
SOFA 2.0 metamodel

Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

 Department of Software Engineering
Faculty of Mathematics and Physics, Charles University

Malostranské náměstí 25, Prague 1, 11800, Czech Republic
{hnetynka,plasil,bures,mencl,kapova}@nenya.ms.mff.cuni.cz

Abstract. In this report, we present a new version of the SOFA component
model – SOFA 2.0. SOFA component model now seamlessly integrates a
component-based technology with service-oriented technology. Such a
technology merge takes advantages of both approaches and allows for better
management of features like dynamic reconfiguration, supporting multiple
communication styles, heterogeneous applications, etc.

1 Introduction

Component-based development (CBD) [23] has become a commonly used technique

for building software systems. There are many opinions as to what a component is.

One typically agrees that it is a black-box entity with well defined interfaces and

behavior, which can be reused in different contexts and without knowledge of its
internal structure (i.e., without modifying its internals). However, from a design view,

components – especially hierarchical ones – can be viewed as gray-box entities with

the internal structure visible as a set of communicating subcomponents. Typically, the

collection of the related abstractions, their semantics and the rules for component
composition (creation of component architecture) is referred to as a component model

and an implementation of it as a component system/platform. In our view, the concept

of “component” has always to be interpreted in the semantics of a particular

component model.
Many component systems currently exist and are used both in industry and

academia. Typically, the industrial component systems, such as EJB [7] and CCM

[17], are based on a flat component model. On the contrary, the academic component

systems and models usually provide advanced features like hierarchical architectures,
behavior description, coexistence of component from different platforms, dynamically

updatable components, support for complex communication styles, etc.

However, it is hard to properly balance the semantics of advanced features – in our

view, this fact hinders a widespread, industrial usage of hierarchical component
models. Based on our experience with the SOFA [20] and Fractal [4] component

models, we claim that this issue primarily is related to dynamic reconfiguration of an

architecture, i.e., adding and removing components at runtime, passing references to

components, etc.

2 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

Another currently emerging paradigm is the service-oriented architecture (SOA)

[25]. SOA-based systems (WebServices, etc.) are ordinary used in industry. In a high-

level view, there is no difference between the SOA and CBD paradigms [11] – both a

service and component have a well defined interface, their internal structure is not
visible to their environment, and they can be reused in different contexts without

modification. However, in SOA, services are not nested and their composition is

typically made with the granularity of each request call, frequently being data driven.

Thus, because of lack of any continuity in the architecture, there is no problem with
dynamic reconfiguration.

In this paper, we use our experience with designing and implementing the SOFA

component system [20]. SOFA employs a hierarchical component model and supports

many of advanced features (like dynamic update, behavior description via behavior
protocols, software connectors, etc.) and the prototype implementation is available as

an open-source [22]. Although, it can seem that SOFA is an ideal environment for

building large software systems, its usage brings several limitations. These limitations

are – as it has been already said – mainly the problems with dynamic reconfiguration
of applications and they are common for all hierarchical component systems. SOFA

completely forbids the reconfigurations and allows just static architectures. Our

solution of dynamic reconfiguration problem, which we describe in the paper, is in

integration of ideas of component-based and service-oriented systems into a single
seamless unit.

Other SOFA issues are problems with behavior specification and its collisions with

different communication styles employed by connectors and bad extensibility of

component controllers.
The goal of the paper is to describe a new version of the SOFA component model –

SOFA 2.0 – which does not suffer of above mentioned problems.

2 SOFA Overview

SOFA is providing a platform for software components. It uses a typical

component model with hierarchically nested components, which can be either

primitive or composite. A composite component is built of other components, while a
primitive one contains no subcomponents. A component is described by its frame and

architecture. The frame is a black-box view of the component. It defines component’s

provided interfaces and required interfaces. The architecture is a gray-box view of a

component; it implements component’s frame by specifying subcomponents and their
interconnections on the first level of nesting. Components are interconnected via

bindings among interfaces. All bindings are performed using connectors [3], which

are the first class concept like components. A behavior of SOFA components can be

captured formally via behavior protocols [21].
A development lifecycle of a SOFA component is quite similar to other component

systems. First, an ADL description has to be written. The description is then used to

generate skeletons of the component implementation. A developer implements the

components and inserts them into a repository. In order to launch the application, it is
necessary to prepare a deployment plan, where components are assigned to concrete

SOFA 2.0 metamodel 3

hosts and resources are allocated. Finally, according the plan, application is deployed

and launched. Figure 1 shows an example composite component together with

relevant parts of its ADL description.

