOS literature. Thus, the constructor Sale() can be
further refined to the following code:

class Sale:: Sale(Date d)
{ date := d ; complete := false; total := 0 ; lines := set(LineItem).New() }

However, when design of a significant algorithm is required, such as calculating
the greatest common divisor of two integer attributes or finding the shortest
path in a directed graph object, the specification of the algorithm instead of
code can be first designed in the refinement. For operation enterItem(), the pre-
condition is checked by finding the product in the catalog that matches the input
bar code. From the refinement rule for the expert pattern, the navigation path
store.catalog.find() indicates the need for a method find() in the use case handler,
that calls a method find() which in turn calls the method find() of the set catalog.
Thus, we need to design the following methods in the relevant classes:

class Cashdesk:: find(Barcode code; Product returns) { store.find(code; returns) }
class Store:: find(Barcode code; Product returns) {catalog.find(code; returns)}
Class set(Product):: Method find(Barcode code; Product returns)

Pre ∃p : Product • (p.barcode = code ∧ contains(p))
Post returns.barcode’ = code

Applying the expert pattern to the navigationpaths line.subtotal, store.catalog.find()

and sale.lines.add(), we can refine the specification of enterItem() to:

class Cashdesk:: enterItem(Barcode code, int qty) {
if find(code) �= null then {
line:=LineItem.New(code, qty);
line.setSubtotal(find(code).price × qty);
sale.addLine(line)

} else { throw exception e() } }
class Sale:: addLine(LineItem l) { lines.add(l) }
class LineItem:: setSubtotal(double a) { subtotal :=a }

Note that we use exception handling to signal that the precondition is violated.
This allows us to introduce more graceful error handling later through refine-
ment. This is different to translating the condition into an assert statement
which would terminate the application, as that would preclude refinement.

We now refine method finishSale() using the expert pattern and define a
method setComplete() and a method setTotal() in class Sale. These methods then
will be called by the use case handler class.

class Cashdesk:: finishSale() { sale.setComplete(); sale.setTotal(); }
class Sale:: setComplete() { complete:=true }

setTotal() { total :=lines.sum() }
For cashPay(), we need the total of the sale to check the precondition, ac-
cordingly we define getTotal() in class Sale. To create a payment, we define a

Modelling with Relational Calculus of Object and Component Systems 133

method makeCashPay() called by the cash desk, and creates an object of type
CashPayment. For logging the sale, we define a method addSale() in class Store

that is called by the cash desk, that will use the method add() of the set of sales.
For updating the inventory, the universal quantification will be implemented

by a loop, so we defer the implementation to a helper method:

class Cashdesk:: cashPay(double amount; double return) {
if (amount ≥ sale.getTotal()) then {

sale.makeCashPay(amount; return);
store.addSale(sale);
updateInventory() /* defined separately */

} else { throw exception e(amount ≥ sale.getTotal())} }
class Sale:: getTotal(; double returns) { returns := total }

makeCashPay(double amount; double returns)
{ payment :=CashPay.New(amount); returns:=getChange() }

getChange(; double returns) { returns := amount - total }
class Store:: addSale(Sale s) { sales.add(s) }

Recall the functional specification corresponding to updateInventory():

Class Cashdesk::
∀l ∈ sale.lines, p ∈ store.catalog • (if p.barcode = l.barcode then

p.amount′ = p.amount − l.quantity)

It involves universal quantification over elements of a set. Such a specification
is usually covered by some design pattern. The solutions always require loop
statements, which, in an object-oriented setting, are for example covered by
(Java) iterators, or they might be implemented in a database.

A design pattern is to first define a method for changing the variables, i.e.,
to update the amount of the product in the catalog. This implies a method
update(int qty) in class Product, and then a method update(Barcode code, int qty) in
catalog whose type is set(Product) and which implements the loop for the quan-
tification on p (we consider the iteration over sale.lines in the next step):

class Product:: update(int qty) { amount := amount-qty }
class set(Product):: update(Barcode code, int qty) {

Iterator i := iterator();
while (i.hasNext()) {
Product p := i.next();
if p.barcode=code then p.update(qty);

} }
class Store:: update(Barcode code, int qty) { catalog.update(code,qty) }

The quantification on sale.lines is then designed as another loop in the class of
the method that contains the formula in its specification:

class Cashdesk:: updateInventory() {
Iterator j := sale.lines.iterator();
while (j.hasNext()) {
LineItem l := j.next();
store.update(l.barcode,quantity)

