
I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 352 – 359, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Dynamic Reconfiguration and Access to Services 
in Hierarchical Component Models 

Petr Hnětynka1 and František Plášil1,2 

1 Department of Software Engineering 
Faculty of Mathematics and Physics, Charles University 

Malostranské náměstí 25, Prague 1, 11800, Czech Republic 
{hnetynka, plasil}@nenya.ms.mff.cuni.cz 

2 Institute of Computer Science, Academy of Sciences of the Czech Republic 
Pod Vodárenskou věží, Prague 8, 18000, CzechRepublic  

plasil@cs.cas.cz 

Abstract. This paper addresses the unavoidable problem of dynamic reconfig-
uration in component-based system with a hierarchical component model. The 
presented solution is based on (1) allowing several well defined patterns of 
dynamic reconfiguration and on (2) introducing a utility interface concept, 
which allows using a service provided under the SOA paradigm from a 
component-based system. The paper is based on our experience with non-trivial 
case studies written for component-based systems SOFA and Fractal. 

1   Introduction 

Component-based development (CBD) [19] has become a commonly used technique 
for building software systems. There are many opinions as to what a component is. 
One typically agrees that it is a black-box entity with well defined interfaces and 
behavior, which can be reused in different contexts and without knowledge of its 
internal structure (i.e., without modifying its internals). However, from a design view, 
components – especially hierarchical ones – can be viewed as glass-box entities with 
the internal structure visible as a set of communicating subcomponents. Typically, the 
collection of the related abstractions, their semantics and the rules for component 
composition (creation of component architecture) are referred to as a component 
model and an implementation of it as a component system/platform. In our view, the 
concept of “component” has always to be interpreted in the semantics of a particular 
component model.  

Many component systems currently exist and are used both in industry and 
academia. Typically, the industrial component systems, such as EJB [6] and CCM 
[15], are based on a flat component model. On the contrary, the academic component 
systems and models usually provide advanced features like hierarchical architectures, 
behavior description, coexistence of components from different platforms, dynami-
cally updatable components, support for complex communication styles, etc. 

However, it is hard to properly balance the semantics of advanced features – in our 
view, this fact hinders a widespread, industrial usage of hierarchical component 
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models. Based on our experience with the SOFA [17] and Fractal [4] component 
models, we claim that this issue is primarily related to dynamic reconfiguration of an 
architecture, i.e., adding and removing components at runtime, passing references to 
components, etc. A simple prohibition of dynamic reconfiguration (even though 
adopted by some systems [2]) would be very limiting, since dynamic changes of 
architecture are inherent to many component-based applications [14]. On the other 
hand, particularly in hierarchical component models, an arbitrary sequence of 
dynamic reconfiguration can lead to “uncontrolled” architectural modification, which 
is inherently error-prone (we call this evolution gap problem, also architecture 
erosion [3]). Moreover, for description of component architectures, most of the 
component models provide an architecture description language (ADL) [2,4,13,14], 
which typically captures just the initial components’ configuration. (The idea of 
software architectures and ADL specification came from hardware design, which is 
static by nature). Thus a challenge is to somehow capture reconfiguration in an ADL. 

Another currently emerging paradigm is the service-oriented architecture (SOA) 
[21]. SOA-based systems (WebServices, etc.) are commonly used in industry. In a 
high-level view, there is no difference between the SOA and CBD paradigms [10] – 
both a service and component have a well defined interface, their internal structure is 
not visible to their environment, and they can be reused in different contexts without 
modification. However, in SOA, services are not nested and their composition is 
typically done with the granularity of each request call, frequently being data driven. 
Thus, because of lack of any continuity in the architecture, there is no problem with 
dynamic reconfiguration similar to component models. 

In this paper, we employ experience with our hierarchical component model SOFA 
[17] which supports many advanced features like dynamic update, behavior 
description via behavior protocols, software connectors, and an open-source prototype 
of which is available [18]. However, based on case studies, we identified deep-going 
SOFA limits, including dynamic reconfiguration restricted to a dynamic update of a 
component and the lack of any cooperation with external services, which lead us to 
the design of the SOFA 2.0. 

The goal of the paper is to show how we propose to address the dynamic 
reconfiguration in SOFA 2.0 with the aim to avoid the evolution gap problem and 
allow for accessing external services provided through the SOA paradigm. To address 
the goal, the paper is structured as follows. Section 2 introduces the key contribution 
– the nested factory pattern and utility interface pattern. Section 3 contains evaluation 
and related work, while the concluding Section 4 summarizes the presented ideas. 