DB

DBQuery

Logger

frame DB {
 provides: IDBAccess db;
 protocol :
 (?db.open;?db.query*;
 ?db.close)*
};

frame DBQuery {
 provides: IDBAccess db;
 requires : ILogger log;
 protocol :
 (?db.open{!log.log};
 ?db.query{!log.log}*;
 ?db.close{!log.log})*
};

frame Logger {
 provides: ILogger log;
 protocol :
 ?log.log*
};

architecture DB implements DB {
 inst DBQuery db;
 inst Logger log;
 bind db:log to log:log;
 delegate db to db:db;
}

Fig. 1. SOFA application example

2.1 Dynamic reconfiguration

Based on our experience with the SOFA [20] and Fractal [4] component models, we

claim that this issue primarily is related to dynamic reconfiguration of an architecture,
i.e., adding and removing components at runtime, passing references to components,

etc. A simple prohibition of dynamic reconfiguration (even though adopted by some

systems [2]) would be very limiting, since dynamic changes of architecture are

inherent to many component-based applications [15]. On the other hand, particularly
in hierarchical component models, an arbitrary sequence of dynamic reconfiguration

can lead to “uncontrolled” architectural modification, which is inherently error-prone

(we call this issue the evolution gap problem). Moreover, for description of

component architectures, most of the component models provide an architecture
description language (ADL) [2,6,14,15], which typically captures just the initial

components’ configuration. (The idea of software architectures and ADL

specification came from hardware design, which is static by nature). Thus a challenge

is to somehow capture reconfiguration in an ADL.
However, in hierarchical architectures a key problem is where a newly created

component and connection have to be added into the hierarchy and how to establish

new connections – in particular the problem is pressing when the connection is not

among siblings in the hierarchy.
Consider the situation on Figure 2a) capturing a fragment of a data accessing

application, which logs all method calls to a set of loggers connected via a required

collection interface. The DAccess is a data access component, which is bound to

LFactory (the logger factory) and which features a collection requires interface for
accessing the loggers. As a result of a call to its provided interface, the logger factory

creates a new logger component and returns a reference pointing to it. Such a call is

4 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

issued by the DAccess component, which thus receives a reference to a new logger

and binds to it via the collection interface (dashed line on Figure 2a).

a)

Logger2

DAccess LFactory

Logger1

 b)

DAccess LFactory

Logger
??

FactoryManager

Fig. 2. Dynamic reconfiguration example

Provided the DAccess and LFactory components are siblings in the hierarchical

architecture, there are no problems with such a dynamic reconfiguration. However, a

problem arises when this is not the case as depicted on Figure 2b). The issue is, where

the newly created component (Logger) should be placed in the architecture and how
the connection to it should be established.

A straightforward answer to the question where to put dynamically created Logger

components might be into the FactoryManager. However deciding how to manage

their connections to DAccess is not that intuitively obvious.
If we allow a direct connection between the DAccess and Logger, then the

connection will go through the FactoryManager component boundaries and violate

the requirement of encapsulation. The second possibility, to add a copy of the Logger

provided interface to the FactoryManager component and lead the connection through
it is not also ideal, because it would mean that FactoryManager had to mediate traffic

of all sessions. In general, if the component deciding on creation of another

component is located in a different part of the hierarchical architecture than the new

component is to be connected with, the problem of mediating connections becomes
pressing.

2.2 Control part

In addition to “business” interfaces (i.e., normal interfaces with provided and required

functionality of a component), components usually have so called control interfaces
(controllers). From architectural view, these controllers are provided interfaces and

they correspond to non-functional features of components, i.e., life-cycle

management, reconfiguration, introspection, etc. The controllers should not be

accessed by application logic but they are intended to be used by runtime
environment.

Components in the current SOFA implementation provides just single fixed control

interface called Component Manager (CM). CM provides all necessary non-

functional features, which are management of component life-cycle
(starting/stopping/updating component) and management of component

interconnections.