} }

134 Z. Chen et al.

Now we can also give an equivalent, more direct encoding of the two quantifica-
tions, where the inner loop is for the objects whose state is being modified by
the specification.

class Cashdesk:: updateInventory() {
Iterator j := sale.lines.iterator();
while (j.hasNext()) {
LineItem l := (j.next();
/* inlined store.update()/catalog.update() call: */
Iterator i := store.catalog.iterator();
while (i.hasNext()) {
Product p := i.next();
if p.barcode=l.barcode then p.update(l.quantity)

} } }
In cardPay(), the precondition invokes the function authorize(Card, double) of

the Bank. We reuse addSale(sale) and updateInventory() unchanged from the re-
finement for cashPay(). At this stage, where the Bank is an external class we do
not need to specify the authorize(Card, double) method.

class Cashdesk:: cardPay(Card c) {
if (Bank.authorize(c,sale.total)) then {

payment:=CardPay.New(c);
store.addSale(sale);
updateInventory()

} else { throw exception e(c)} }
The other use cases expand in a similar way. The refinement of specifications

involving universal and existential quantifications over a collection of objects/-
data to Java implementation of the Collection interface show that formal meth-
ods should now take the advantages of the libraries of the modern programming
languages such as Java. This can significantly reduce the burden on (or the
amount of) verification.

6.3.2 Component-Based Architecture

The component architecture is designed from the object-oriented models in the
previous sections. In contrast to the component layout in Chapter 3, where
already deployment has been taken into account for the component mapping, we
will first map the object-oriented model to logical components, and then discuss
how they are affected by deployment. Also, we have some a priori components,
like the hardware devices and the Bank.

The adaptation of the object-oriented model to a component-based model
reduces system coupling, such that less related functionalities are performed by
different components. This is done according to use cases and users (i.e. actors).

Logical Model of the Component-Based Architecture. The primary use
case UC 1 is performed by the the SalesHandler component, while the composi-
tion of the handler with the components for the peripherals yields the CashDesk.
A Store component aggregates several CashDesks and an Inventory.

Modelling with Relational Calculus of Object and Component Systems 135

For the other use cases, we obtain a similar structure with a controller and
supporting classes (not shown in detail): Ordering stock (UC 3), handling deliv-
eries (UC 4), stock report (UC 5), and changing prices (UC 7) are components
within a Store.

Delivery reports (UC 6) are generated inside the Enterprise component, while
product exchange between stores (UC 8) is managed in the Exchange component,
which resides within Enterprise.

The model is called a logical component-based architecture because

1. It is the model of the design for the application components,
2. The interfaces are object-oriented interfaces, that is interactions are only

through local object method invocations.

However, it is important to note that the object-oriented functional refinement
are needed for the identification of the components and their interfaces.

We take some liberties with the design of Chapter 3: we do not model a
CashDeskLine (see Chapter 3, Fig. 12), but only a single cash desk that accesses
the inventory. Also, we omit the CashBox as it does not contribute to the pre-
sentation. Note that in the following, only the SalesHandler is actually derived
from the requirements (as would be the Clock, the Bank, and the Inventory).

The SalesHandler component will be the “work horse” of our cash desk. It
implements the actual Sale use case protocol and also provides the necessary
API for accessing the ongoing sale from the GUI. As a simplification, we assume
that they can happen atomically at anytime, that is, the pure keyword indicates
that the methods calls can be interleaved with those from the protocol. The
provided protocol corresponds to the trace given in the Functional Description
of the UC 1. The method invocations on the required side are derived (manually)
from the refinement of the functional specification. The multiple update call-outs
stem from the iteration when a sale is logged and the inventory updated.
component SalesHandler
required interface ClockIf { date() }
required interface BankIf { authorize(..) }
required interface StoreIf { update(..), find (..), addSale(..) }
provided pure interface CashdeskIf { getItem(..), getSubTotal(..), getTotal (..), getPayment() }
provided interface SaleIf

protocol { ([?enableExpress (?startSale date! (?enterItem find!) (max) ? finishSale
?cardPay authorize! addSale!)∗

| ?disableExpress (?startSale date! (?enterItem find!)∗ ? finishSale
[?cardPay authorize! addSale! update!∗

| ?cashPay addSale! update!∗])∗])∗ }
class Cashdesk implements SaleIf, CashdeskIf

Design of the Concrete Interaction Mechanisms. After obtaining the
model of the logical component-based architecture, we can replace the object-
oriented interfaces by different interaction protocols according to the requirement
descriptions and the physical locations of the components.

