
HPorter: Using Arrows
to Compose Parallel Processes

Liwen Huang1, Paul Hudak2, and John Peterson3

1 Yale University, Dept. of Computer Science
liwen.huang@yale.edu

2 Yale University, Dept. of Computer Science
paul.hudak@yale.edu

3 Western State College, Computer Information Science
jpeterson@western.edu

Abstract. HPorter is a DSL embedded in Haskell for composing pro-
cesses running on a parallel computer. Using arrows (a generalization
of monads), one can “wire together” processes in a manner analogous
to a signal-processing application. The processes themselves are typi-
cally existing C or C++ programs, but may also be programs written
in a first-order sub-language in Haskell that supports basic arithmetic,
trigonometric functions, and other related operations. In both cases, once
the processes are wired together, the supporting Haskell implementation
is out of the loop – imported C programs run unimpeded, the Haskell
sub-language is compiled into C code, and all data paths run directly
between C processes. But in addition, HPorter’s event-driven reactivity
permits reconfiguration of these tightly-coupled processes at any time,
thus providing a degree of dynamism that is critical in many applica-
tions.

The advantages of our approach over conventional scripting languages
include a higher degree of type safety, a declarative style, dynamic recon-
figuration of processes, having the full power of Haskell, and portability
across operating systems. We have implemented HPorter both on the
QNX operating system and using conventional TCP/IP sockets, and are
using it in a practical application in Yale’s Humanoid Robotics Labo-
ratory, where the processes correspond to soft-real-time tasks such as
computer vision, motor control, planning, and limb kinematics.

1 Introduction

A humanoid robot has many time-critical tasks, including vision processing,
motor control, limb kinematics, high-level planning, and so on. State-of-the-art
applications place heavy demands on these tasks, and require parallel computers
to deal with them effectively. In addition, the “modes” of a robot vary – if it is
moving, it might need to focus on its kinematics, but if it is trying to pick up
an object, it might need to focus on vision processing and planning. Scripting
these processes efficiently and in the correct manner is thus an important task
for the robotics programmer.

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 275–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

276 L. Huang, P. Hudak, and J. Peterson

In this paper we describe HPorter,1 a DSL embedded in Haskell for composing
processes running on a parallel computer. HPorter is based on arrows, a gener-
alization of monads. One way to think of the generalization afforded by arrows
is that they permit functions (processes) to be composed “in parallel,” rather
than in the linear, sequential style dictated by monads. This makes arrows a
good choice for composing parallel processes in a rigorous, robust, and type-safe
manner.

Although the processes themselves could in the abstract be any arbitrary
computations, including ordinary Haskell programs, our primary interest is in
scripting existing processes written in C (or compiled into C), for the sake of
efficiency. On the other hand, any extra processing needed to glue a couple of
processes together (for example, incrementing each value in a stream, or taking
the sine of each value) is something easily expressed in Haskell, and it would be
inconvenient to insist that the user write a new C program for each new piece
of glue code. Therefore, we also have designed a small first-order Haskell sub-
language called GLUE, based on previous work on Pan and Pan# [2,14], that is
easily compiled into C.

Once the C processes are wired together, the supporting Haskell implemen-
tation is completely out of the loop – the imported C programs run unimpeded,
the Haskell sub-language is compiled into C code, and all data paths run directly
between C processes.

But in addition, a key aspect of HPorter is that it is reactive, since, as men-
tioned earlier, there are times when the process configuration needs to change,
often in drastic ways. We achieve this by using switch combinators borrowed
from our work on FRP and Yampa [16,12]. This provides event-driven reactivity
that permits dynamic reconfiguration of the otherwise tightly-coupled processes.

In contrast to existing approaches to scripting parallel processes, our approach
offers the following advantages:

1. HPorter is type-safe. All input and output ports are strongly typed, thus
providing a robust interface not typically found in the C world.

2. HPorter is declarative, resulting in more concise and easier to understand
code. Rather than saying “how” things are wired together as in a conven-
tional approach, HPorter describe “what” the process interconnections are
in an arrow-based style.

