
I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 352 – 359, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Reconfiguration and Access to Services
in Hierarchical Component Models

Petr Hnětynka1 and František Plášil1,2

1 Department of Software Engineering
Faculty of Mathematics and Physics, Charles University

Malostranské náměstí 25, Prague 1, 11800, Czech Republic
{hnetynka, plasil}@nenya.ms.mff.cuni.cz

2 Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodárenskou věží, Prague 8, 18000, CzechRepublic

plasil@cs.cas.cz

Abstract. This paper addresses the unavoidable problem of dynamic reconfig-
uration in component-based system with a hierarchical component model. The
presented solution is based on (1) allowing several well defined patterns of
dynamic reconfiguration and on (2) introducing a utility interface concept,
which allows using a service provided under the SOA paradigm from a
component-based system. The paper is based on our experience with non-trivial
case studies written for component-based systems SOFA and Fractal.

1 Introduction

Component-based development (CBD) [19] has become a commonly used technique
for building software systems. There are many opinions as to what a component is.
One typically agrees that it is a black-box entity with well defined interfaces and
behavior, which can be reused in different contexts and without knowledge of its
internal structure (i.e., without modifying its internals). However, from a design view,
components – especially hierarchical ones – can be viewed as glass-box entities with
the internal structure visible as a set of communicating subcomponents. Typically, the
collection of the related abstractions, their semantics and the rules for component
composition (creation of component architecture) are referred to as a component
model and an implementation of it as a component system/platform. In our view, the
concept of “component” has always to be interpreted in the semantics of a particular
component model.

Many component systems currently exist and are used both in industry and
academia. Typically, the industrial component systems, such as EJB [6] and CCM
[15], are based on a flat component model. On the contrary, the academic component
systems and models usually provide advanced features like hierarchical architectures,
behavior description, coexistence of components from different platforms, dynami-
cally updatable components, support for complex communication styles, etc.

However, it is hard to properly balance the semantics of advanced features – in our
view, this fact hinders a widespread, industrial usage of hierarchical component

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 353

models. Based on our experience with the SOFA [17] and Fractal [4] component
models, we claim that this issue is primarily related to dynamic reconfiguration of an
architecture, i.e., adding and removing components at runtime, passing references to
components, etc. A simple prohibition of dynamic reconfiguration (even though
adopted by some systems [2]) would be very limiting, since dynamic changes of
architecture are inherent to many component-based applications [14]. On the other
hand, particularly in hierarchical component models, an arbitrary sequence of
dynamic reconfiguration can lead to “uncontrolled” architectural modification, which
is inherently error-prone (we call this evolution gap problem, also architecture
erosion [3]). Moreover, for description of component architectures, most of the
component models provide an architecture description language (ADL) [2,4,13,14],
which typically captures just the initial components’ configuration. (The idea of
software architectures and ADL specification came from hardware design, which is
static by nature). Thus a challenge is to somehow capture reconfiguration in an ADL.

Another currently emerging paradigm is the service-oriented architecture (SOA)
[21]. SOA-based systems (WebServices, etc.) are commonly used in industry. In a
high-level view, there is no difference between the SOA and CBD paradigms [10] –
both a service and component have a well defined interface, their internal structure is
not visible to their environment, and they can be reused in different contexts without
modification. However, in SOA, services are not nested and their composition is
typically done with the granularity of each request call, frequently being data driven.
Thus, because of lack of any continuity in the architecture, there is no problem with
dynamic reconfiguration similar to component models.

In this paper, we employ experience with our hierarchical component model SOFA
[17] which supports many advanced features like dynamic update, behavior
description via behavior protocols, software connectors, and an open-source prototype
of which is available [18]. However, based on case studies, we identified deep-going
SOFA limits, including dynamic reconfiguration restricted to a dynamic update of a
component and the lack of any cooperation with external services, which lead us to
the design of the SOFA 2.0.

The goal of the paper is to show how we propose to address the dynamic
reconfiguration in SOFA 2.0 with the aim to avoid the evolution gap problem and
allow for accessing external services provided through the SOA paradigm. To address
the goal, the paper is structured as follows. Section 2 introduces the key contribution
– the nested factory pattern and utility interface pattern. Section 3 contains evaluation
and related work, while the concluding Section 4 summarizes the presented ideas.