There are more than one CashDesk component instance, each having its own
clock and sharing one Inventory instance per store. The interaction between
them can then be implemented asynchronously using an event channel. RMI
or CORBA can be used for interactions between a Store component and the
Enterprise component.

136 Z. Chen et al.

UC Co n tro ller Clas s

 CashDesk 1

ApplicationEmb ed d ed Sy s tem

UC Co n tro ller Clas s

 CashDesk n

Emb ed d ed Sy s tem

.

.

.

ReportDesk

UpdateDesk

RequestDesk

ProductDesk

OrderDesk

 STORE 1

 STORE n

.

.

.Bank ExchangeDesk

 ENTERPRISE
 STORE 2

DataBase

Data Representation

 Inventory

Fig. 5. Overall component view of the system

If we decompose the Inventory into sub-components (the three layer architecture):
the application layer, the data representation layer and the database, we can

– Keep the OO interface between the application and data representation layer,
– Implement interaction between the data representation and the database in

JDBC.

Most of these interactions mechanisms are international standards and the
change from an OO interface to any of them has been a routine practice. We
believe that there is no need for providing their formal models and analysis,
though a formal method like rCOS is able to do this with some effort. Fig. 5
gives the overall view of the system. In the following, we discuss the detailed
decomposition of the peripherals of a cash desk.

Hardware Components. The peripheral device components are modelled in
rCOS only at the contract level, that is, with regard to the protocols. We do not
give their functional description or implementation here and assume they imple-
ment their behaviour correctly. The required protocols (call-outs with trailing
exclamation mark; see [8]) have been derived from the functional specifications/
refinement.

The input devices are modelled as (active) rCOS processes that call provided
methods of another component on input. For manual input, we model the cash
desk terminal as a black box (we dispense with the implementing class) with
buttons for starting/ending a sale, and manual input of an item and its quan-
tity. Remember from Sec. 6.3 that we designed the controller class to handle

Modelling with Relational Calculus of Object and Component Systems 137

both express mode changes. Nonetheless, here we stick to the original problem
description and allow the cashier to disable it only. Thus, the protocol is still
a subset of the one induced by the use case (we omit method signatures for
conciseness of the presentation):
// define short−hand for methods
define SaleIf { enableExpress(), disableExpress(), startSale (), enterItem (..),

finishSale (), cardPay(..), cashPay(..) }

component Terminal
required interface SaleIf
protocol { ([disableExpress!] startSale ! enterItem!∗ finishSale ! [cardPay! | cashPay!])∗ }

Furthermore, we assume that the bar code scanner has the same interface (al-
though it will in practice only ever invoke the enterItem() method). To connect
both devices to the cash desk application, we have to introduce a controller which
merges input from both devices. For later composition, we introduce unique
names to the two provided interfaces of the same type and specify the class
which handles the call-ins (implementation not shown). Here, we give the com-
bined required/provided protocol of call-ins (methods prefixed by ?)/call-outs
(suffixed by !). rCOS also permits separate protocols for a component interface,
which does not reveal any dependencies on method calls.
component InputController
required interface SaleIf
provided interface SaleIf at PortA, PortB // interleaving
protocol { ([?disableExpress disableExpress!] ?startSale startSale ! // relay messages

// fan in from both devices:
(?enterItem enterItem!)∗

? finishSale finishSale ! [?cardPay cardPay! | ?cashPay cashPay!])∗ }
class Merge implements SaleIf

The cash desk display provides a way of updating the display with the current
sale. For each event, the display controller queries the cash desk’s current sale
via getter-methods and updates the screen. The interface will be provided by
the SaleHandler component. Also, we handle displaying the mode here. Note that
the GUI has a more general protocol as we do not need to take mode changes
into account for an individual sale.
component CashDeskGUI
required interface LightIf { lightExpress(), lightNormal() }
required interface CashdeskIf { getItem(..), getSubTotal(..), getTotal (..), getPayment() }
required interface ClockIf { date }
provided interface GUIIf { enterItem(..), startSale(), finishSale (), cardPay(..),

cashPay(..), enableExpress(), disableExpress() }
protocol { ([?enableExpress lightExpress!| ?disableExpress lightNormal!] ?startSale date!

(?enterItem getItem! getSubTotal!)∗ ?endSale getTotal!
[?cardPay | ?cashPay] getPayment!)∗ }

class GUI implements GUIIf

The Printer component shall employ the same design, providing Printer.
PrinterIf.