3. HPorter is reactive, permitting reconfiguration of the processes in an event-
driven manner.

4. HPorter is embedded in Haskell, thus affording the user the full expressive
power of a modern functional language. Process-wiring code can be reused,
recursion can replicate networks, higher-order functions can capture repeat-
ing patterns, and so on.

In our robotics application these advantages are even greater because some
of the processes are actually Dance [6,5] programs that have been compiled into

1 The name “HPorter” comes from the name of the QNX scripting language Porter,
and our use of H askell.

HPorter: Using Arrows to Compose Parallel Processes 277

C. Dance is a DSL embedded in Haskell for controlling humanoid robots, and
uses principles similar to those in HPorter and Yampa – this similarity is an
advantage to the user.

We originally implemented HPorter two years ago on the QNX real-time op-
erating system running on a tightly-coupled network of four multiprocessors,
each of which has four processors (thus 16 processors in all).2 Recently, however,
the hardware was upgraded to more powerful nodes (although only 8 instead of
16), and we decided to explore the use of conventional TCP/IP sockets to in-
terconnect processes, rather than using the specialized QNX machinery. We felt
that this would result in a more robust design and would allow the system to be
more portable, since TCP/IP sockets are ubiquitous in Unix-based systems. In
porting HPorter to this new platform, all we had to do was change the back-end
interface and process-specific code – none of the arrow-based source code had to
be changed. Thus we point out the final advantage of our approach:

5. HPorter is portable.

We are currently using HPorter to program a real humanoid robot in the Yale
Robotics Laboratory. Our robot consists of a torso, two arms, a head, and shoul-
ders (which move). It has twenty-one degrees of freedom, each corresponding to
a separate motor, and each of those in turn requiring a separate motor controller.
In addition, the robot’s two eyes provide stereo vision, with two cameras for each
eye – one for wide-angle viewing, and the other to simulate foveal vision. The
vision processing is in fact the most demanding computational task.

The performance of HPorter is excellent. Once the processes are running, no
performance degradation is apparent. Although reactive processing (for event
processing and process reconfiguration) requires Haskell intervention, for our
applications the response time of the reactive component is more than accept-
able. Just as important, users of HPorter find the system easier to use than a
conventional scripting approach.

The remainder of this paper is organized as follows. We start with a brief
introduction to arrows in Section 2, following by an example of HPorter in Sec-
tion 3. In Section 4 we discuss the notions of processes, ports, and connections
in HPorter, as well as other implementation details. In Section 5 we discuss
performance, and related work is summarized in Section 6.

2 A Brief Introduction to Arrows

We assume that the reader is familiar with Haskell. In this section we give a
brief introduction to arrows; more detail can be found in [8,7].

Arrows are a generalization of monads that relax the stringent linearity im-
posed by monads, while retaining a disciplined style of composition. This dis-
cipline is enforced by requiring that composition be done in a “point-free”

2 On the other hamd, hard real-time constraints are not something we address in this
work, nor is it a requirement of our robotics application.

278 L. Huang, P. Hudak, and J. Peterson

style – i.e. combinators are used to compose functions without making direct
reference to the functions’ values. These combinators are captured in the Arrow
type class:

> class Arrow a where
> arr :: (b -> c) -> a b c
> (>>>) :: a b c -> a c d -> a b d
> first :: a b c -> a (b,d) (c,d)

arr lifts a function to a “pure” arrow computation; i.e., the output entirely
depends on the input (it is analogous to return in the Monad class). (>>>)
composes two arrow computations by connecting the output of the first to the
input of the second (and is analogous to bind ((>>=)) in the Monad class). But
in addition to composing arrows linearly, it is desirable to compose them in
parallel – i.e. to allow “branching” and “merging” of inputs and outputs. There
are several ways to do this, but by simply defining the first combinator in
the Arrow class, all other combinators can be defined. first converts an arrow
computation taking one input and one result, into an arrow computation taking
two inputs and two results. The original arrow is applied to the first part of the
input, and the result becomes the first part of the output. The second part of
the input is fed directly to the second part of the output.