2 Dynamic Reconfiguration and Its Patterns

By dynamic reconfiguration we mean a run time modification of an application’s
architecture. As a special case this includes dynamic update of a component supported
by the original SOFA (and also in SOFA 2.0); here the principle is that a particular
component is dynamically replaced with another one having compatible interfaces.
This kind of dynamic reconfiguration is easy to handle, because all the changes are
located in the updated component and are transparent to the rest of the application.
Since the new component can have a completely different internal structure, such a

354 P. Hnětynka and F. Plášil

component update in principle means replacing a whole subtree in the component
hierarchy, being thus a “real” architecture reconfiguration. Also, as an aside, dynamic
update is not usually initiated by the application itself but by an external entity (the
user, provider, etc.); on the contrary though, a general dynamic reconfiguration is an
arbitrary modification of an application architecture typically initiated by the
application itself. We have identified the following five elementary operations such a
dynamic reconfiguration is based upon: (1) removing a component, (2) adding a
component, (3) removing a connection, (4) adding a connection, (5) adding/removing
a component’s interface.

 As mentioned in Sect.1, in hierarchical component models an arbitrary sequence
of these operations can lead to “uncontrolled” architectural modification (the
evolution gap problem). To avoid it in SOFA 2.0, we limit dynamic reconfigurations
to those compliant with specific reconfiguration patterns. At present, we allow the
following three reconfiguration patterns: (i) nested factory, (ii) component removal,
and (iii) utility interface. In principle the operations (1) – (4) are to be employed in
these patterns only, and the operation (5) is limited to the use of collection interfaces
(an unlimited array of interfaces of a specific type in principle [8]). The choice of
these patterns is based on our experience gained out of non-trivial case studies. Due to
space constrains, we below discuss and analyze only (i) and (iii) which we consider
the key ones.

2.1 Nested Factory Pattern

The nested factory pattern covers adding a new component and a new connection to
an architecture. The new component is created by a factory component as result of a
method invocation on this factory. The key related issues are (i) where in the
hierarchy the new component should be placed, and (ii) how the connections of/to the
new component should be lead.

Consider the situation on Fig. 1a) capturing a fragment of an application featuring
the DAccess component, which logs all method calls to a set of loggers connected via
a required collection interface. The DAccess is a data access component, which is
bound to LFactory (the logger factory) featuring a collection required interface for
accessing the loggers. As a result of a call to its provided interface, the logger factory
creates a new logger component and returns a reference pointing to it. Such a call is
issued by the DAccess component, which in response receives a reference to a new
logger and binds to it via the collection interface (dashed line on Fig. 1a).

Provided the DAccess and LFactory components are siblings in the flat archi-
tecture, such a dynamic reconfiguration is easy. However, a problem arises when this
assumption does not hold as on Fig. 1b). The issue is, where the newly created
component (Logger) should be placed in the architecture and how the connection to it
should be established.

A straightforward answer to the question where to put the dynamically created
Logger components might be into the FactoryManager. However a decision how to
manage their connections to DAccess is not that intuitively obvious. If we allow a
direct connection between the DAccess and Logger, then the connection will go
through the FactoryManager component boundaries and violate the requirement of
encapsulation. The second option, to add a copy of the Logger provided interface to

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 355

the FactoryManager component and lead the connection through it is also not ideal,
because it would mean that FactoryManager had to mediate traffic of all connections.
In general, if a component A asking creation of another component B (and also
assuming A is to be connected to B) is located in a different part of the hierarchical
architecture than B is, the problem of mediating connections becomes pressing.

In SOFA 2.0, we have adopted the following rule: The newly created component B
becomes a sibling of the component A that initiated the creation (and A’s call to the
factory also determines the A’s collection interface the connection is to be established
to). In the example above, the Logger component becomes a sibling of the DAccess
component – see Fig. 1c).