As the system should use a bus architecture, updates have to be done in an
event-based fashion, i.e., we need a BusController component that proxies between
all devices and acts as a fan-out when an event has multiple subscribers. Contrary
to the design document, we do not employ a broadcast architecture: for example,
the controller makes sure that the business logic processes an enterItem event
first, and only then notifies the display. Likewise, it drives the printer.

138 Z. Chen et al.

CashDesk

<<SalesHandler>>

<<Inventory>>

find(...)
addSale(...)
update(...)

SaleIf

StoreIf

<<BusController>>

<<InputController>>

<<Terminal>>

<<BarcodeScanner>>
SaleIf

SaleIf

SaleIf

<<CashdeskGUI>>

<<Printer>>

GUIIf

enableExpress()
disableExpress()
s tartSale()
enterItem (...)
finishSale()
c ashPay(...)
c ardPay(...)

enableExpress()
disableExpress()
s tartSale()
enterItem (...)
finishSale()
c ashPay(...)
c ardPay(...)

PrinterIf

CashdeskIf

getItem (...)
getSubtotal(.. .)
getT otal(.. .)
getPaym ent(...)

Cloc kIf

LightIf

<<Light>>

lightExpress()
lightNorm al()

<<Bank>><<Clock>>

BankIfCloc kIf

authorize(.. .)date()

Fig. 6. Deployed components for a single Cashdesk

component BusController
provided interface SaleIf // to InputController
required interface CashDeskGUI.GUIIf // elided, see above
required interface Printer.PrinterIf // ditto
required interface SaleIf // from business logic
protocol { /∗ fan−out for each call−in elided ∗/ }
class Bus implements SaleIf

We concede that this component design means that the BusController must be
modified each time a new subscriber is added to the system.

We plumb the BarcodeScanner and Terminal component into the InputController,
whichweconnect to theBusController.That is in turnconnectedto theSalesHandler.
We omit detailed discussion of the other interfaces; dependent components men-
tioned in with-clauses are deployed automatically as long as there are no ambigui-
ties with regard to interfaces:

component Cashdesk
deploy CashDeskGUI with Clock, Light
deploy InputController with Barcode at PortA, Terminal at PortB
deploy BusController with InputController, CashDeskGUI, Printer
deploy SalesHandler with Clock,Bank,Inventory,CashDeskGUI,BusController

Assuming availability of the required components of the SalesHandler, the result-
ing component is closed, as all required interfaces are provided. For the resulting
component diagram, see Fig. 6; the upper half indicates the peripherals, the
lower half the components derived from the use case.

With regard to formal rCOS (see e.g. [5,10]), we note that only components
whose traces start with a call-in are rCOS-components. Those that have a call-
out at the start of their trace, are actually rCOS-processes. For UC 1, only the
input devices used by the actor are processes.

Modelling with Relational Calculus of Object and Component Systems 139

Modelling Deployment. For a consistent rCOS model, this means we must
modify the existing model to take into account the deployment boundaries,
middle-ware and their effect on communication object references.

We also note that the different failure modes of remote communication must
be taken into account and may require to revisit the Design, as for example,
suddenly functions (in the mathematical sense) may fail when they are invoked
on remote hosts. This is a field of ongoing investigation.

6.4 Analyses

This section outlines how to add the specification and analysis of the extra
functionalities given in the description document. It then continues with a de-
scription of the actual analyses of the functional and behavioural properties that
have been carried out with tool support.

Extra-Functional Properties

We specify extra functionality of a method as a property for the time interval
for the execution of the method. We use temporal variables whose values depend
on the reference time interval for the execution of methods for our specification.
Those variables could be ET m which is the duration of the execution of method
m in the worst case, or N Customers which is the number of customers in the
referenced observation time interval. From the intended meaning, the variable
ET m is rigid, its value does not depend on the reference interval. For a formula
f on the rigid and temporal variables, for a probability p, [f]p is a formula saying
that f is satisfied with the probability p. As it is well-known in the interval logic,
the formulas φ;ψ, which corresponds to the sequential composition of formulas φ
and ψ, holds for an interval [a, b] iff there ism ∈ a..b such that φ holds for interval
[a,m] and ψ holds for interval [m, b]. Let � be a temporal variable denoting the
length of the interval it applied to. Intuitively, the formula

[0 ≤ ET ScanItem < 5]0.9 ∧ [0 ≤ ET ScanItem < 1.0]0.05

says that the execution time for the operation ScanItem is within 5 seconds with
probability 0.9, and it is less than 1 second with probability 0.05.