Other combinators can be defined using these three primitives. For example,
the dual of first can be defined as:

> second :: (Arrow a) => a b c -> a (d,b) (d,c)
> second f = let swapA = arr (\(a,b) -> (b,a))
> in swapA >>> first f >>> swapA

Finally, it is sometimes desirable to write arrows that “loop”, such as in a sig-
nal processing application with feedback. For this purpose, an extra combinator
(not derivable from the three base combinators) is needed, and is captured in
the ArrowLoop class:

> class ArrowLoop a where
> loop :: a (b,d) (c,d) -> a b c

We find that arrows are best viewed pictorially, especially for the application
at hand: composing parallel processes. Figure 1 shows the basic combinators in
this manner, including loop.

3 HPorter by Example

In this section we present some examples that highlight the three key features
of HPorter: the use of arrows to wire together parallel processes, the ability to
reconfigure processes dynamically, and the ability to write glue code without
leaving Haskell.

HPorter: Using Arrows to Compose Parallel Processes 279

arr :: Arrow a => (b -> c) -> a b c
(>>>) :: Arrow a => a b c -> a c d -> a b d
(<<<) :: Arrow a => a c d -> a b c -> a b d
first :: Arrow a => a b c -> a (b,d) (c,d)
second :: Arrow a => a b c -> a (d,b) (d,c)
(***) :: Arrow a => a b c -> a b’ c’ -> a (b,b’) (c,c’)
(&&&) :: Arrow a => a b c -> a b c’ -> a b (c,c’)
loop :: Arrow a => a (b,d) (c,d) -> a b c

f

(a) arr f

������

(b) sf1 >>> sf2

��

(c) first sf

���

���

(d) sf1 &&& sf2

��

(e) loop sf

Fig. 1. Commonly Used Arrow Combinators

Fig. 2. Structure of a Robot System

3.1 Processes as Arrows

In HPorter, a process is represented as an arrow of type Proc T1 T2. In other
words, a process takes as input a stream of values of type T1, and yields as
output a stream of values of type T2. If a stream of values were represented as
an infinite list, we would have the following correspondence:

280 L. Huang, P. Hudak, and J. Peterson

Proc T1 T2 = [T1] -> [T2]

In fact it is easy to make this representation an instance of class Arrow, and an
(overly) abstract semantics for HPorter can be devised. In practice, the repre-
sentation is much more involved, since these processes are actually imperative
C programs running as QNX processes. We defer discussion of these implemen-
tation details until a later section.

As a realistic example, suppose we want our robot to perform a vision-guided
reaching task, for which we need eight processes: two video image grabbers, two
color processors, a scene depth calculator, two motor controllers, and a reaching
trajectory planner.3 Our only concern here is how to wire them together: the
streams of images captured from the grabbers are processed by the color filters
to generate “boxes” that identify objects of interest. Then the boxes along with
the images from the color filters are passed to the depth calculator to generate
the 3D coordinates of the objects. These coordinates are sent to the reaching
trajectory planner, which computes the arm trajectory and passes that to the
motor controller to move the arm. Besides this main information flow, there is
inter-process communication for auxiliary functionality, like recording requests
for the image grabber. Figure 2 shows the detailed information flow graphically
for the overall system – note that the graph is circular.

This information flow can be captured in HPorter as follows:

> vision :: Proc ((Rec,CClip),(Rec,CClip)) ((Image,Image),Coord3D)
> vision = (grabR >>> (first colorR)) *** (grabL >>> (first colorL))
> >>> (arr (\ (((imR,bR),cR),((imL,bL),cL))->
> (((imR,imL),(bR,bL)),(cR,cL)))) >>> ndepth
>
> reach :: Proc () ()
> reach = loop ((motorHead *** motorArm) *** (vision >>> (arr snd))
> >>> trajGen >>> (arr (\ ((a,b),c) -> (a,(b,c)))))