DAccess LFactory

Logger

Logger2

DAccess LFactory

Logger1

DAccess LFactory

Logger
??

a) b) c)

FactoryManager FactoryManager

Fig. 1. Dynamic application example

The main reason, why the newly created component B does not become a sibling
of the factory component (as this can seem to be also an obvious simple solution) is
that the component A which initiated the creation typically needs to intensively
collaborate with B which is obviously easier to manage when B is a sibling of A. The
next positive outcome of the rule is better performance, because it is not necessary to
create complicated connections going up and again down through the hierarchy.

Technically, to identify a factory component, factory annotation can be
syntactically attached to the factory methods of an interface.

The newly created component B is not limited to having just a provided interface
(as it is shown in Fig.1) but it can have also required interfaces. However, these are
restricted just to the types featured by the component A initiating the creation. At the
moment the provided interface of B is bound, the required interfaces are also bound to
the same provisions as the required interfaces of A are. As an aside, this pattern works
also in the case when B is a composite component.

2.2 Utility Interface Pattern

While working on case studies, we frequently faced the situation when a component
provides a functionality, which is to be used by multiple components in the
application at different levels of nesting (i.e. the need of use is orthogonal to the
components’ hierarchy). The functionality is typically some kind of a broadly-needed
service such as printing. A solution can be to place such a component on the top level
of the architecture hierarchy and arrange “tunnel” for connections through all the
higher-level composite components to those nested ones where the functionality is
actually needed. But this solution leads to an escalation of connections and makes the
whole component architecture blurred (by making the utility features visible to the

356 P. Hnětynka and F. Plášil

components where they are not actually needed) and consequently error-prone.
Another typical situation we faced is that a reference to such a service is to be passed
among components (e.g., returning reference to a service from a call of a registry/
naming/trading component).

For these reasons, we have introduced utility interfaces (the complete meta-model
is in [8]). The reference to a utility interface can be freely passed among components
and the connection made using this reference is established orthogonally to the
architecture hierarchy (Fig. 2).

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

Fig. 2. Utility interface example

From a high-level view, the introduction of utility interfaces brings into
component-based models a feature of service-oriented architectures (since Pservice
can be seen as an external service). Such feature fusing allows to take advantages of
both these paradigms (e.g., encapsulation and hierarchical components of component
models and simple dynamic reconfiguration of SOA).

As a side effect, the introduction of utility interfaces this way consequently means
that – in a limiting case – the whole application can be built only of components with
utility interfaces and therefore the component-based application becomes an ordinary
service-oriented application (inherently dynamically reconfigurable). Thus, service
oriented architecture becomes a specific case of a component model.

3 Evaluation and Related Work

Evaluation: The approach to dynamic reconfiguration in a hierarchical component
model presented in this paper is based on our experience with not-trivial case studies
crafted for the SOFA and Fractal component models.

In principle, our approach to handling dynamic reconfiguration is based on
combining the features of hierarchical component models and service-oriented
architecture. From the component models point of the view, we allow just several
types of dynamic reconfiguration compliant with well-defined patterns. Such a
prohibition of an arbitrary reconfiguration and allowance of several well-defined
modifications only is used in the most of component models (as discussed below),
however none of them tackles the issue of how the component factory concept should
be integrated into a hierarchical component model. Nevertheless, in addition to
addressing this factory issue, the novel contribution of this paper is the introduction of

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 357

utility interfaces which brings into a component-based system a feature of SOA and
allows simplified dynamic reconfiguration without losing some advantages of
component models such as focus on reusability and support for integration. Overall,
in our view, the utility interface concept sophisticatedly integrates paradigms of the
hierarchical component model and service-oriented architecture.

The authors of [12] define a taxonomy of component-based models using the
criterion of component composition at different stages of component lifecycle (design
and deployment). Using this taxonomy, they classify the existing component systems,
including SOFA (the original version), which with Koala and KobrA fits into the
most advanced category characterized by (i) composing components at design time,
(ii) storing composed components in a repository and (iii) reusing already stored
components (including composite ones) in further composition. The only missing
feature of these three systems is no composition at deployment time and runtime.
With incorporating the proposed dynamic reconfiguration patterns, SOFA 2.0 meets
all the criteria imposed in [12] (assuming the authors under “deployment” understand
also runtime).