Since the arrival and leaving rates are the same: 320/3600 arrivals per second,
and constant, with an exponential distribution,we can derive that [N Customers
= 2

45�]1 holds for all intervals. As another example, by estimating the average
waiting time for customers here we show how to include QoS analysis in our
framework. Let ET Service stand for the average service time for customers. It
is easy to calculate the possibility of ET Service from the above specification,
i.e. ET Service = 32.075. Therefore, the rate of service is μ = 1/ET Service =

1/32.075 = 0.0311. Also, we have that the rate of customers arriving is λ =

N Customers/� = 4/45.

6.4.1 Verification, Analysis and Tool Support

Various verifications and analyses are carried out on different models. For the
requirement model, the trace equivalence between the sequence diagram and its

140 Z. Chen et al.

state diagram has been experimentally checked with FDR. We manually checked
the consistency between the class declarations (i.e. the class diagrams) and the
functionality specification to ensure that all classes and attributes are declared
in the class declarations. This is obviously a syntactic and static semantic check
that can be automated in a tool. We can further ensure the consistency by
translating the rCOS functionality specification into a JML specification and
then carry out runtime checking and testing. Also, some of the development
steps involving recurrent patterns can be automated.

Runtime Checking and Testing in JML. We have not checked the correct-
ness of the design against the requirement specification for removing possible
mistakes made when manually applying the rules. However, we have translated
some of the design into JML [13] and carried out runtime testing of specifications
and the validity of an implementation.

We translate each rCOS class C into two JML files, one is C.jml that con-
tains the specification translated from the rCOS specification, and the other is
a Java source file C.java containing a code that implements the specification.
During the translation, the variables used in the rCOS specification are taken as
specification-only variables in C.jml, that are mapped to program variables in
C.java. The translated JML files can be compiled by the JML Runtime Assertion
Checker Compiler (jmlc). Then, test cases can be executed to check the satis-
faction of the specification by the implementation. The automatic unit testing
tool of JML (jmlunit) can be used to generate unit testing code, and the testing
process can be executed with JUnit .

For example, a JML code snippet of the enterItem() design in Section 6.3 is
shown on the left of Fig. 7. Notice that the code in the dotted rectangle gives
the specification of the exception that was left unspecified in Section 6.3.

/*@ public normal_behaviour

@ requires (\exists Object o; theStore.theProductList.contains(o);

@ ((Product)o).theBarcode.equals(code)); …

@ ensures theLine != \old(theLine) &&

@ theLine.theBarcode.equals(code) &&…

@ also

@ public exceptional_behaviour

@ requires !(\exists Object o; theStore.theProductList.contains(o);

@ ((Product)o).theBarcode.equals(code));

@ signals_only Exception;

@*/

public void enterItem(Barcode code, int quantity) throws Exception;

public void enterItem(Barcode code, int quantity)
 throws Exception{

line = new LineItem(code, quantity);
Iterator it = store.productList.iterator();
boolean t = false;
while (it.hasNext()){

Product p = (Product)it.next();
if (p.barcode.equals(code)){

line.total = p.price * quantity;
t = true;
sale.lines.add(line);

}
}
if (!t) throw new Exception();

}

Fig. 7. JML Specification and Implementation

The final code implementing the enterItem() specification is shown on the
right of Fig. 7. Before getting the final code, we encountered two runtime errors
reported by the testing process. One error resulted from the implementation
which did not handle an input that falsifies the precondition. The reason for
the other error is that one invariant is false after method execution. Testing is

Modelling with Relational Calculus of Object and Component Systems 141

not sufficient for correctness. Therefore, it is also desirable to carry out static
analysis, for instance with ESC/Java [3].

QVT Transformation Support. Our long term goal is to implement correct-
ness preserving transformations that support a full model driven development
process. The problems we are concerned with are the consistency among models
on the same level, and the correctness relation between models in different levels.
The meaning of consistency among models on the same level is that the models
of various views need to be syntactically and semantically compatible with each
other. The meaning of correctness relation between models on different levels is
that a model must be semantically consistent with its refinements [16].

We plan to use QVT [7], a model transformation language standard by OMG,
to implement these model transformations. We have already defined the required
rCOS metamodels for object diagrams, object sequence diagrams, component
diagrams, component interaction diagrams and state machines. Pre- and post-
conditions can also be translated into the respective clauses of a QVT program.

The refinement of the use cases on the object level through the expert pattern
is done manually now, but it can be implemented using QVT, and automated.
The correctness of the expert pattern is proved by rCOS. We have already ex-
plored correctness preserving transformations in a object-oriented design in [24].