SOFA 2.0 metamodel 5

As it has been said, CM is fixed for all components. But this approach brings

several problems, because in many cases a component can suffice with smaller

functionality (e.g., in environment with limited resources) or in other cases it would

be desirable to have possibility of extending a set of non-functional features (like
monitoring of incoming/outcoming calls, intercepting calls, etc.).

3 SOFA 2.0 Description

From the global view, the main concepts and general design of the SOFA system

remains the same. The first-class entities are still components and connectors; SOFA

still employs a hierarchical component model.

In the original SOFA system, components have been designed and composed using
CDL description. This CDL language in fact defines the used component model. In

the new SOFA system, we are leaving this ADL-based definition of the component

model and we are using a meta-model based definition. More specifically, we are

using the MOF technology [19] for designing the component model. The advantages
of such approach can be found in [8].

3.1 SOFA component model

The relevant part of the meta-model of SOFA is depicted on figure in Appendix A.

Using it, we describe the essential features of the SOFA component model. In the
following text of the section, the terms in italics have direct representation in the

meta-model.

The core element is the frame, which defines the black-box view of the component.

It can provide and require a set of interfaces. Each interface has its interface type,
which is defined its signature. The signature is a name of the type in an underlying

language. In addition to the type, the interface has several other attributes. The

communication style allows determining in which way components connected through

this interface can communicate. The communication feature is tied with the
communication style and allows further specification of features that the

communication through the interface has to have. Then, the interface has specified its

cardinality (single or collection) and contingency (optionally connected or

mandatory). The last attribute, the connection type, which has two possible values –
normal or utility, is tied with dynamic reconfiguration and is explained later.

On the other hand, the frame is implemented by an architecture, which represents a

gray-box of a component. It is obvious, that a single frame can be implemented by

several architectures. But also a single architecture can implement several frames. It is
an analogy from object-oriented programming, where a single class can implement

several interfaces.

The architecture of a primitive component is empty; the architecture of a composite

component contains definition of subcomponents and bindings among these
subcomponents. In original SOFA, the architecture of a composite component

describes just one level of nesting – its subcomponents are defined using frames. In

the new SOFA, the architecture can define more than a single level; subcomponents

6 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

can refer to frames or directly to other architectures. In the meta-model, this fact is

emphasized by comment (with xor label) between the instantiatesFrame and

instantiatesArchitecture associations.

In addition to subcomponents, architectures can define bindings among these
subcomponents. There are three kinds of bindings. A delegation connects a provided

interface of component to a subcomponent's provided interface and a subsumption

connects from a subcomponent's required interface to a required interface of

component. The last kind is a connection between two or more subcomponents.
The interface type, frame and architecture elements have names and also version

identification. The versioning model suitable for such distributed systems and which

is already used in old SOFA, is described in [9].

The remaining elements are properties of frames and architectures, which are just
name-type pair and they are intended for component parameterization at deployment

time, and annotations, which allows to annotate frames and interfaces with additional

information.

3.2 Dynamic reconfiguration

By dynamic reconfiguration we mean a run time modification of an application

architecture. A special case is a dynamic update of a component supported by the

original SOFA (and also in the SOFA 2.0); the principle is that a particular

component is replaced with another one having a compatible interfaces. This kind of
dynamic reconfiguration is easy to handle and there are no problems with the

application’s architecture, because all the changes are located in the updated

component and are transparent to the rest of the application. Since the new component

can have a completely different internal structure, such a component update in
principle means replacing a whole subtree in the component hierarchy, being thus a

“real” architecture reconfiguration. Also, as an aside, dynamic update is not usually

initiated by the application itself but by an external entity (the user, provider, etc.).

 A general dynamic reconfiguration is an arbitrary modification of an application
architecture though. We have identified the following five elementary operations

dynamic reconfiguration is based upon: (1) removing a component, (2) adding a

component, (3) removing a connection, (4) adding a connection, (5) adding/removing

a component’s interface.
 In hierarchical component models, as mentioned in Sect. 2.1, an arbitrary

sequence of these operations can lead to “uncontrolled” architectural modification

(the evolution gap problem). To avoid it in SOFA 2.0, we limit dynamic

reconfigurations to those compliant with specific reconfiguration patterns. At present,
we allow the following three reconfiguration patterns: (i) nested factory, (ii)

component removal, and (iii) utility interface. In principle the operations (1) – (4) are

to be employed in these patterns only, and the operation (5) is limited to the use of

collection interfaces (an unlimited array of interfaces of a specific type in principle).
The choice of these patterns is based on our experience gained out of non-trivial case

studies.

