
Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

A Component Model for
Architectural Programming

Hubert Baumeister, Florian Hacklinger, Rolf Hennicker,
Alexander Knapp, Martin Wirsing

Institut für Informatik
Ludwig-Maximilians-Universität München

March 2006

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Our Department in March 2006

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Software Architecture

Structuring elements
components as building blocks
connectors as glue
ports for communication

Development process
“[. . .] a component is modeled throughout the development
life cycle [. . .]” (UML 2.0 Superstructure Specification)
preservation and refinement of components

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Software Architecture in Development Processes

Analysis and Design
Architectural Description Languages:

Wright, Darwin, Rapide, SARA, etc.

Implementation
various component models (SOFA, EJB, . . .)
but: Programming languages do not reflect components
danger of architectural erosion

⇒ integrate architectural concepts into programming
languages: Architectural Programming

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Architectural Programming (I)

Architectural Programming Languages (APLs)
integrate components, ports, connectors and
configurations as primitive language constructs

APLs should support
strong encapsulation (communication exclusively via
ports)
ports with provided, required interfaces and protocols
connectors for building up configurations
runtime reconfiguration

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Architectural Programming (II)

Advantages of Architectural Programming
maintainability
reusability, replaceability and independent deployment
seamless transition from model to code
separation of application code and glue code

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Architectural Programming (III)

Our approach
Architectural programming language JAVA/A

Implementable Component Models
SOFA, Fractal:

support for software architectures
not programming languages: architectural erosion

EJB, JavaBeans, COM+, etc.
no support for software architectures
component models without ports, etc.
here also: architectural erosion

Other APL
ArchJava (D. Notkin et al., University of Washington)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Comparison of ArchJava and JAVA/A

components ports configurations encapsulation
JAVA/A yes yes explicit yes
ArchJava yes yes implicit partial

behavioural
modeling

distributed
applications

asynchronous
communication

JAVA/A yes yes yes
ArchJava no no no

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM (informal)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Configuration

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

:BA

atm0:ATM

atm1:ATM

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: UML 2.0 Component Diagram

Company
Clearing− Bank ATM

BC

BankATM

ABCB BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: UML 2.0 Component Diagram

components

Company
Clearing− Bank ATM

BC

BankATM

ABCB BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: UML 2.0 Component Diagram

ports

Company
Clearing− Bank ATM

BC

BankATM

ABCB BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: UML 2.0 Component Diagram

connectors

Company
Clearing− Bank ATM

BC

BankATM

ABCB BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: UML 2.0 Component Diagram

pinNotOK
pinOk

verifyPIN
verifyPIN
withdraw

pinOk
pinNotOK
withdrawOK
withdrawNotOk

Company
Clearing− Bank ATM

BC

BankATM

ABCB BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Dynamic Reconfiguration

Connecting components on demand
ATMs are very often idle
build up online connections only if necessary

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

atm0:ATM

atm1:ATM

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Dynamic Reconfiguration

Connecting components on demand
ATMs are very often idle
build up online connections only if necessary

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

:BA

atm0:ATM

atm1:ATM

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

JAVA/A: An Architectural Programming Language (I)

Characteristics of JAVA/A
components with ports (strong encapsulation)
ports with provided and required interfaces,
port protocols
hierarchical composition
reconfiguration at runtime
loose coupling (independent deployment)
model checking support for connectors (between ports)
predefined connector types (local and distributed)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

JAVA/A: An Architectural Programming Language (II)

Current JAVA/A tool support
compiler jaac
Component Composition Platform (CCP):

building and editing configurations and components
coordination and management framework

start and stop distributed applications

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

JAVA/A: Component Meta-Model

**

CompositeComponent

*

0..1

1 provided

Component

SimpleComponent

Protocol

Interface

required 1

PortConnector

1

2

Assembly *

0..1 1

1 1

*

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Implementation using JAVA/A

Company
Clearing− ATM

BankATM

ABCB BC BA

Bank

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Implementation using JAVA/A

simple component Bank {
Queue pending = new LinkedList();
BA current = null;
Set verifieds = new HashSet();
Map balance = new HashMap();

dynamic port BA {
provided {

signal verifyPIN(IBAN iban, int pin);
signal withdraw(IBAN iban, Money amount);

}
required {

void pinOk(); void pinNotOk();
void withdrawOk(); void withdrawNotOk();

}
}

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Implementation using JAVA/A

port BC {
provided {

void pinOk(); void pinNotOk();
}
required {

void verifyPIN(IBAN iban, int pin);
}

}

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Implementation using JAVA/A
signal verifyPIN(BA incoming, IBAN iban, int pin)

implements BA.verifyPIN(IBAN, int) {
pending.offer(new Object[]{incoming,iban,pin});
// wait until current == null
Object[] request = (Object[])pending.poll();
current = (BA)request[0];
BC.verifyPIN((IBAN)request[1],

((Integer)request[2]).intValue());
}

void pinOk() implements BC.pinOk() {
verifieds.add(current);
current.pinOk();
current = null;
// notification that current == null

}

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Specification of Port BC

Ports are specified with UML 2.0 protocol state machines.