Then we can apply architectural design to decompose the object model into
a component model by allocating use cases, classes, associations and services to
components. The component model should be a refinement of the application
requirement model. This step can also be implemented as a QVT transformation.
The correctness of the transformation from object model to component model
should be proved in rCOS.

Verifying Interaction Protocols. Composition of components not only re-
quires that the interfaces and their types match. Also, the interaction protocols
must be compatible; if two interfaces are composed, the corresponding traces
must match, i.e., the sequences of call-ins/call-outs must align: unexpected call-
ins are ignored by the callee and will deadlock the caller.

We automatically check protocol consistency by generating CSP processes for
each interface. Interface composition is then modelled through pairwise parallel
composition. As a composed interface is uniquely defined in the specification, we
can successively check each composition for deadlock freedom and incrementally
add successive interfaces. Model checking with FDR would indicate a deadlock
if an operation call required by some component is not provided by any of its
partner components at some moment in time.

In an application, these can also be implemented as runtime checks using
extensions for aspect-oriented programming that capture temporal behaviour
like Tracematches [1] or Tracechecks [2].

6.5 Summary

We have presented our modelling of the Common Component Example in rCOS,
the Relational Calculus of Object and Component Systems. Based on the

142 Z. Chen et al.

problem description, we have developed a set of interrelated models for each
use case which separately models the different concerns of control and data. The
rigorous approach ensures that we can be of high confidence that the resulting
program implements the desired behaviour correctly without having to prove
this on the generated code, which usually is very difficult or even impossible.
As the problem description is not always amenable to modelling in rCOS, we
occasionally had to simplify the model.

For each use case, a state diagram, a sequence diagram, its trace and the func-
tional specification of its operations with pre- and postconditions are provided.
These different aspects shall help all participants involved in the development
process (designers, programmers) to share the same overall understanding of the
system. Consistency of models is checked through processes that can be auto-
mated, e.g. by type checking of OO methods and model checking of traces.

The functional specifications in rCOS are then refined to a detailed design
very close to Java code through correct rules for patterns like the Expert Pat-
tern or translation of quantification. The generated code can be enriched with
JML annotations derived from the functional specification and invariants. The
annotations can then be used for runtime checking or static analysis.

From the OO model, we then derive a more convenient component model
using Class Decomposition and grouping classes into components. The rCOS
component model allows us to reason about component interaction, defined by
the traces from the specifications, ruling out “bad” behaviour like deadlocks. We
discuss issues of (distributed) deployment and necessary middle-ware.

For extra-functional analysis, we applied the Probabilistic Interval Temporal
Logic to specify extra-functional properties given in the problem description.
Then, we conducted the estimation of the average waiting time for customers.

Apart from concrete tool support, we also point out ongoing work and research
on automating the different parts of the development process.

The generated code and additional information is available from the project
web page at http://www.iist.unu.edu/cocome/.

Acknowledgements. The authors thank Wang Xu and Siraj Shaikh at UNU-
IIST for helpful suggestion on CSP and FDR, and the careful reviewers.

References

1. Allan, C., Avgustinov, P., Simon, A.S., Hendren, L., Kuzins, S., Lhoták, O., de
Moor, O., Sereni, D., Sittamplan, G., Tibble, J.: Adding Trace Matching with Free
Variables to Aspect J. In: OOPSLA 2005 (2005)

2. Bodden, E., Stolz, V.: Tracechecks: Defining semantic interfaces with temporal
logic. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, Springer, Hei-
delberg (2006)

3. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

http://www.iist.unu.edu/cocome/

Modelling with Relational Calculus of Object and Component Systems 143

4. Chandy, K.M., Misra, J.: Parallel Program Design: a Foundation. Addison-Wesley,
Reading (1988)

5. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming.
Technical Report 350, UNU-IIST, P.O. Box 3058, Macao SAR, China, Accepted
by FSEN 2007 (2006), http://www.iist.unu.edu

6. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration in
requirements modelling. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, Springer,
Heidelberg (2007)

7. Object Management Group. MOF QVT final adopted specification, ptc/05-11-01
(2005), http://www.omg.org/docs/ptc/05-11-01.pdf

8. He, J., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung, D.,
Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, Springer, Heidelberg (2005)

9. He, J., Li, X., Liu, Z.: rCOS: A refinement calculus for object systems. Theoretical
Computer Science 365(1-2), 109–142 (2006)