From this example the reader can see how cumbersome it can be to write in a
point-free style – in particular, the pairing and merging of inputs and outputs
becomes quite tedious. To alleviate this problem, Paterson has proposed a special
syntax for arrows [13], much in the spirit of the “do” syntax for monads. Using
arrow syntax, the above program can be written:

> reach :: Proc () ()
> reach = proc x -> do
> rec
> (cGR,imgR) <- grabR -< (cpR,rcR)
> (cGL,imgL) <- grabL -< (cpL,rcL)
> (imgCR,boxR) <- colorR -< imgR
> (imgCL,boxL) <- colorL -< imgL

3 The trajectory planner is actually a Dance (i.e. Haskell) program compiled into C
using GHC.

HPorter: Using Arrows to Compose Parallel Processes 281

> ((imgDR,imgDL), depD)
> <- ndepth -<
> (((imgCR,imgCL),(boxR,boxL)),(cGR,cGL))
> (((cmd0,cmd1),(cpR,rcR)),(cpL,rcL))
> <- headarm’ -<
> (((bz0,hm),(bz1,am)),depD)
> (bz0,hm) <- motorHead -< cmd0
> (bz1,am) <- motorArm -< cmd1
> returnA -< ()

Unlike the “do” syntax for monads, the arrow syntax requires both an input
and an output for each process. As with monad syntax, the inputs and outputs
“strip off” the arrow constructor. For example, in the above, colorR has type
Proc Image (Image, Boxes), and thus imgR has type Image and (imgCR,boxR)
has type (Image,Boxes).

Although more verbose than the original point-free style, this is arguably a
very natural and easy to understand way of wiring processes together. Indeed,
it is isomorphic to the diagram in Figure 2. Its constrained style permits us to
guarantee, eventually, that the processes run stand-alone, without the help of
the Haskell subsystem.

Continuing with this example, the processes we use are generated from ex-
isting C programs in the following way. Suppose the C program for the color
filter is located at "/home/user/bin/color". Suppose further that the TCP/IP
ports for this process have identifiers "inputa" and "inputb" for input, and
"outputc" for output. Suppose finally that we wish to map this process to pro-
cessor id 5. We can do this as follows:

> colorR :: Proc Image (Image, Boxes)
> colorR = makeProc progColor "-b -N 1 -s 0 -o /colorR" 5 5

where progColor is defined as:

> progColor = defProg { procName = "/color",
> progName = "/home/user/bin/color",
> input = image "inputa"
> output = lift2 (image "inputa") (box "inputb"),
> param = colorP}

The details of image and box, and of the string argument to makeProc, are not
important. Each of the other processes can be defined in a similar way.

3.2 Reactivity

In order to add reactivity to HPorter, we adopt the ideas of functional reactive
programming [16,12,1,3], in particular as they are embodied in Yampa, which
also uses arrows [7].

One key idea in Yampa is a signal function, whose type is SF a b, and is
analogous to HPorter’s Proc a b. Another fundamental concept is that of an

282 L. Huang, P. Hudak, and J. Peterson

event, which occurs at discrete points in time. This idea is captured in Yampa
through an option type called Event:

> data Event a = NoEvent | Event a

Event is isomorphic to Maybe, but it is an abstract type whose constructors are
not exposed. Yampa provides a rich set of functions for generating event sources
and for operating point-wise on events.

In HPorter we treat a reactive process as a signal function that generates
non-reactive processes. In other words:

> type (HasPort a, HasPort b) =>
> ReactProc a b c = SF a (Proc b c)

Here, type a represents the signal type that our process reacts to. Now Yampa’s
facilities for reactivity – i.e. its “switching” combinators – can be used to switch
to a new signal function when an event occurs. The most commonly used switch-
ing combinator is:

> switch :: SF (a, (b,Event c)) -> (c -> SF a b) -> SF a b

For example, the expression (sf1 &&& es) ‘switch‘ \e -> sf2 behaves as
sf1 until the first event in the event stream es occurs, at which point the event’s
value is bound to e and the behavior switches over to sf2.