2   Dynamic Reconfiguration and Its Patterns 

By dynamic reconfiguration we mean a run time modification of an application’s 
architecture. As a special case this includes dynamic update of a component supported 
by the original SOFA (and also in SOFA 2.0); here the principle is that a particular 
component is dynamically replaced with another one having compatible interfaces. 
This kind of dynamic reconfiguration is easy to handle, because all the changes are 
located in the updated component and are transparent to the rest of the application. 
Since the new component can have a completely different internal structure, such a 
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component update in principle means replacing a whole subtree in the component 
hierarchy, being thus a “real” architecture reconfiguration. Also, as an aside, dynamic 
update is not usually initiated by the application itself but by an external entity (the 
user, provider, etc.); on the contrary though, a general dynamic reconfiguration is an 
arbitrary modification of an application architecture typically initiated by the 
application itself. We have identified the following five elementary operations such a 
dynamic reconfiguration is based upon: (1) removing a component, (2) adding a 
component, (3) removing a connection, (4) adding a connection, (5) adding/removing 
a component’s interface. 

 As mentioned in Sect.1, in hierarchical component models an arbitrary sequence 
of these operations can lead to “uncontrolled” architectural modification (the 
evolution gap problem). To avoid it in SOFA 2.0, we limit dynamic reconfigurations 
to those compliant with specific reconfiguration patterns. At present, we allow the 
following three reconfiguration patterns: (i) nested factory, (ii) component removal, 
and (iii) utility interface. In principle the operations (1) – (4) are to be employed in 
these patterns only, and the operation (5) is limited to the use of collection interfaces 
(an unlimited array of interfaces of a specific type in principle [8]). The choice of 
these patterns is based on our experience gained out of non-trivial case studies. Due to 
space constrains, we below discuss and analyze only (i) and (iii) which we consider 
the key ones. 

2.1   Nested Factory Pattern 

The nested factory pattern covers adding a new component and a new connection to 
an architecture. The new component is created by a factory component as result of a 
method invocation on this factory. The key related issues are (i) where in the 
hierarchy the new component should be placed, and (ii) how the connections of/to the 
new component should be lead. 

Consider the situation on Fig. 1a) capturing a fragment of an application featuring 
the DAccess component, which logs all method calls to a set of loggers connected via 
a required collection interface. The DAccess is a data access component, which is 
bound to LFactory (the logger factory) featuring a collection required interface for 
accessing the loggers. As a result of a call to its provided interface, the logger factory 
creates a new logger component and returns a reference pointing to it. Such a call is 
issued by the DAccess component, which in response receives a reference to a new 
logger and binds to it via the collection interface (dashed line on Fig. 1a).  

Provided the DAccess and LFactory components are siblings in the flat archi-
tecture, such a dynamic reconfiguration is easy. However, a problem arises when this 
assumption does not hold as on Fig. 1b). The issue is, where the newly created 
component (Logger) should be placed in the architecture and how the connection to it 
should be established.  

A straightforward answer to the question where to put the dynamically created 
Logger components might be into the FactoryManager. However a decision how to 
manage their connections to DAccess is not that intuitively obvious. If we allow a 
direct connection between the DAccess and Logger, then the connection will go 
through the FactoryManager component boundaries and violate the requirement of 
encapsulation. The second option, to add a copy of the Logger provided interface to 
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the FactoryManager component and lead the connection through it is also not ideal, 
because it would mean that FactoryManager had to mediate traffic of all connections. 
In general, if a component A asking creation of another component B (and also 
assuming A is to be connected to B) is located in a different part of the hierarchical 
architecture than B is, the problem of mediating connections becomes pressing. 

In SOFA 2.0, we have adopted the following rule: The newly created component B 
becomes a sibling of the component A that initiated the creation (and A’s call to the 
factory also determines the A’s collection interface the connection is to be established 
to). In the example above, the Logger component becomes a sibling of the DAccess 
component – see Fig. 1c). 
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Fig. 1. Dynamic application example 

The main reason, why the newly created component B does not become a sibling 
of the factory component (as this can seem to be also an obvious simple solution) is 
that the component A which initiated the creation typically needs to intensively 
collaborate with B which is obviously easier to manage when B is a sibling of A. The 
next positive outcome of the rule is better performance, because it is not necessary to 
create complicated connections going up and again down through the hierarchy. 