As mentioned in Sect. 2, our choice of reconfiguration patterns is based on our
experience with non-trivial case studies of component-based applications. In most of
them, we faced a situation where dynamic reconfiguration was necessary. Since the
original SOFA has dynamic reconfiguration limited to updates only, we usually had to
overcome this lack by restricting the desired dynamic architecture modification via
employing “dynamic parts” of a predefined static architecture (e.g., in the example
application from Sect. 2.1, a maximum number of concurrent loggers was predefined
and the corresponding number of the Logger components was instantiated at launch
time). But this approach led to non-generic applications with rather big performance
penalties (creating all necessary instances during launching). Also, several of our case
studies have been based on the Fractal component model. Fractal provides support for
dynamic reconfiguration but as we discuss below it suffers the evolution gap problem.

Related work: Component systems with a flat component model (CCM [15], C2 [20])
do not consider dynamic reconfiguration as an issue, since there is no problem where
to place a newly created component and a service can be seen as another component
in the flat component space. However, the evolution gap problem is inherently
present.

In the area of hierarchical component models, there are several approaches as to
how to deal with dynamic reconfiguration.

(1) Forbidding. A very simple and straightforward approach used in several
component systems (e.g., [2]) is not to allow dynamic reconfiguration at all. But this
is very limiting, revealing in essence all the flaws of the static nature of an ADL.
(2) Flattening. Another solution is to use hierarchical architecture and composite
components only at the design time and/or deployment time. However, at run time the
application architecture is flattened and the composite components disappear – this
way the evolution gap problem becomes even more pressing, since the missing
composite components make it very hard to trace the dynamic changes with respect to
the initial configuration. This approach is used, e.g., in the OMG Deployment &
Configuration specification [16], which defines deployment models and processes for
component-based systems (including CCM). The component model introduced in this

358 P. Hnětynka and F. Plášil

OMG specification is hierarchical, but finally, in the deployment plan, the application
structure is flattened and the composite components are removed.
(3) Restricted reconfiguration. Several systems forbid an arbitrary reconfiguration but
allow special and well-defined types of dynamic reconfiguration:
 (a) Patterns. Being an extension of Java, ArchJava [1] is a component system

employing a hierarchical component model. Components in ArchJava can be
dynamically added (using the new operator), but an addition of new connections is
restricted by connection patterns. These patterns define through which interfaces
and to which types of components the new component can be connected.
Moreover, only the direct parent component can establish these connections
(among direct subcomponents).

 (b) Shared components. Fractal introduces shared components (at the ADL level); a
shared component is a subcomponent of more than one other components. This way,
component hierarchy becomes a DAG in general (not a tree). Appling this idea to
the Fig. 1 would mean that the Logger component would be used by LFactory and
DAccess. This solution works nicely, however, an architecture with shared
components can be confusing, since it is not easy to determine who is responsible
for lifecycle of a shared component, reasoning about architecture (e.g., checking
behavior compliance) is very complicated, and several advanced features of
component models (e.g., dynamic update of a component subtree) cannot be applied.

 (c) Formal rules. Several systems (e.g., CHAM [9], “graph rewriting” [23]) define
a formal system for describing the permitted dynamic reconfigurations. These
systems allow complex definition of all architecture states during an application’s
lifecycle. But they are very complicated, even for simple architectures.

(4) Unlimited. Darwin [13] uses direct dynamic instantiation, which allows defining
architecture configurations that can dynamically evolve in an arbitrary way (but the
new connections among components are not captured). Julia [11], an implementation
to Fractal, allows a general component reference passing (so that any time a reference
is passed, it mimics establishing a new connection – this works orthogonally to
specifying a shared component in ADL). Obviously, the evolution gap problem is
ubiquitous in these cases.

However, let’s emphasize that SOA is typically based on dynamic reconfiguration,
since the composition of services is done with the granularity of individual calls
captured in coordination languages like Linda [22] or by routing of messages [5].

