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Abstract. In this report, we present a new version of the SOFA component 
model – SOFA 2.0. SOFA component model now seamlessly integrates a 
component-based technology with service-oriented technology. Such a 
technology merge takes advantages of both approaches and allows for better 
management of features like dynamic reconfiguration, supporting multiple 
communication styles, heterogeneous applications, etc. 

1 Introduction 

Component-based development (CBD) [23] has become a commonly used technique 

for building software systems. There are many opinions as to what a component is. 

One typically agrees that it is a black-box entity with well defined interfaces and 

behavior, which can be reused in different contexts and without knowledge of its 
internal structure (i.e., without modifying its internals). However, from a design view, 

components – especially hierarchical ones – can be viewed as gray-box entities with 

the internal structure visible as a set of communicating subcomponents. Typically, the 

collection of the related abstractions, their semantics and the rules for component 
composition (creation of component architecture) is referred to as a component model 

and an implementation of it as a component system/platform. In our view, the concept 

of “component” has always to be interpreted in the semantics of a particular 

component model.  
Many component systems currently exist and are used both in industry and 

academia. Typically, the industrial component systems, such as EJB [7] and CCM 

[17], are based on a flat component model. On the contrary, the academic component 

systems and models usually provide advanced features like hierarchical architectures, 
behavior description, coexistence of component from different platforms, dynamically 

updatable components, support for complex communication styles, etc. 

However, it is hard to properly balance the semantics of advanced features – in our 

view, this fact hinders a widespread, industrial usage of hierarchical component 
models. Based on our experience with the SOFA [20] and Fractal [4] component 

models, we claim that this issue primarily is related to dynamic reconfiguration of an 

architecture, i.e., adding and removing components at runtime, passing references to 

components, etc.  
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Another currently emerging paradigm is the service-oriented architecture (SOA) 

[25]. SOA-based systems (WebServices, etc.) are ordinary used in industry. In a high-

level view, there is no difference between the SOA and CBD paradigms [11] – both a 

service and component have a well defined interface, their internal structure is not 
visible to their environment, and they can be reused in different contexts without 

modification. However, in SOA, services are not nested and their composition is 

typically made with the granularity of each request call, frequently being data driven. 

Thus, because of lack of any continuity in the architecture, there is no problem with 
dynamic reconfiguration. 

In this paper, we use our experience with designing and implementing the SOFA 

component system [20]. SOFA employs a hierarchical component model and supports 

many of advanced features (like dynamic update, behavior description via behavior 
protocols, software connectors, etc.) and the prototype implementation is available as 

an open-source [22]. Although, it can seem that SOFA is an ideal environment for 

building large software systems, its usage brings several limitations. These limitations 

are – as it has been already said – mainly the problems with dynamic reconfiguration 
of applications and they are common for all hierarchical component systems. SOFA 

completely forbids the reconfigurations and allows just static architectures. Our 

solution of dynamic reconfiguration problem, which we describe in the paper, is in 

integration of ideas of component-based and service-oriented systems into a single 
seamless unit. 

Other SOFA issues are problems with behavior specification and its collisions with 

different communication styles employed by connectors and bad extensibility of 

component controllers. 
The goal of the paper is to describe a new version of the SOFA component model – 

SOFA 2.0 – which does not suffer of above mentioned problems. 

2 SOFA Overview 

SOFA is providing a platform for software components. It uses a typical 

component model with hierarchically nested components, which can be either 

primitive or composite. A composite component is built of other components, while a 
primitive one contains no subcomponents. A component is described by its frame and 

architecture. The frame is a black-box view of the component. It defines component’s 

provided interfaces and required interfaces. The architecture is a gray-box view of a 

component; it implements component’s frame by specifying subcomponents and their 
interconnections on the first level of nesting. Components are interconnected via 

bindings among interfaces. All bindings are performed using connectors [3], which 

are the first class concept like components. A behavior of SOFA components can be 

captured formally via behavior protocols [21]. 
A development lifecycle of a SOFA component is quite similar to other component 

systems. First, an ADL description has to be written. The description is then used to 

generate skeletons of the component implementation. A developer implements the 

components and inserts them into a repository. In order to launch the application, it is 
necessary to prepare a deployment plan, where components are assigned to concrete 
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hosts and resources are allocated. Finally, according the plan, application is deployed 

and launched. Figure 1 shows an example composite component together with 

relevant parts of its ADL description. 