Specification of Port BC (Bank)

pinOk()/

pinNotOk()/

VerifyingIdle

/verifyPIN(iban, pin)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Configuration in JAVA/A

composite component BankATM {
assembly {

components { ATM, Bank, ClearingCompany }
connectors { (ATM.AB, Bank.BA);

(Bank.BC, ClearingCompany.CB) }
initial configuration {

ATM atm0 = new ATM();
ATM atm1 = new ATM();
Bank bank = new Bank();
ClearingCompany cc =

new ClearingCompany();
Connector cn0 = new Connector();
cn0.connect(atm0.AB, bank.BA);
Connector cn1 = new Connector();
cn1.connect(atm1.AB, bank.BA);
Connector cn2 = new Connector();
cn2.connect(bank.BC, cc.CB); } } }

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Reconfiguration in JAVA/A

try {
Component bank = componentLookUp(this, "Bank");
Port ba = bank.getPort("BA");
ConnectionRequest cr =

new ConnectionRequest(this,
this, AB, bank, ba, new Connector());

reconfigurationRequest(cr);
}
catch (ReconfigurationException e) {

...

}

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Seamless Development

CCP: Component Composition Platform
code generation
round-trip engineering
model checker integration for architectural analysis

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

A Model for AP: Overview (I)

Ports
Signatures

provided interface I = (Σpro, Oppro)
required interface O = (Σreq, Opreq)

Models: labelled transition systems
transitions: labelled by operation calls of provided and
required operations op(v)/ , /op(v)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

A Model for AP: Overview (II)

Components
Signatures

algebraic signature Σ = (S, F) for internal states
port declarations of the form P : ΣP

Models: labelled transition systems
states: algebras over the internal state signature
transitions: labelled by operation calls on port instances
p.op(v)/ , /p.op(v)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

A Model for AP: Overview (III)

Assemblies
Signatures

algebraic signature for internal state
component declarations of the form C : ΣC
connector declarations of the form Con : ΣCon

Models: labelled transition systems
states: algebras over the internal state signature (of the
assembly)
transitions: labelled by operation calls on port instances of
component instances with synchronization on connected
ports (c1.p1, c2.p2).op(v)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Signature ΣBC for Port BC (Bank)

Company
Clearing− Bank ATM

BankATM

ABCB BC BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Signature ΣBC for Port BC (Bank)

Provided Interface IBC

sorts & funs: ∅
operations: pinOk(), pinNotOk()

Required Interface OBC

sorts: int, IBAN
funs: Fint, . . .

operations: verifyPIN(iban: IBAN, pin: int)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: A Model for Port BC (Bank)

state

transition

operation call

/verifyPIN(..., ...)

pinOk()/

pinNotOk()/

/verifyPIN(MO17, 25)

Idle Verifying

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Signature ΣBank for Component Bank

Port declarations
BA : ΣBA, BC : ΣBC

Internal signature Σint
Bank

sorts: BA, BC, Queue, Set, Map, int, IBAN, Money
funs:
pending: → Queue,
current: → BA,
verifieds: → Set,
balance: → Map,
Fint, . . .

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Part of a Model for Component Bank

bc.pinOk() /

q0
int = Z, . . .

q2

pending = {}
current = ba0

q7

verifieds = {}
balance(MO17) = 40MOP
. . .

/ ba0.pinOk()

pending = {(ba0,MO17,25)}
. . .

q1

pending = {}
current = ba0

q3

q6

. . .

/ ba0.withdrawOk()

ba0.withdraw(MO17, 10MOP) /

. . .

q5

/ ba0.withdrawNotOk()

current = null

q4

ba
0
.w

ith
dr

aw
(M

O
17

,1
00

M
O

P
)/

verifieds = {ba0}
. . .

.

balance(MO17) = 50MOP
verifieds = {}
current = null

BA = {ba0}, BC = {bc}, . . .
pending = {}

/ bc.verifyPIN(MO17, 25)

ba0.verifyPIN(MO17, 25) /

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Relationship between Ports and Components

Component – Port
a component has to implement all its ports
ports can be dynamically created
ports can be dynamically destroyed

Implementation Correctness
reduction of a component model to a port instance must be
a model of the port (up to observ. equiv.)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from the Model of Bank to Port Instance bc

bc.pinOk() /

q0
int = Z, . . .

q2

pending = {}
current = ba0

q7

verifieds = {}
balance(MO17) = 40MOP
. . .

/ ba0.pinOk()

pending = {(ba0,MO17,25)}
. . .

q1

pending = {}
current = ba0

q3

q6

. . .