SOFA 2.0 metamodel 7

3.2.1 Nested Factory Pattern

The nested factory pattern covers adding a new component and a new connection to

an architecture. The new component is created by a factory component as a result of

method invocation on this factory. The key related issues are (i) where in the
hierarchy the new component should be placed, and (ii) how the connections of/to the

new component should be lead.

Consider the situation on Fig. 2a) capturing a fragment of a data accessing

application, which logs all method calls to a set of loggers connected via a required
collection interface. The DAccess is a data access component, which is bound to

LFactory (the logger factory) and which features a collection requires interface for

accessing the loggers. As a result of a call to its provided interface, the logger factory

creates a new logger component and returns a reference pointing to it. Such a call is
issued by the DAccess component, which thus receives a reference to a new logger

and binds to it via the collection interface (dashed line on Fig. 2a).

Provided the DAccess and LFactory components are siblings in the hierarchical

architecture, there are no problems with such a dynamic reconfiguration. However, a
problem arises when this is not the case as depicted on Fig. 2b). The issue is, where

the newly created component (Logger) should be placed in the architecture and how

the connection to it should be established.

A straightforward answer to the question where to put dynamically created Logger
components might be into the FactoryManager. However deciding how to manage

their connections to DAccess is not that intuitively obvious. If we allow a direct

connection between the DAccess and Logger, then the connection will go through the

FactoryManager component boundaries and violate the requirement of encapsulation.
The second option, to add a copy of the Logger provided interface to the

FactoryManager component and lead the connection through it is not also ideal,

because it would mean that FactoryManager had to mediate traffic of all sessions. In

general, if the component deciding on creation of another component is located in a
different part of the hierarchical architecture than the new component is to be

connected with, the problem of mediating connections becomes pressing.

In SOFA 2.0, we have adopted the following rule: The newly created component

becomes a sibling of the component that initiated the creation (and its call to the
factory also determines the component’s collection interface the connection is to be

established to). In the example above, the Logger component becomes a sibling of the

DAccess component – see Fig. 3a).

The main reason, why the newly created component does not become e.g. a sibling
of the factory component (as it can seem to be also an obvious simple solution) is that

the component which initiated the creation typically needs to intensively collaborate

with the new component which is obviously easier to manage with a sibling. The next

positive outcome of the rule is better performance, because it is not necessary to
create complicated connections going up and again down through the hierarchy

(imagine DAccess communicating with Logger if it were a sibling of LFactory (Fig.

3b).

8 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

a)

DAccess LFactory

Logger

FactoryManager

 b)

DAccess LFactory

Logger

FactoryManager

Fig. 3. Dynamic application example

Technically, to identify a factory component, factory annotation can be applied to
factory methods of an interface.

The newly created component (NC) is not limited to having just a provided

interface (as it is shown in Fig. 2 and Fig. 3) but it can have also required interfaces.

However, these are restricted just to the types featured by the component initiating the
creation (IC). At the moment the provided interface of NC is bound, the required

interfaces are also bound to the same provisions as the required interfaces of IC are.

3.2.2 Removing component pattern

Removing a component can be seen as a quite common situation. The closely tied and

necessary action is removing all connections to the removed component. An example
of such situation can be again the data access component and set of loggers. A single

logger component can be removed together with link from the data access component.

From the view of the application architecture, there are no problems with removing

components. The only issue is that after removing component and corresponding
connection, the unbound required interfaces can remain. In SOFA, such unbound

interfaces do not bring any problems because behavior of each component is

described by behavior protocol and the component environment can verify, whether

the required interfaces can be left unbound or not.
Removing connections is allowed just as the result of removing a component as it is

described above.

3.2.3 Utility Interface Pattern

While working on case studies, we frequently faced the situation when a component

provides a functionality, which is to be used by multiple (“almost all”) components in
the application (i.e. the need of use is orthogonal to the components’ hierarchy). The

functionality is typically some kind of a broadly-needed service such as printing. A

solution can be to place such a component on the top level of the architecture

hierarchy and arrange for connections through all the higher-level composite
components to the nodes, where the functionality is actually needed. But this solution

leads to an escalation of connections and makes the whole component architecture

blurred (by making unimportant utility features too visible) and consequently error-

prone. Another typical situation we faced is that a reference to such a service is to be
passed among components (e.g., returning reference to a service from a call of a

registry/naming/trading component).