 

DB

DBQuery

Logger

frame DB {
  provides: IDBAccess db;
  protocol :
    (?db.open;?db.query*;
                             ?db.close)*
};

frame DBQuery {
  provides: IDBAccess db;
  requires : ILogger log;
  protocol :
    (?db.open{!log.log};
     ?db.query{!log.log}*;
     ?db.close{!log.log} )*
};

frame Logger {
  provides: ILogger log;
  protocol :
    ?log.log*
};

architecture  DB implements DB {
  inst DBQuery db;
  inst Logger log;
  bind db:log to log:log;
  delegate  db to db:db;
}

 

Fig. 1. SOFA application example 

2.1 Dynamic reconfiguration 

Based on our experience with the SOFA [20] and Fractal [4] component models, we 

claim that this issue primarily is related to dynamic reconfiguration of an architecture, 
i.e., adding and removing components at runtime, passing references to components, 

etc. A simple prohibition of dynamic reconfiguration (even though adopted by some 

systems [2]) would be very limiting, since dynamic changes of architecture are 

inherent to many component-based applications [15]. On the other hand, particularly 
in hierarchical component models, an arbitrary sequence of dynamic reconfiguration 

can lead to “uncontrolled” architectural modification, which is inherently error-prone 

(we call this issue the evolution gap problem). Moreover, for description of 

component architectures, most of the component models provide an architecture 
description language (ADL) [2,6,14,15], which typically captures just the initial 

components’ configuration. (The idea of software architectures and ADL 

specification came from hardware design, which is static by nature). Thus a challenge 

is to somehow capture reconfiguration in an ADL. 
However, in hierarchical architectures a key problem is where a newly created 

component and connection have to be added into the hierarchy and how to establish 

new connections – in particular the problem is pressing when the connection is not 

among siblings in the hierarchy. 
Consider the situation on Figure 2a) capturing a fragment of a data accessing 

application, which logs all method calls to a set of loggers connected via a required 

collection interface. The DAccess is a data access component, which is bound to 

LFactory (the logger factory) and which features a collection requires interface for 
accessing the loggers. As a result of a call to its provided interface, the logger factory 

creates a new logger component and returns a reference pointing to it. Such a call is 
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issued by the DAccess component, which thus receives a reference to a new logger 

and binds to it via the collection interface (dashed line on Figure 2a). 

 

a)

Logger2

DAccess LFactory

Logger1

                            b)    

DAccess LFactory

Logger
??

FactoryManager

 

Fig. 2.  Dynamic reconfiguration example 

 
Provided the DAccess and LFactory components are siblings in the hierarchical 

architecture, there are no problems with such a dynamic reconfiguration. However, a 

problem arises when this is not the case as depicted on Figure 2b). The issue is, where 

the newly created component (Logger) should be placed in the architecture and how 
the connection to it should be established.  

A straightforward answer to the question where to put dynamically created Logger 

components might be into the FactoryManager. However deciding how to manage 

their connections to DAccess is not that intuitively obvious. 
If we allow a direct connection between the DAccess and Logger, then the 

connection will go through the FactoryManager component boundaries and violate 

the requirement of encapsulation. The second possibility, to add a copy of the Logger 

provided interface to the FactoryManager component and lead the connection through 
it is not also ideal, because it would mean that FactoryManager had to mediate traffic 

of all sessions. In general, if the component deciding on creation of another 

component is located in a different part of the hierarchical architecture than the new 

component is to be connected with, the problem of mediating connections becomes 
pressing. 

2.2 Control part 

In addition to “business” interfaces (i.e., normal interfaces with provided and required 

functionality of a component), components usually have so called control interfaces 
(controllers). From architectural view, these controllers are provided interfaces and 

they correspond to non-functional features of components, i.e., life-cycle 

management, reconfiguration, introspection, etc. The controllers should not be 

accessed by application logic but they are intended to be used by runtime 
environment. 

Components in the current SOFA implementation provides just single fixed control 

interface called Component Manager (CM). CM provides all necessary non-

functional features, which are management of component life-cycle 
(starting/stopping/updating component) and management of component 

interconnections. 
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As it has been said, CM is fixed for all components. But this approach brings 

several problems, because in many cases a component can suffice with smaller 

functionality (e.g., in environment with limited resources) or in other cases it would 

be desirable to have possibility of extending a set of non-functional features (like 
monitoring of incoming/outcoming calls, intercepting calls, etc.). 

3 SOFA 2.0 Description 

From the global view, the main concepts and general design of the SOFA system 

remains the same. The first-class entities are still components and connectors; SOFA 

still employs a hierarchical component model. 