10. He, J., Li, X., Liu, Z.: A theory of reactive components. In: Liu, Z., Barbosa, L.
(eds.) Intl. Workshop on Formal Aspects of Component Software (FACS 2005).
ENTCS, vol. 160, pp. 173–195. Elsevier, Amsterdam (2006)

11. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

12. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

13. Leavens, J.L.: JML’s rich, inherited specification for behavioural subtypes. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, Springer, Heidelberg (2006)

14. Liu, X., Liu, Z., Zhao, L.: Object-oriented structure refinement - a graph transfor-
mational approach. Technical Report 340, UNU-IIST, P.O. Box 3058, Macao SAR,
China (2006), http://www.iist.unu.edu; In: Proc. Intl. Workshop on Refinement,
ENTCS (Extended version accepted for journal publication)

15. Liu, Z., He, J. (eds.): Mathematical Frameworks for Component software: Models
for Analysis and Synthesis, Series on Component-Based Software Development,
vol. 2. World Scientific, Singapore (2006)

16. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support.
International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation (ISoLA06), Full version as UNU-IIST Technical Report 343
(2006), http://www.iist.unu.edu

17. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

18. Möller, M., Olderog, E.-R., Rasch, H., Wehrheim, H.: Linking CSP-OZ with UML
and Java: A case study. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004.
LNCS, vol. 2999, Springer, Heidelberg (2004)

19. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: 1st
Intl. Conf. on Software Engineering and Formal Methods (SEFM 2003), IEEE
Computer Society Press, Los Alamitos (2003)

20. Plasil, F., Visnosky, S.: Behavior protocols for software components. IEEE Trans.
Software Eng. 28(11), 1056–1070 (2002)

21. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

22. Roscoe, A.W., Wu, Z.: Verifying Statemate statecharts using CSP and FDR. In:
Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, Springer, Heidelberg (2006)

http://www.iist.unu.edu
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.iist.unu.edu
http://www.iist.unu.edu

144 Z. Chen et al.

23. Schneider, S.: Concurrent and Real-time Systems. Wiley, Chichester (2000)
24. Yang, L., Mencl, V., Stolz, V., Liu, Z.: Automating correctness preserving model-to-

model transformation in MDA. In: Proc. of Asian Working Conference on Verified
Software, UNU-IIST Technical Report 348 (2006), http://www.iist.unu.edu

A Full CSP/FDR Listing for Consistency

−− Define events:
channel enableExpress, disableExpress, startSale , enterItem, finishSale , cashPay, cardPay

−− Define the process corresponding to the regular expression:
Trace = (TraceExMode [] TraceNormalMode) ; Trace
TraceNormalMode = disableExpress −> TraceNormalSale
TraceNormalSale = startSale −> enterItem −> TraceEnterItemLoopStar

; finishSale −> ((TraceCashPay [] TraceCardPay)
; (SKIP [] TraceNormalSale))

TraceEnterItemLoopStar = SKIP [] (enterItem −> TraceEnterItemLoopStar)
TraceCashPay = cashPay −> SKIP
TraceCardPay = cardPay −> SKIP

TraceExMode = enableExpress −> TraceESale
TraceESale = startSale −> enterItem −> TraceEMode(7)

; (finishSale −> (TraceCashPay ; (SKIP [] TraceESale)))
TraceEMode(c) = if c == 0 then SKIP

else (SKIP [] (enterItem −> TraceEMode(c−1)))

−− State Diagram:
datatype Mode = on | off
State = Init(on) [] Init (off)
−− Resolve outgoing branches non−deterministically:
Init (mode) = (if mode == on then disableExpress −> StateNormalMode(off)

else STOP)
[] (if mode == off then enableExpress −> StateExpressMode(on)

else STOP)
StateNormalMode(mode) = (startSale −> enterItem −> StateEnterItemLoopStar)

; finishSale −> ((StateCashPay [] StateCardPay)
; ((enableExpress −> StateExpressMode(on))

[] StateNormalMode(mode)))

StateEnterItemLoopStar = SKIP [] (enterItem −> StateEnterItemLoopStar)
StateCashPay = cashPay −> SKIP
StateCardPay = cardPay −> SKIP

StateEMode(c) = if c == 0 then SKIP
else (SKIP [] (enterItem −> StateEMode(c−1)))

StateExpressMode(mode) = startSale −> enterItem −> StateEMode(7)
; finishSale −> (StateCashPay

; ((disableExpress −> StateNormalMode(off))
[] StateExpressMode(mode)))