With this background we can now give an example of reactivity that high-
lights our application domain. The robot’s vision system has a variety of image
processing capabilities, such as a color filter and a motion detector:

> color :: Proc Image Image
> motion :: Proc Image Image

For input and output, suppose we also have an image grabber and a video player:

> grabber :: Proc () Image
> video :: Proc Image ()

Now suppose we want the vision system to switch between looking for objects
of a certain color (signaled by Event 1), objects that are moving (Event 2), or
no objects at all (Event 0). This behavior can be achieved as follows:

> colorOrMotion :: ReactProc (Event Int) () ()
> colorOrMotion = filterSelect noFilter
>
> colorFilter = grabber >>> color >>> video
> motionFilter = grabber >>> motion >>> video
> noFilter = grabber >>> video
>
> filterSelect :: Proc () () -> ReactProc (Event Int) () ()
> filterSelect p = switch (proc e do
> returnA -< (p,e))

HPorter: Using Arrows to Compose Parallel Processes 283

> (\a -> case a of
> 0 -> filterSelect noFilter
> 1 -> filterSelect colorFilter
> 2 -> filterSelect motionFilter

filterSelect is a recursive switch function that starts with a process of type
Proc () (), and watches the input signal for an event. When an event happens,
filterSelect is called recursively, but possibly with a new process, depending
on the value of the integer event. It is important to understand that the switching
process is not the same as a conditional – a switch may imply the reconfiguration
of parallel processes.

3.3 GLUE’ing Processes Together

In this section we give an example of the third and final key feature of HPorter,
namely the ability to write simple glue code without resorting to C or C++.

As mentioned in the introduction, sometimes simple glue code is needed to
interconnect processes – for example, we might want to increment each value in
a stream, or take the sine of each value. It would be inconvenient to insist that
the user write a new C or C++ program for each new piece of glue code. Our
solution is to introduce a small first-order imperative language called GLUE that
allows the user to write the glue code directly within her HPorter program, but
which is simple enough that it can be compiled into efficient C++ code.

In our original design we simply defined an AST data type in Haskell and
wrote our glue code using values of that type. With the overloading afforded
by Haskell’s type classes, this was a reasonable approach, and it worked quite
well. More recently, however, we have defined a simple lexical syntax for this
language, which makes writing GLUE code even easier. As an example, here is
a program that takes two streams of integers and adds them pairwise:

name glueplus
input Int a;

Int b;
output Int c;
c := a + b

This program is compiled into our AST data type, where it is type-checked and
compiled into C++, borrowing ideas from Pan and Pan#, which are DSLs for
graphics that are embedded in Haskell. Since that compilation process is well-
documented elsewhere (see [2,14]), we omit a detailed discussion in this paper.

Since GLUE is an imperative language, one might ask why we don’t just write
the glue code in C or C++. But in addition to the small piece of straight-line
code that, in the example above, adds two numbers together, there is a plethora
of additional “boilerplate code” that needs to be written as well, such as the
inclusion of header files, and establishing the linkages between this process and
the ones that we are scripting. Indeed, our compilation process turns the above
five-line program into a ninety-five line C++ program.

284 L. Huang, P. Hudak, and J. Peterson

4 Processes, Ports, and Connections

In this section we describe in detail how the underlying processes, ports, and
connections are implemented in HPorter. All of this is hidden from the user.

Running Processes. As mentioned in Section 3.1, a process can abstractly be
thought of as a stream transformer. But concretely, it is a C or C++ process
running stand-alone on an individual node of a parallel computer with a unique
TCP/IP address. Each process has a pathname, a unique id, and both an input
and output port. Finally, processes are wired together via connections between
pairs of ports.