In the original SOFA system, components have been designed and composed using 
CDL description. This CDL language in fact defines the used component model. In 

the new SOFA system, we are leaving this ADL-based definition of the component 

model and we are using a meta-model based definition. More specifically, we are 

using the MOF technology [19] for designing the component model. The advantages 
of such approach can be found in [8]. 

3.1 SOFA component model 

The relevant part of the meta-model of SOFA is depicted on figure in Appendix A. 

Using it, we describe the essential features of the SOFA component model. In the 
following text of the section, the terms in italics have direct representation in the 

meta-model. 

The core element is the frame, which defines the black-box view of the component. 

It can provide and require a set of interfaces. Each interface has its interface type, 
which is defined its signature. The signature is a name of the type in an underlying 

language. In addition to the type, the interface has several other attributes. The 

communication style allows determining in which way components connected through 

this interface can communicate. The communication feature is tied with the 
communication style and allows further specification of features that the 

communication through the interface has to have. Then, the interface has specified its 

cardinality (single or collection) and contingency (optionally connected or 

mandatory). The last attribute, the connection type, which has two possible values – 
normal or utility, is tied with dynamic reconfiguration and is explained later. 

On the other hand, the frame is implemented by an architecture, which represents a 

gray-box of a component. It is obvious, that a single frame can be implemented by 

several architectures. But also a single architecture can implement several frames. It is 
an analogy from object-oriented programming, where a single class can implement 

several interfaces. 

The architecture of a primitive component is empty; the architecture of a composite 

component contains definition of subcomponents and bindings among these 
subcomponents. In original SOFA, the architecture of a composite component 

describes just one level of nesting – its subcomponents are defined using frames. In 

the new SOFA, the architecture can define more than a single level; subcomponents 
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can refer to frames or directly to other architectures. In the meta-model, this fact is 

emphasized by comment (with xor label) between the instantiatesFrame and 

instantiatesArchitecture associations. 

In addition to subcomponents, architectures can define bindings among these 
subcomponents. There are three kinds of bindings. A delegation connects a provided 

interface of component to a subcomponent's provided interface and a subsumption 

connects from a subcomponent's required interface to a required interface of 

component. The last kind is a connection between two or more subcomponents. 
The interface type, frame and architecture elements have names and also version 

identification. The versioning model suitable for such distributed systems and which 

is already used in old SOFA, is described in [9]. 

The remaining elements are properties of frames and architectures, which are just 
name-type pair and they are intended for component parameterization at deployment 

time, and annotations, which allows to annotate frames and interfaces with additional 

information. 

3.2 Dynamic reconfiguration 

By dynamic reconfiguration we mean a run time modification of an application 

architecture. A special case is a dynamic update of a component supported by the 

original SOFA (and also in the SOFA 2.0); the principle is that a particular 

component is replaced with another one having a compatible interfaces. This kind of 
dynamic reconfiguration is easy to handle and there are no problems with the 

application’s architecture, because all the changes are located in the updated 

component and are transparent to the rest of the application. Since the new component 

can have a completely different internal structure, such a component update in 
principle means replacing a whole subtree in the component hierarchy, being thus a 

“real” architecture reconfiguration. Also, as an aside, dynamic update is not usually 

initiated by the application itself but by an external entity (the user, provider, etc.).  

 A general dynamic reconfiguration is an arbitrary modification of an application 
architecture though. We have identified the following five elementary operations 

dynamic reconfiguration is based upon: (1) removing a component, (2) adding a 

component, (3) removing a connection, (4) adding a connection, (5) adding/removing 

a component’s interface. 
 In hierarchical component models, as mentioned in Sect. 2.1, an arbitrary 

sequence of these operations can lead to “uncontrolled” architectural modification 

(the evolution gap problem). To avoid it in SOFA 2.0, we limit dynamic 

reconfigurations to those compliant with specific reconfiguration patterns. At present, 
we allow the following three reconfiguration patterns: (i) nested factory, (ii) 

component removal, and (iii) utility interface. In principle the operations (1) – (4) are 

to be employed in these patterns only, and the operation (5) is limited to the use of 

collection interfaces (an unlimited array of interfaces of a specific type in principle). 
The choice of these patterns is based on our experience gained out of non-trivial case 

studies. 
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3.2.1 Nested Factory Pattern 

The nested factory pattern covers adding a new component and a new connection to 

an architecture. The new component is created by a factory component as a result of 

method invocation on this factory. The key related issues are (i) where in the 
hierarchy the new component should be placed, and (ii) how the connections of/to the 

new component should be lead. 