Technically, to identify a factory component, factory annotation can be 
syntactically attached to the factory methods of an interface. 

The newly created component B is not limited to having just a provided interface 
(as it is shown in Fig.1) but it can have also required interfaces. However, these are 
restricted just to the types featured by the component A initiating the creation. At the 
moment the provided interface of B is bound, the required interfaces are also bound to 
the same provisions as the required interfaces of A are. As an aside, this pattern works 
also in the case when B is a composite component. 

2.2   Utility Interface Pattern 

While working on case studies, we frequently faced the situation when a component 
provides a functionality, which is to be used by multiple components in the 
application at different levels of nesting (i.e. the need of use is orthogonal to the 
components’ hierarchy). The functionality is typically some kind of a broadly-needed 
service such as printing. A solution can be to place such a component on the top level 
of the architecture hierarchy and arrange “tunnel” for connections through all the 
higher-level composite components to those nested ones where the functionality is 
actually needed. But this solution leads to an escalation of connections and makes the 
whole component architecture blurred (by making the utility features visible to the 
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components where they are not actually needed) and consequently error-prone. 
Another typical situation we faced is that a reference to such a service is to be passed 
among components (e.g., returning reference to a service from a call of a registry/ 
naming/trading component). 

For these reasons, we have introduced utility interfaces (the complete meta-model 
is in [8]). The reference to a utility interface can be freely passed among components 
and the connection made using this reference is established orthogonally to the 
architecture hierarchy (Fig. 2). 

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

 

Fig. 2. Utility interface example 

From a high-level view, the introduction of utility interfaces brings into 
component-based models a feature of service-oriented architectures (since Pservice 
can be seen as an external service). Such feature fusing allows to take advantages of 
both these paradigms (e.g., encapsulation and hierarchical components of component 
models and simple dynamic reconfiguration of SOA). 

As a side effect, the introduction of utility interfaces this way consequently means 
that – in a limiting case – the whole application can be built only of components with 
utility interfaces and therefore the component-based application becomes an ordinary 
service-oriented application (inherently dynamically reconfigurable). Thus, service 
oriented architecture becomes a specific case of a component model. 

3   Evaluation and Related Work 

Evaluation: The approach to dynamic reconfiguration in a hierarchical component 
model presented in this paper is based on our experience with not-trivial case studies 
crafted for the SOFA and Fractal component models.  

In principle, our approach to handling dynamic reconfiguration is based on 
combining the features of hierarchical component models and service-oriented 
architecture. From the component models point of the view, we allow just several 
types of dynamic reconfiguration compliant with well-defined patterns. Such a 
prohibition of an arbitrary reconfiguration and allowance of several well-defined 
modifications only is used in the most of component models (as discussed below), 
however none of them tackles the issue of how the component factory concept should 
be integrated into a hierarchical component model. Nevertheless, in addition to 
addressing this factory issue, the novel contribution of this paper is the introduction of 
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utility interfaces which brings into a component-based system a feature of SOA and 
allows simplified dynamic reconfiguration without losing some advantages of 
component models such as focus on reusability and support for integration. Overall, 
in our view, the utility interface concept sophisticatedly integrates paradigms of the 
hierarchical component model and service-oriented architecture. 

The authors of [12] define a taxonomy of component-based models using the 
criterion of component composition at different stages of component lifecycle (design 
and deployment). Using this taxonomy, they classify the existing component systems, 
including SOFA (the original version), which with Koala and KobrA fits into the 
most advanced category characterized by (i) composing components at design time, 
(ii) storing composed components in a repository and (iii) reusing already stored 
components (including composite ones) in further composition. The only missing 
feature of these three systems is no composition at deployment time and runtime. 
With incorporating the proposed dynamic reconfiguration patterns, SOFA 2.0 meets 
all the criteria imposed in [12] (assuming the authors under “deployment” understand 
also runtime). 