In order to achieve this in Haskell, we need to represent all of these gory details
within the abstraction for processes in HPorter. We begin with the simple notion
of a running process, or RProc:

> type RProc = (ID, ProgPath, Parameter, Address, Node)

> type ProgPath = String; type Parameter = String;
> type Address = String; type ID = Int;
> type Node = Int; type PIDMap = [(ID,Address)]

An RProc thus contains a unique ID, a program pathname, a parameter (i.e.
an argument), the number of the node on which it is running, and the TCP/IP
address of the node. We also introduce the concept of PID map, which maps the
ID of each process to the TCP/IP address of the node on which it is running.

Ports and Connections. Next, we define the types needed for process commu-
nication. The connection of a server/client pair is built upon the notion of a
port:

> type Port = (ID, PortName)
> type PortName = String

which contains the ID of the process that it is defined within and a unique local
name. Then a server port:

> type ServerPort = (Port, PortNum)
> type PortNum = Int

is a pair of port and port number, and a connection:

> type Connection = (Port,Port)

is a pair of ports, whose order matters: data flows from the first to the second.
Process State and Arrow Instances. Finally, as we compose processes together

(using the arrow framework), we need to generate a new ID for each composite
process and a free port number for each pair of communication ports, and we
need to keep track of all live socket port servers, the internal connections, and

HPorter: Using Arrows to Compose Parallel Processes 285

the internal process ids. This information is contained in the PState data type,
which is then used to define the Proc data type as follows:4

> data Proc a b = Proc ((PState, a) -> (PState, b))
>
> data PState = PState { nextID :: ID,
> nextPort :: PortNum,
> serverPort :: [ServerPort],
> conns :: [Connection],
> procs :: [RProc],
> pidMap :: PIDMap}
> emptyPState = PState { nextID = 0, nextPort = 5000, serverPort = [],
> conns = [], procs = []}

Now we can declare Proc to be an instance of Arrow and ArrowLoop:

> instance Arrow Proc where
> arr f = Proc (\(s, x) -> (s, f x))
> Proc f1 >>> Proc f2 = Proc (f2 . f1)
> first (Proc f) = Proc (\ (s, (a,c)) ->
> let (s’, b) = f (s, a) in (s’, (b, c)))
>
> instance ArrowLoop Proc where
> loop (Proc f) = Proc (\ (s, a) ->
> let (s’, (b, c)) = f (s, (a, c)) in (s’, b))

Running a Composite Process. At the outermost level of an HPorter program,
there is one value of type Proc () () that needs to be executed, just as in
monadic IO there is one value of type IO () to be executed. Indeed, to execute
the Proc () () value in Haskell, it must be converted into a value of type IO
(). The function runProc achieves this for us:

> runProc :: Proc () () -> IO ()
> runProc (Proc p) =
> let (s, output) = p (emptyPState, ())
> obs = procs s
> cs = conns s
> sv = serverPort s
> adList = pidMap s
> in do sequence_ (map (run sv cs adList) obs)

(sequence_ is a standard Haskell library functions that takes a list of monadic
actions and “runs” them in sequence.)

4 Note that if Proc could be defined as Proc (a -> (PState, b)) then it would be
a Kleisli arrow, and thus a monad. But it cannot, and thus the more general arrow
class must be used.

286 L. Huang, P. Hudak, and J. Peterson

The initial PState, emptyPState, contains no server port, no connections, no
process, an initial id value and an initial port number (which is set to 5000
to avoid possible conflict with the system processes). By applying p to the
initPState, we get a final PState named s that contains all of the connec-
tions, processes, PID-IP address mapping and server port number assignment
for the whole program. run generates the appropriate QNX commands to begin
execution of each process with the proper port number initialization parameters
for each.

Fig. 3. Process Controller and Processes

Adding Reactivity. The presentation we have given so far has actually been
oversimplified. In particular, we have not taken into account how HPorter dy-
namically reconfigures processes, including stopping them and restarting them if
necessary. We need a new execution model to enable dynamic process re-wiring,
in which we:

– Add an input port in all the source programs for process control command.
– Add an output port in all the source programs for control command feedback.
– Adjust the programs to allow process control interruption during execution.
– Add a command line option for switching between online and offline process

control.