Consider the situation on Fig. 2a) capturing a fragment of a data accessing 

application, which logs all method calls to a set of loggers connected via a required 
collection interface. The DAccess is a data access component, which is bound to 

LFactory (the logger factory) and which features a collection requires interface for 

accessing the loggers. As a result of a call to its provided interface, the logger factory 

creates a new logger component and returns a reference pointing to it. Such a call is 
issued by the DAccess component, which thus receives a reference to a new logger 

and binds to it via the collection interface (dashed line on Fig. 2a).  

Provided the DAccess and LFactory components are siblings in the hierarchical 

architecture, there are no problems with such a dynamic reconfiguration. However, a 
problem arises when this is not the case as depicted on Fig. 2b). The issue is, where 

the newly created component (Logger) should be placed in the architecture and how 

the connection to it should be established.  

A straightforward answer to the question where to put dynamically created Logger 
components might be into the FactoryManager. However deciding how to manage 

their connections to DAccess is not that intuitively obvious. If we allow a direct 

connection between the DAccess and Logger, then the connection will go through the 

FactoryManager component boundaries and violate the requirement of encapsulation. 
The second option, to add a copy of the Logger provided interface to the 

FactoryManager component and lead the connection through it is not also ideal, 

because it would mean that FactoryManager had to mediate traffic of all sessions. In 

general, if the component deciding on creation of another component is located in a 
different part of the hierarchical architecture than the new component is to be 

connected with, the problem of mediating connections becomes pressing. 

In SOFA 2.0, we have adopted the following rule: The newly created component 

becomes a sibling of the component that initiated the creation (and its call to the 
factory also determines the component’s collection interface the connection is to be 

established to). In the example above, the Logger component becomes a sibling of the 

DAccess component – see Fig. 3a). 

The main reason, why the newly created component does not become e.g. a sibling 
of the factory component (as it can seem to be also an obvious simple solution) is that 

the component which initiated the creation typically needs to intensively collaborate 

with the new component which is obviously easier to manage with a sibling. The next 

positive outcome of the rule is better performance, because it is not necessary to 
create complicated connections going up and again down through the hierarchy 

(imagine DAccess communicating with Logger if it were a sibling of LFactory (Fig. 

3b). 
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a)  

DAccess LFactory

Logger

FactoryManager

                   b)   

DAccess LFactory

Logger

FactoryManager

 

Fig. 3. Dynamic application example 

Technically, to identify a factory component, factory annotation can be applied to 
factory methods of an interface. 

The newly created component (NC) is not limited to having just a provided 

interface (as it is shown in Fig. 2 and Fig. 3) but it can have also required interfaces. 

However, these are restricted just to the types featured by the component initiating the 
creation (IC). At the moment the provided interface of NC is bound, the required 

interfaces are also bound to the same provisions as the required interfaces of IC are. 

3.2.2 Removing component pattern 

Removing a component can be seen as a quite common situation. The closely tied and 

necessary action is removing all connections to the removed component. An example 
of such situation can be again the data access component and set of loggers. A single 

logger component can be removed together with link from the data access component. 

From the view of the application architecture, there are no problems with removing 

components. The only issue is that after removing component and corresponding 
connection, the unbound required interfaces can remain. In SOFA, such unbound 

interfaces do not bring any problems because behavior of each component is 

described by behavior protocol and the component environment can verify, whether 

the required interfaces can be left unbound or not. 
Removing connections is allowed just as the result of removing a component as it is 

described above. 

3.2.3 Utility Interface Pattern 

While working on case studies, we frequently faced the situation when a component 

provides a functionality, which is to be used by multiple (“almost all”) components in 
the application (i.e. the need of use is orthogonal to the components’ hierarchy). The 

functionality is typically some kind of a broadly-needed service such as printing. A 

solution can be to place such a component on the top level of the architecture 

hierarchy and arrange for connections through all the higher-level composite 
components to the nodes, where the functionality is actually needed. But this solution 

leads to an escalation of connections and makes the whole component architecture 

blurred (by making unimportant utility features too visible) and consequently error-

prone. Another typical situation we faced is that a reference to such a service is to be 
passed among components (e.g., returning reference to a service from a call of a 

registry/naming/trading component). 

For this reasons, we have introduced utility interfaces (see the meta-model in the 

Appendix). The reference to a utility interface can be freely passed among 
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components and the connection made using this reference is established orthogonally 

to the architecture hierarchy (Fig. 4). 