For this reasons, we have introduced utility interfaces (see the meta-model in the

Appendix). The reference to a utility interface can be freely passed among

SOFA 2.0 metamodel 9

components and the connection made using this reference is established orthogonally

to the architecture hierarchy (Fig. 4).

From a high-level view, the introduction of utility interfaces brings into

component-based models a feature of service-oriented architectures. Such feature
fusing allows to take advantages of both these methodologies (e.g., encapsulation and

hierarchical components of a component model and simple dynamic reconfiguration

from a service-oriented architecture).

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

Fig. 4. Utility interface example

As a side effect, the introduction of utility interfaces this way consequently means
that – in a limiting case – the whole application can be built only of components with

utility interfaces and therefore the component-based application becomes an ordinary

service-oriented application (inherently dynamically reconfigurable). Thus, service

oriented architecture becomes a specific case of a hierarchical component model.

3.3 Control part of components

The control part of component is in SOFA v. 2.0 modular and is based on usage of

aspects. The general idea of this approach and its application for Fractal component
model is described in [16].

Using this approach, the control part of a component is modeled as a set of so

called microcomponents. The microcomponent model is flat; a microcomponent

cannot be composed of other microcomponents. Also to avoid recursion, the
microcomponents do not have control part.

The control part of a SOFA component always contains several necessary

microcomponents, which exposes interfaces as control interfaces of the component.

These are the lifecycle controller, which allows for starting/stopping/updating a
component, and binding controller, which allows for adding/removing connections

among components. The other functionality of the control part can be added to a

component as an aspect at deployment time.

The metamodel of aspects and microcomponents is shown in Appendix B. The
meaning of elements in the metamodel is also described in [16].

10 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

4 Related Work

Related work: In the following paragraphs, we describe related work and we split it

into two sections – work related to controllers and work related to dynamic
reconfiguration of components.

The CORBA Component Model (CCM) [17] and Enterprise Java Beans (EJB) [7]

are representatives of industrial component systems employing flat component model.
CCM components’ interfaces are classically divided into provides and required ones;

in addition there is the next division into interfaces for synchronous and asynchronous

invocations. Components are defined in IDL (Interface Description Language) but

IDL does not provide any support for component composition. EJB components are
defined directly in Java. Moreover, EJB components do not have explicitly specified

required interfaces. Each EJB component has a home interface, through which new

components can be created. The similar concept in CCM is called a factory interface.

Both these interfaces can be seen as controllers. In addition, CCM components can
have attributes, which are named values exposed via getter and setter methods and

primarily intended for component configuration. These attributes can be again seen as

a control interface. In both systems, these control interfaces are fixed and are not

extensible in any way.
The Fractal component model [4] uses a classical component model with

hierarchically nested components, In Fractal, each component can have multiple

control interfaces. The number and types of control interfaces depend on

configuration of a run-time environment. In the Fractal component model, each
component is split to two parts – control part and content. The content is composed of

other subcomponents or in the case of a primitive component it is directly

implemented. The control part contains implementation of control interfaces and other

elements implementing non-functional features.

Component systems with a flat component model (CCM [17], C2 [24]) do not

consider dynamic reconfiguration as an issue, since only a flat architecture gets

modified and a service can be seen as another component in the flat component space.
However, the evolution gap problem is inherently present.

In the area of hierarchical component models, there are several approaches as to

how to deal with dynamic reconfiguration.

(1) Forbidding. A very simple and straightforward approach used in several
component systems (e.g., [2]) is to forbid dynamic reconfiguration at all. But this is

very limiting, revealing in essence all the flaws of the static nature of an ADL.

(2) Flattening. Another solution is to use hierarchical architecture and composite

components only at the design time and/or deployment time. However, at run time the
application architecture is flattened and the composite components disappear – this

way the evolution gap problem becomes even more pressing, since the missing

composite components make it very hard to trace the dynamic changes with respect to

the initial configuration. This approach is used, e.g., in the OMG Deployment &
Configuration specification [18], which defines deployment models and processes for

component-based systems (including CCM). The component model used in the OMG

SOFA 2.0 metamodel 11

D&C specification is hierarchical, but finally in the deployment plan, the application

structure is flattened and the composite components are removed.