−− Check trace equivalence:
assert State [T= Trace
−−ˆ does not hold as trace abstracts from the guard,
−− permits: enableExpress −> ... −> enableExpress
assert Trace [T= State

−− Make sure both mechanisms can’t deadlock:
assert Trace :[deadlock free [F]]
assert State :[deadlock free [F]]

http://www.iist.unu.edu

Modelling with Relational Calculus of Object and Component Systems 145

B Packages

bank

Bank Card Payment

CardPayment

-card : Card
-to tal: d o u b le

CashPayment

-amo u n t: d o u b le

util

Barcode

-co d e: lo n g

enterprise

exc hangedesk

Enterprise

-s to res : Set<Sto re>
-exch an g es : Set<Exch an g e>

Exchange

-req u es tId : lo n g
-s to reId : lo n g
-lin es : Set<Exch an g eItem>

ExchangeDesk

-req u es t: Req u es t
-exch an g e: Exch an g e

ExchangeItem

-req u es tId : lo n g
-b arco d e: Barco d e
-q u an tity : in t

c ashdesk

CashDesk

-s to re: Sto re
-exmo d e: b o o lean
-s ale: Sale
-lin g : Lin eItem

sale

Sale

-co mp lete: b o o lean
-to tal: d o u b le
-d ate: Date
-lin es : Set<Lin eItem>

LineItem

-b arco d e: Barco d e
-q u an tity : in t
-s u b to tal: d o u b le

s tore::produc tdesk

s tore

data

orderdesk produc tdesk

reportdesk reques tdesk

updatedesk

Store

-id : lo n g
-en terp ris e: En terp ris e
-s to ck: Sto ck
-s to reOrd er: Sto reOrd er
-s to reRep ly : Sto reRep ly
-s to reSale: Sto reSale
-s to reRep o rt: Sto reRep o rt
-s to reDeliv ery : Sto reDeliv ery
-s to reReq u es t: Sto reReq u es t

Product

-n ame: Strin g
-b arco d e: Barco d e
-p rice: d o u b le
-amo u n t: in t

s tore::orderdesk

Order

-o rd erId : lo n g
-d ate: Date
-lin es : Set<Ord erLin e>
-co mp lete: b o o lean

OrderDesk

-s to re: Sto re
-o rd er: Ord er

OrderLine

-b arco d e: Barco d e
-amo u n t: in t

Delivery

-id : in t
-d ate: Date
-lin es : Set<Deliv ery Lin e>

DeliveryLine

-b arco d e: Barco d e
-amo u n t: in t

ProductDesk

-s to re: Sto re
-o rd er: Ord er
-d eliv ery : Deliv ery
-rep ly : Rep ly

Reply

-id : in t
-lin es : Set<Rep ly Lin e>

s tore::reportdesk

ReportDesk

-s to re: Sto re

ReportItem

-n ame: Strin g
-b arco d e: Barco d e
-amo u n t: in t
-q u an tity : in t
-to tal: d o u b le

Stock Report

-d ate: Date
items : Set<Rep o rtItem>

ReplyLine

-b arco d e: Barco d e
-amo u n t: in t
-reject: b o o lean

Fig. 8. Packages

s tore::reques tdesk

RequestDesk

-s to re: Sto re
-req u es t: Req u es t
-exch an g e: Exch an g e

Request

-req u es tId : lo n g
-s to reId : lo n g
-lin es : Set<Req u es tItem>

RequestItem

-req u es tId : lo n g
-b arco d e: Barco d e
-q u an tity : in t

s tore::updatedesk

UpdateDesk

-s to re: Sto re

s tore::data

Stock

-catalo g : Set<Pro d u ct>
-lo wSto ckNu m: in t

StoreOrder

-o rd ers : Set<Ord er>

StoreSale

-s ales : Set<Sale>

StoreRequst

-req u es ts : Set<Req u es t>

StoreReply

-rep lies : Set<Rep ly >

StoreReport

-rep o rts : Set<Rep o rt>

StoreDelivery

-d eliv eries : Set<Deliv ery >

Fig. 9. Packages

	Modelling with Relational Calculus of Object and Component Systems - rCOS
	Introduction
	Goals and Scope of the Component Model
	Modelled Cutout of CoCoME
	Benefit of the Modelling
	Effort and Lessons Learned
	Overview

	Component Model
	Object Modelling in rCOS
	Refinement
	Component Modelling in rCOS
	Related Work

	The Example
	Detailed Design
	Component-Based Architecture

	Analyses
	Verification, Analysis and Tool Support

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