4 Conclusion

We have shown a way of addressing dynamic reconfiguration in a hierarchical
component model. With the aim to avoid uncontrolled architecture modification, the
presented solution is based on the proposition of three reconfiguration patterns, which
include the introduction of the utility interface concept that allows to use a service
provided under the SOA paradigm from a component-based system. The paper is
based on our experience with non-trivial case studies written for component-based
systems SOFA and Fractal. Currently, we have specified the whole meta-model of
SOFA 2.0, all necessary interfaces for the development time, deployment and
runtime. A working prototype is expected within several months.

 Dynamic Reconfiguration and Access to Services in Hierarchical Component Models 359

Acknowledgements

The authors would like to thank Tomáš Bureš, Vladimír Mencl and Lucia Kapová for
valuable comments, Jan Klesnil, Ondřej Kmoch, Tomáš Kohan and Pavel Kotrč for
contributing to meta-model design, and Pavel Ježek and Jan Kofroň for sharing
experience with a Fractal case study. This work was partially supported by the Grant
Agency of the Czech Republic project 201/06/0770.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture to
Implementation, Proceedings of ICSE 2002, Orlando, USA, May 2002

2. Allen, R.: A Formal Approach to Software Architecture, PhD thesis, CMU, 1997
3. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A Component

Model for Architectural Programming, Proceedings of FACS'05, Macao, Oct 2005
4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J. B.: An Open Component

Model and Its Support in Java, Proceedings of CBSE 2004, Edinburgh, UK, May 2004
5. Chappell, D. A., Enterprise Service Bus, O'Reilly Media, Jun 2004
6. Enterprise Java Beans specification, version 2.1, Sun Microsystems, Nov 2003
7. Hnětynka, P., Píše, M.: Hand-written vs. MOF-based Metadata Repositories: The SOFA

Experience, Proceedings of ECBS 2004, Brno, Czech Republic, IEEE CS, May 2004
8. Hnětynka, P., Plášil, F., Bureš, T., Mencl, V., Kapová, L.: SOFA 2.0 metamodel, Tech.

Rep. 11/2005, Dept. of SW Engineering, Charles University, Prague, Dec 2005
9. Inverardi, P., Wolf, A. L.: Formal Specification and Analysis of Software Architectures

Using the Chemical Abstract Machine Model, IEEE Trans. on Soft. Eng., v. 21, n. 4, 1995
10. Iribarne, L.: Web Components: A Comparison between Web Services and Software

Components, Colombian Journal of Computation, Vol. 5, No. 1, Jun 2004
11. Julia, http://forge.objectweb.org/projects/fractal/
12. Lau, K.-K., Wang, Z.: A Taxonomy of Software Component Models, Proceedings of

EUROMICRO-SEAA’05, Porto, Portugal, Sep 2005
13. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures, Proceedings of

FSE’4, San Francisco, USA, Oct 1996
14. Medvidovic, N.: ADLs and dynamic architecture changes, Joint Proceedings

SIGSOFT’1996 Workshops, ACM Press, New York, USA, Oct 1996
15. OMG: CORBA Components, v 3.0, OMG document formal/02-06-65, Jun 2002
16. OMG: Deployment and Configuration of Component-based Distributed Applications

Specification, OMG document ptc/05-01-07, Jan 2005
17. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP: Architecture for Component Trading and

Dynamic Updating, Proceedings of ICCDS’98, Annapolis, USA, IEEE CS, May 1998
18. SOFA prototype, http://sofa.objectweb.org/
19. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edition,

Addison-Wesley, Jan 2002
20. Taylor, R. N., et al: A Component- and Message-Based Architectural Style for GUI

Software, IEEE Transactions on Software Engineering, Vol. 22, No. 6, Jun 1996
21. WebServices, http://www.w3.org/2002/ws/
22. Wells, G.: Coordination Languages: Back to the Future with Linda, Proceedings of

WCAT’05, Glasgow, UK, Jul 2005
23. Wermelingera, M., Fiadeiro, J. L.: A graph transformation approach to software

architecture reconfiguration, Science of Computer Programming, Vol. 44, Iss. 2, Aug 2002

	Introduction
	Dynamic Reconfiguration and Its Patterns
	Nested Factory Pattern
	Utility Interface Pattern

	Evaluation and Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