As mentioned in Sect. 2, our choice of reconfiguration patterns is based on our 
experience with non-trivial case studies of component-based applications. In most of 
them, we faced a situation where dynamic reconfiguration was necessary. Since the 
original SOFA has dynamic reconfiguration limited to updates only, we usually had to 
overcome this lack by restricting the desired dynamic architecture modification via 
employing “dynamic parts” of a predefined static architecture (e.g., in the example 
application from Sect. 2.1, a maximum number of concurrent loggers was predefined 
and the corresponding number of the Logger components was instantiated at launch 
time). But this approach led to non-generic applications with rather big performance 
penalties (creating all necessary instances during launching). Also, several of our case 
studies have been based on the Fractal component model. Fractal provides support for 
dynamic reconfiguration but as we discuss below it suffers the evolution gap problem. 

Related work:  Component systems with a flat component model (CCM [15], C2 [20]) 
do not consider dynamic reconfiguration as an issue, since there is no problem where 
to place a newly created component and a service can be seen as another component 
in the flat component space. However, the evolution gap problem is inherently 
present. 

In the area of hierarchical component models, there are several approaches as to 
how to deal with dynamic reconfiguration. 

(1) Forbidding. A very simple and straightforward approach used in several 
component systems (e.g., [2]) is not to allow dynamic reconfiguration at all. But this 
is very limiting, revealing in essence all the flaws of the static nature of an ADL. 
(2) Flattening. Another solution is to use hierarchical architecture and composite 
components only at the design time and/or deployment time. However, at run time the 
application architecture is flattened and the composite components disappear – this 
way the evolution gap problem becomes even more pressing, since the missing 
composite components make it very hard to trace the dynamic changes with respect to 
the initial configuration. This approach is used, e.g., in the OMG Deployment & 
Configuration specification [16], which defines deployment models and processes for 
component-based systems (including CCM). The component model introduced in this 
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OMG specification is hierarchical, but finally, in the deployment plan, the application 
structure is flattened and the composite components are removed. 
(3) Restricted reconfiguration. Several systems forbid an arbitrary reconfiguration but 
allow special and well-defined types of dynamic reconfiguration:  
    (a) Patterns. Being an extension of Java, ArchJava [1] is a component system 

employing a hierarchical component model. Components in ArchJava can be 
dynamically added (using the new operator), but an addition of new connections is 
restricted by connection patterns. These patterns define through which interfaces 
and to which types of components the new component can be connected. 
Moreover, only the direct parent component can establish these connections 
(among direct subcomponents). 

    (b) Shared components. Fractal introduces shared components (at the ADL level); a 
shared component is a subcomponent of more than one other components. This way, 
component hierarchy becomes a DAG in general (not a tree). Appling this idea to 
the Fig. 1 would mean that the Logger component would be used by LFactory and 
DAccess. This solution works nicely, however, an architecture with shared 
components can be confusing, since it is not easy to determine who is responsible 
for lifecycle of a shared component, reasoning about architecture (e.g., checking 
behavior compliance) is very complicated, and several advanced features of 
component models (e.g., dynamic update of a component subtree) cannot be applied. 

    (c) Formal rules. Several systems (e.g., CHAM [9], “graph rewriting” [23]) define 
a formal system for describing the permitted dynamic reconfigurations. These 
systems allow complex definition of all architecture states during an application’s 
lifecycle. But they are very complicated, even for simple architectures. 

(4) Unlimited. Darwin [13] uses direct dynamic instantiation, which allows defining 
architecture configurations that can dynamically evolve in an arbitrary way (but the 
new connections among components are not captured). Julia [11], an implementation 
to Fractal, allows a general component reference passing (so that any time a reference 
is passed, it mimics establishing a new connection – this works orthogonally to 
specifying a shared component in ADL). Obviously, the evolution gap problem is 
ubiquitous in these cases. 

However, let’s emphasize that SOA is typically based on dynamic reconfiguration, 
since the composition of services is done with the granularity of individual calls 
captured in coordination languages like Linda [22] or by routing of messages [5]. 

4   Conclusion 

We have shown a way of addressing dynamic reconfiguration in a hierarchical 
component model. With the aim to avoid uncontrolled architecture modification, the 
presented solution is based on the proposition of three reconfiguration patterns, which 
include the introduction of the utility interface concept that allows to use a service 
provided under the SOA paradigm from a component-based system. The paper is 
based on our experience with non-trivial case studies written for component-based 
systems SOFA and Fractal. Currently, we have specified the whole meta-model of 
SOFA 2.0, all necessary interfaces for the development time, deployment and 
runtime. A working prototype is expected within several months. 
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