From a high-level view, the introduction of utility interfaces brings into 

component-based models a feature of service-oriented architectures. Such feature 
fusing allows to take advantages of both these methodologies (e.g., encapsulation and 

hierarchical components of a component model and simple dynamic reconfiguration 

from a service-oriented architecture). 

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

 

Fig. 4. Utility interface example 

As a side effect, the introduction of utility interfaces this way consequently means 
that – in a limiting case – the whole application can be built only of components with 

utility interfaces and therefore the component-based application becomes an ordinary 

service-oriented application (inherently dynamically reconfigurable). Thus, service 

oriented architecture becomes a specific case of a hierarchical component model. 
 

3.3 Control part of components 

The control part of component is in SOFA v. 2.0 modular and is based on usage of 

aspects. The general idea of this approach and its application for Fractal component 
model is described in [16]. 

Using this approach, the control part of a component is modeled as a set of so 

called microcomponents. The microcomponent model is flat; a microcomponent 

cannot be composed of other microcomponents. Also to avoid recursion, the 
microcomponents do not have control part.  

The control part of a SOFA component always contains several necessary 

microcomponents, which exposes interfaces as control interfaces of the component. 

These are the lifecycle controller, which allows for starting/stopping/updating a 
component, and binding controller, which allows for adding/removing connections 

among components. The other functionality of the control part can be added to a 

component as an aspect at deployment time. 

The metamodel of aspects and microcomponents is shown in Appendix B. The 
meaning of elements in the metamodel is also described in [16]. 
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4 Related Work 

Related work: In the following paragraphs, we describe related work and we split it 

into two sections – work related to controllers and work related to dynamic 
reconfiguration of components. 

 

The CORBA Component Model (CCM) [17] and Enterprise Java Beans (EJB) [7] 

are representatives of industrial component systems employing flat component model. 
CCM components’ interfaces are classically divided into provides and required ones; 

in addition there is the next division into interfaces for synchronous and asynchronous 

invocations. Components are defined in IDL (Interface Description Language) but 

IDL does not provide any support for component composition. EJB components are 
defined directly in Java. Moreover, EJB components do not have explicitly specified 

required interfaces. Each EJB component has a home interface, through which new 

components can be created. The similar concept in CCM is called a factory interface. 

Both these interfaces can be seen as controllers. In addition, CCM components can 
have attributes, which are named values exposed via getter and setter methods and 

primarily intended for component configuration. These attributes can be again seen as 

a control interface. In both systems, these control interfaces are fixed and are not 

extensible in any way. 
The Fractal component model [4] uses a classical component model with 

hierarchically nested components, In Fractal, each component can have multiple 

control interfaces. The number and types of control interfaces depend on 

configuration of a run-time environment. In the Fractal component model, each 
component is split to two parts – control part and content. The content is composed of 

other subcomponents or in the case of a primitive component it is directly 

implemented. The control part contains implementation of control interfaces and other 

elements implementing non-functional features. 
 

Component systems with a flat component model (CCM [17], C2 [24]) do not 

consider dynamic reconfiguration as an issue, since only a flat architecture gets 

modified and a service can be seen as another component in the flat component space. 
However, the evolution gap problem is inherently present. 

In the area of hierarchical component models, there are several approaches as to 

how to deal with dynamic reconfiguration. 

(1) Forbidding. A very simple and straightforward approach used in several 
component systems (e.g., [2]) is to forbid dynamic reconfiguration at all. But this is 

very limiting, revealing in essence all the flaws of the static nature of an ADL. 

(2) Flattening. Another solution is to use hierarchical architecture and composite 

components only at the design time and/or deployment time. However, at run time the 
application architecture is flattened and the composite components disappear – this 

way the evolution gap problem becomes even more pressing, since the missing 

composite components make it very hard to trace the dynamic changes with respect to 

the initial configuration. This approach is used, e.g., in the OMG Deployment & 
Configuration specification [18], which defines deployment models and processes for 

component-based systems (including CCM). The component model used in the OMG 
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D&C specification is hierarchical, but finally in the deployment plan, the application 

structure is flattened and the composite components are removed. 

(3) Restricted reconfiguration. Several systems forbid an arbitrary reconfiguration 

but allow special and well defined types of dynamic reconfiguration,  
(a) Patterns. ArchJava [1] is a component system employing a hierarchical 

component model. (Archjava is an extension of Java). Components in ArchJava can 

be freely added (using the new operator like for plain objects), but addition of new 

connections is restricted by connection patterns. These patterns define through which 
interfaces and which types of components the new component can be connected. 