These new ports are exclusively for process control purposes, and connect only
to what we call the process controller. They are not user-controllable and do
not appear in the program or process abstractions. Through these new ports the
process controller acts as a central controller for all of them.

HPorter: Using Arrows to Compose Parallel Processes 287

The relationship between the process controller and each process is that of
a standard client/server model, as shown pictorially in Figure 3. The controller
(server) sends commands to each process (client) through a “control” port, and
receives responses through a “feedback” port. The process control commands
are captured in:

> data ProcCmd = StartServer ID PortName PortNum
> | ConnectTo ID PortName Address PortNum
> | Stop ID PortName
> | Quit ID
> | Suspend PID
> | Continue PID

The command StartServer pid pn i asks process pid to start a TCP/IP
socket server pn at port i. Command ConnectTo pid1 pn addr i asks pro-
cess pid1 to connect port pn to the port number i at address addr. Stop pid
pn tells the process pid to close the port named pn, and Quit pid is used to
kill process pid. The Suspend and Continue commands allow interrupting and
resuming a process, for situations where a batch of commands needs to be ad-
dressed before the process can proceed safely.

Although the details are too numerous to include in this paper, reactivity
works as follows: The state that is accumulated by the running system includes
all of the running processes and how they are interconnected. When an event
occurs that triggers a switch, a computation is performed to determine the best
way to achieve the reconfiguration (some processes may need to be killed; others
suspended, rewired, and restarted; and others created from scratch). The above
commands are then issued to the processes to effect this reconfiguration, and the
computation continues. All of this stateful computation is “hidden” within the
arrow and the switching combinators.

5 Performance

We have implemented HPorter on two different networks of parallel processors
running under the QNX real-time operating system, one having 8 processors,
and the other having 16. The current system is running under QNX Version 6.3,
and we use TCP/IP sockets for inter-process communication.

GHC Version 6.4 is used to compile any Haskell processes that are being
scripted (for example the Dance program for the trajectory planner discussed in
Section 3.1), as well as the GLUE code and the process controller.

We have compared our implementation of HPorter to the QNX Porter script-
ing language, and find them to be comparable in performance for our application.

– For non-reactive processes, Haskell is only needed for starting and intercon-
necting the processes. The extra overhead at start-up time is not noticeable,
because the start-up time for most processes is much longer.

– For processes that contain GLUE code, some overhead is incurred to compile
the glue code. Once compiled and interconnected, however, Haskell once

288 L. Huang, P. Hudak, and J. Peterson

again is out of the loop. And because the glue code is usually very small, the
overhead of compilation is not significant. Also, our implementation works
hard to ensure that GLUE code is not recompiled every time it is invoked –
thus the overhead is only incurred the first time around.

– For processes with reactivity, we have found that for our applications, where
the mode switches do not happen frequently, the response time is more than
adequate. In vision-based robotics, vision processing is the computationally
limiting factor, and rates of 10-20 hertz are considered good. At that rate
HPorter’s impact on the system is negligible. For applications requiring more
rapid response, we expect that pre-compilation of the glue code may be
necessary. This would be straightforward using our approach, but thus far
we have not needed to do so.

6 Related Work

There are many “architectural description languages,” or ADLs, such as Dar-
win/regis [11], ACME [4], and Rapide [10], designed for specifying the architec-
tures of a software system. HPorter shares with these language the ability to
specify a software architecture, but there are several important differences:

– Most ADLs represent the architecture as a collection of components and
connections, whereas we treat it as a transition function and cast it into an
arrow framework.

– ADLs are meant primarily for the design of software systems, whereas HPorter
is targeted at composing and executing a real distributed application.

– HPorter supports reactivity – i.e., the expression of dynamic, reconfigurable
architectures – which is seldom found in ADLs.

– New processes can be defined and created dynamically in HPorter.
– Programs in HPorter are more concise than ADLs, which express components

and their interconnections separately.

Our work is probably most similar to Ptolemy [9], which serves both as an
ADL and as a language for composing real-time processes. Ptolemy is much richer
than HPorter, although its notion of process interconnection is more complex
than that of HPorter.