(3) Restricted reconfiguration. Several systems forbid an arbitrary reconfiguration

but allow special and well defined types of dynamic reconfiguration,
(a) Patterns. ArchJava [1] is a component system employing a hierarchical

component model. (Archjava is an extension of Java). Components in ArchJava can

be freely added (using the new operator like for plain objects), but addition of new

connections is restricted by connection patterns. These patterns define through which
interfaces and which types of components the new component can be connected.

Moreover, only the direct parent component can establish these connections (among

direct sibling components).

(b) Shared components. Fractal introduces shared components (at ADL level); a
shared component is a subcomponent of more than one other component. This way,

component hierarchy becomes a DAG in general (not a tree). Appling this idea to the

example in Fig. 1 would mean that the Logger component would be used by LFacory

and DAccess. This solution works nicely, however, an architecture with shared
components can be confusing, since it is not easy to determine who is responsible for

lifecycle of a shared component, reasoning about architecture (e.g., checking behavior

compliance) is very complicated and several advanced features of component models

(e.g., dynamic update of a component subtree) cannot be applied.
(c) Formal rules. Several systems (e.g., CHAM [10], “graph rewriting” [27])

define a formal system for describing the permitted dynamic reconfiguration. These

systems allow complex definition of all architecture states during an application’s

lifecycle. But they are very complicated, even for simple architectures.
(4) Unlimited. Darwin [14] uses direct dynamic instantiation, which allows

defining architecture configurations that can dynamically evolve in an arbitrary way

(but the new connections among components are not captured). Julia [12], an

implementation to Fractal, allows a general component reference passing (so that any
time a reference is passed it mimics establishing a new connection – this works

orthogonally to specifying a shared component in ADL). Obviously, the evolution gap

problem is ubiquitous in these cases.

On the other hand it should be emphasized that SOA is typically based on dynamic
reconfiguration, since the composition of services is done with the granularity of

individual calls captured in coordination languages like Linda [26] or routing of

messages [5].

5 Conclusion

In this report, we present the new version of our component system SOFA. The

features of the whole component model are defined using the meta-model. For
handing dynamic reconfiguration, we allow several well defined patterns, which

cover most common situations, where the reconfiguration is necessary. In order to

allow nearly an arbitrary dynamic reconfiguration, we introduced so called utility

interfaces, which in component-based system bring features of a service-oriented

12 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

system. This integration helps to solve problems of hierarchical component models

and allows for their wider usage.

Currently, we have specified the whole meta-model of SOFA, all necessary

interfaces for development time, deployment and runtime environments and we are
implementing the whole system. The workable system is expected within several

months.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture to
Implementation, Proceedings of ICSE 2002, Orlando, USA, May 2002

2. Allen, R.: A Formal Approach to Software Architecture, PhD thesis, School of Computer
Science, Carnegie Mellon University, 1997

3. Bures, T., Plasil, F.: Communication Style Driven Connector Configurations, In Software
Engineering Research and Applications, LNCS3026, 2004

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J. B.: An Open Component
Model and Its Support in Java, Proceedings of CBSE 2004, Edinburgh, UK, May 2004

5. Chappell, D. A., Enterprise Service Bus, O'Reilly Media, Jun 2004
6. Dashofy, E. M., van der Hoek, A., Taylor, R. N.: A highly-extensible, XML-based

architecture description language, Proceedings of WICSA’01, Amsterdam, Netherlands,
August 2001

7. Enterprise Java Beans specification, version 2.1, Sun Microsystems, November 2003
8. Hnětynka, P., Píše, M.: Hand-written vs. MOF-based Metadata Repositories: The SOFA

Experience, Proceedings of ECBS 2004, Brno, Czech Republic, IEEE CS, May 2004
9. Hnětynka, P., Plášil, F.: Distributed Versioning Model for MOF, Proceedings of

WISICT’04, Cancun, Mexico, January 2004
10. Inverardi, I., Wolf, A.L., Yankelevich, D.: Formal Specification and Analysis of Software

Architectures Using the Chemical Abstract Machine Model, IEEE Transactions on
Software Engineering, vol. 21, no. 4, April 1995

11. Iribarne, L.: Web Components: A Comparison between Web Services and Software
Components, Colombian Journal of Computation, Vol. 5, No. 1, Jun 2004