Moreover, only the direct parent component can establish these connections (among 

direct sibling components). 

(b) Shared components. Fractal introduces shared components (at ADL level); a 
shared component is a subcomponent of more than one other component. This way, 

component hierarchy becomes a DAG in general (not a tree). Appling this idea to the 

example in Fig. 1 would mean that the Logger component would be used by LFacory 

and DAccess. This solution works nicely, however, an architecture with shared 
components can be confusing, since it is not easy to determine who is responsible for 

lifecycle of a shared component, reasoning about architecture (e.g., checking behavior 

compliance) is very complicated and several advanced features of component models 

(e.g., dynamic update of a component subtree) cannot be applied. 
(c) Formal rules. Several systems (e.g., CHAM [10], “graph rewriting” [27]) 

define a formal system for describing the permitted dynamic reconfiguration. These 

systems allow complex definition of all architecture states during an application’s 

lifecycle. But they are very complicated, even for simple architectures. 
(4) Unlimited. Darwin [14] uses direct dynamic instantiation, which allows 

defining architecture configurations that can dynamically evolve in an arbitrary way 

(but the new connections among components are not captured). Julia [12], an 

implementation to Fractal, allows a general component reference passing (so that any 
time a reference is passed it mimics establishing a new connection – this works 

orthogonally to specifying a shared component in ADL). Obviously, the evolution gap 

problem is ubiquitous in these cases. 

On the other hand it should be emphasized that SOA is typically based on dynamic 
reconfiguration, since the composition of services is done with the granularity of 

individual calls captured in coordination languages like Linda [26] or routing of 

messages [5]. 

5 Conclusion 

In this report, we present the new version of our component system SOFA. The 

features of the whole component model are defined using the meta-model. For 
handing dynamic reconfiguration, we allow several well defined patterns, which 

cover most common situations, where the reconfiguration is necessary. In order to 

allow nearly an arbitrary dynamic reconfiguration, we introduced so called utility 

interfaces, which in component-based system bring features of a service-oriented 
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system. This integration helps to solve problems of hierarchical component models 

and allows for their wider usage. 

Currently, we have specified the whole meta-model of SOFA, all necessary 

interfaces for development time, deployment and runtime environments and we are 
implementing the whole system. The workable system is expected within several 

months. 
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Appendix A 

NamedEntity

+ name : String

VersionedEntity
Version

InterfaceType

+ signature :String

Interface

+communicationStyle :String

+connectionType :ConnectionType

+ isCollection : boolean

+ isOptional :boolean

<< enumeration >> 

ConnectionType 

+ normal :

+ utility :

Frame 

+ protocol : String

Architecture SubcomponentInstance

Binding

Delegation Subsumption Connector

SubcomponentInterfaceEndpoint

+ interaceName :String

ComponentInterfacesEndpoint

+ interfaceName : String

xor

Feature

+value :String

interfaceType+

providedInterface+ * requiredInterface +*

implements+ 
1..* 

instantiatesFrame+

0..1

subcomponent+

*

binding+*

subcomponent+

inEndpoint 

+ 

outEndpoint+outEndpoint+ 
inEndpoint+

endpoint+*

instantiatesArchitecture+

0..1

communicationFeature +*

<< Singleton >>

Factory

<< Singleton >> 

TopLevel 

Annotation 

anotation +*

anotation+

*

returnInterface+

version + 

Property

+ type : String

MappedProperty 

mappedProperty + *

instance+

property + 

* 

property + 

* 
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Appendix B 

MicroComponent MicroInterface

MicroInterfaceType

+signature: String

Aspect 

+ name : String 

ComponentSelect

+type:String

InterfaceSelect 

+name:String 

MicroComponentInstance 

+name:String

MicroContent 

MicroContentClass 

+ class : String

MicroContentGenerator

+ generator : String

MicroBinding 

MicroComponentInterfaceEndpoin

+interfaceName : String 
+componentName : String 

interfaceType+ 0..1

providedInterface+

*

requiredInterface+

*

componentSelect+ 

*

interfaceSelect+

*

microcomponentDefinition + * 
microcomponent+ 

instance+ *

content + 

binding +*

client+* server + 

instance+

*

binding+

*

delegatedProvidedInterface+ 

0..1
delegatedRequiredInterface+ 

0..1

 