HaskellScript [15] is a scripting language embedded in Haskell that inter-
connects COM objects dynamically. Like HPorter, it also has strong typing.
However, the focus is on uniprocessor applications, whereas HPorter allows true
parallelism. Furthermore, HaskellScript uses monads to structure programs, and
thus does not have the generality afforded by arrows.

7 Conclusion

In this paper we present an embedded DSL, HPorter, for composing parallel
processes. HPorter has a concise and declarative syntax, via the employment of
the arrow framework. The host language Haskell makes it more robust in the

HPorter: Using Arrows to Compose Parallel Processes 289

sense of type safety, compared to conventional scripting techniques. Reactivity in
HPorter allows system reconfiguration through the use of switching combinators
derived from Yampa. We have also presented a sub-language, GLUE, for spec-
ifying the glue code that is sometimes needed when interconnecting processes.
An efficient implantation of HPorter is achieved by compiling glue code into C,
and by interpreting process interconnections as QNX system calls.

References

1. C. Elliott. Modeling interactive 3D and multimedia animation with an embedded
language. In Proceedings of the first conference on Domain-Specific Languages,
pages 285–296. USENIX, Oct. 1997.

2. C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages. In SAIG,
pages 9–27, 2000.

3. C. Elliott and P. Hudak. Functional reactive animation. In International Confer-
ence on Functional Programming, pages 263–273, June 1997.

4. D. Garlan, R. Monroe, and D. Wile. ACME: An architecture description inter-
change language. In Proceedings of CASCON’97, pages 169–183, Toronto, Ontario,
November 1997.

5. L. Huang. Robot Dance with Functional Reactive Programming. PhD thesis, De-
partment of Computer Science, Yale University, December 2006.

6. L. Huang and P. Hudak. Dance: A declarative language for the control of humanoid
robots. Technical Report YALEU/DCS/RR-1253, Yale University, Department of
Computer Science, July 2003.

7. P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional
reactive programming. In Summer School on Advanced Functional Programming,
Oxford University. Springer Verlag, to appear, 2003.

8. J. Hughes. Generalising monads to arrows. Science of Computer Programming,
37:67–111, May 2000.

9. E.A.Lee.Overviewof theptolemyproject.TechnicalReportTechnicalMemorandum
UCB/ERL M03/25, Univerisity of California, Berkeley, CA, 94720, USA, July 2003.

10. D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and analysis of system architecture using rapide. IEEE Transactions
on Software Engineering, 21(4):336–355, 1995.

11. J. Magee, N. Dulay, and J. Kramer. Regis: A constructive development environ-
ment for distributed programs, 1994.

12. H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming, con-
tinued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop (Haskell’02),
pages 51–64, Pittsburgh, Pennsylvania, USA, Oct. 2002. ACM Press.

13. R. Paterson. A new notation for arrows. In International Conference on Functional
Programming, pages 229–240. ACM Press, Sept. 2001.

14. J. Peterson. A language for mathematical visualization. In Proceedings of
FPDE’02: Functional and Declarative Languages in Education, October 2002.

15. S. Peyton Jones, E. Meijer, and D. Leijen. Scripting COM components from
Haskell. In Fifth International Conference on Software Reuse (ICSR’98), Victoria,
B.C., Canada, June 1998. IEEE Computer Society Press.

16. Z. Wan and P. Hudak. Functional reactive programming from first principles. In
Proceedings of PLDI’01: Symposium on Programming Language Design and Im-
plementation, pages 242–252, June 2000. http://haskell.org/frp/publication.
html#frp-1st

http://haskell.org/frp/publication.html#frp-1st
http://haskell.org/frp/publication.html#frp-1st

	Introduction
	A Brief Introduction to Arrows
	HPorter by Example
	Processes as Arrows
	Reactivity
	GLUE'ing Processes Together

	Processes, Ports, and Connections
	Performance
	Related Work
	Conclusion