12. Julia, http://forge.objectweb.org/projects/fractal/
13. Lau, K.-K., Wang, Z.: A Taxonomy of Software Component Models, Proceedings of

EUROMICRO-SEAA’05, Porto, Portugal, Sep 2005
14. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures, Proceedings of

FSE’4, San Francisco, USA, Oct 1996
15. Medvidovic, N.: ADLs and dynamic architecture changes, Joint Proceedings

SIGSOFT’1996 Workshops, ACM Press, New York, USA, Oct 1996
16. Mencl, V., Bures, T.: Microcomponent-Based Component Controllers: A Foundation for

Component Aspects, Proceedings of APSEC 2005,Taipei, Taiwan, IEEE CS, December
2005

17. Object Management Group: CORBA Components, v 3.0, OMG document formal/02-06-
65, June 2002

18. Object Management Group: Deployment and Configuration of Component-based
Distributed Applications Specification, OMG document ptc/ 05-01-07, January 2005

19. Object Management Group: MOF 2.0 Core, OMG document ptc/03-10-04, October 2004
20. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP: Architecture for Component Trading and

Dynamic Updating, Proceedings of ICCDS'98, Annapolis, USA, IEEE CS, May 1998
21. Plášil, F., Višňovský, S.: Behavior Protocols for Software Components, IEEE

Transactions on Software Engineering, vol. 28, no. 11, November 2002

SOFA 2.0 metamodel 13

22. SOFA prototype, http://sofa.objectweb.org/
23. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edition,

Addison-Wesley, January 2002
24. Taylor, R. N., Medvidovic, N., Anderson, K. M., Whitehead, E. J., Robbins, J. E., Nies, K.

A., Oreizy, P., Dubrow, D. L.: A Component- and Message-Based Architectural Style for
GUI Software, IEEE Transactions on Software Engineering, Vol. 22, No. 6, Jun 1996

25. WebServices, http://www.w3.org/2002/ws/
26. Wells, G.: Coordination Languages: Back to the Future with Linda, Proceedings of

WCAT’05, Glasgow, UK, Jul 2005
27. Wermelingera, M., Fiadeiro, J. L.: A graph transformation approach to software

architecture reconfiguration, Science of Computer Programming, Volume 44, Issue 2,
August 2002

14 Petr Hnětynka, František Plášil, Tomáš Bureš, Vladimír Mencl, Lucia Kapová

Appendix A

NamedEntity

+ name : String

VersionedEntity
Version

InterfaceType

+ signature :String

Interface

+communicationStyle :String

+connectionType :ConnectionType

+ isCollection : boolean

+ isOptional :boolean

<< enumeration >>

ConnectionType

+ normal :

+ utility :

Frame

+ protocol : String

Architecture SubcomponentInstance

Binding

Delegation Subsumption Connector

SubcomponentInterfaceEndpoint

+ interaceName :String

ComponentInterfacesEndpoint

+ interfaceName : String

xor

Feature

+value :String

interfaceType+

providedInterface+ * requiredInterface +*

implements+
1..*

instantiatesFrame+

0..1

subcomponent+

*

binding+*

subcomponent+

inEndpoint

+

outEndpoint+outEndpoint+
inEndpoint+

endpoint+*

instantiatesArchitecture+

0..1

communicationFeature +*

<< Singleton >>

Factory

<< Singleton >>

TopLevel

Annotation

anotation +*

anotation+

*

returnInterface+

version +

Property

+ type : String

MappedProperty

mappedProperty + *

instance+

property +

*

property +

*

SOFA 2.0 metamodel 15

Appendix B

MicroComponent MicroInterface

MicroInterfaceType

+signature: String

Aspect

+ name : String

ComponentSelect

+type:String

InterfaceSelect

+name:String

MicroComponentInstance

+name:String

MicroContent

MicroContentClass

+ class : String

MicroContentGenerator

+ generator : String

MicroBinding

MicroComponentInterfaceEndpoin

+interfaceName : String
+componentName : String

interfaceType+ 0..1

providedInterface+

*

requiredInterface+

*

componentSelect+

*

interfaceSelect+

*

microcomponentDefinition + *
microcomponent+

instance+ *

content +

binding +*

client+* server +

instance+

*

binding+

*

delegatedProvidedInterface+

0..1
delegatedRequiredInterface+

0..1