/ ba0.withdrawOk()

ba0.withdraw(MO17, 10MOP) /

. . .

q5

/ ba0.withdrawNotOk()

current = null

q4

ba
0
.w

ith
dr

aw
(M

O
17

,1
00

M
O

P
)/

verifieds = {ba0}
. . .

.

balance(MO17) = 50MOP
verifieds = {}
current = null

BA = {ba0}, BC = {bc}, . . .
pending = {}

/ bc.verifyPIN(MO17, 25)

ba0.verifyPIN(MO17, 25) /

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from the Model of Bank to Port Instance bc

bc.pinOk() /

q0
int = Z, . . .

q2

pending = {}
current = ba0

q7

verifieds = {}
balance(MO17) = 40MOP
. . .

/ ba0.pinOk()

pending = {(ba0,MO17,25)}
. . .

q1

pending = {}
current = ba0

q3

q6

. . .

/ ba0.withdrawOk()

ba0.withdraw(MO17, 10MOP) /

. . .

q5

/ ba0.withdrawNotOk()

current = null

q4

ba
0
.w

ith
dr

aw
(M

O
17

,1
00

M
O

P
)/

. . .

.

balance(MO17) = 50MOP
verifieds = {}
current = null

BA = {ba0}, BC = {bc}, . . .
pending = {} verifieds = {ba0}

/ bc.verifyPIN(MO17, 25)

ba0.verifyPIN(MO17, 25) /

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from the Model of Bank to Port Instance bc

bc.pinOk() /

q0
int = Z, . . .

q2

pending = {}
current = ba0

q7

verifieds = {}
balance(MO17) = 40MOP
. . .

pending = {(ba0,MO17,25)}
. . .

q1

pending = {}
current = ba0

q3

q6

. . .

/ ba0.withdrawOk()

. . .

q5

/ ba0.withdrawNotOk()

current = null

q4

ba
0
.w

ith
dr

aw
(M

O
17

,1
00

M
O

P
)/

. . .

.

balance(MO17) = 50MOP
verifieds = {}
current = null

BA = {ba0}, BC = {bc}, . . .
pending = {} verifieds = {ba0}

/ ba0.pinOk()

ba0.withdraw(MO17, 10MOP) /

/ bc.verifyPIN(MO17, 25)

ba0.verifyPIN(MO17, 25) /

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from the Model of Bank to Port Instance bc

/

/

/

/

/

/ verifyPIN(MO17, 25)

pinOk() /

q0

q2

q7

q1

q3

q6

q5

q4

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Signature ΣBankATM for Assembly of
Bank–ATM

Company
Clearing− Bank ATM

BC

BankATM

ABCB BA

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Signature ΣBankATM for Assembly of
Bank–ATM

Component Declarations
ATM : ΣATM , Bank : ΣBank , ClearingCompany : ΣClearingCompany

Connector Declarations
ABBA : (AB, BA), BCCB : (BC, CB)

Internal Signature

sorts: ATM, Bank, ClearingCompany,
AB, BA, BC, CB, ABBA, BCCB, . . .

funs: pending: Bank → Queue,
current: Bank → BA,
verifieds: Bank → Set,
balance: Bank → Map, . . .

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Part of a Model for Assembly of Bank–ATM
(I)

Component instances

ATM = {atm0, atm1}, Bank = {b}, ClearingCompany = {c}

Port instances
AB(atm0) = {ab0}, AB(atm1) = {ab1},
BA(b) = {ba0, ba1}, BC(b) = {bc}, CB(b) = {cb}

Connector instances
ABBA = {(ab0, ba0), (ab1, ba1)}, BCCB = {(bc, cb)}

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example: Part of a Model for Assembly of Bank–ATM
(II)

(c.cb, b.bc)pinOk()

current(b) = ba1
pending(b) = {}
q9

. . .

(b.ba1, atm1.ab1)pinNotOk()
(c.cb, b.bc)pinNotOk()

current(b) = ba1
pending(b) = {}
q8q7

q1
pending(b) = {(ba0, MO17, 25)}
. . .

q2
pending(b) = {}
current(b) = ba0

pending(b) = {}
current(b) = ba0

q3

(b.ba0, atm0.ab0)pinOk()

. . .

. . .
pending(b) = {(ba1, MO17, 99)}

(b.bc, c.cb)verifyPIN(MO17,99)

(atm1.ab1, b.ba1)verifyPIN(MO17,99)

q0

(atm0.ab0, b.ba0)verifyPIN(MO17,25) (b.bc, c.cb)verifyPIN(MO17,25)

. . .

.

. . .

. . .
clearingData(c) = {(MO17, 25)}
balance(b, MO17) = 50MOP
verifieds(b) = {}
current(b) = null
pending(b) = {}
Bank = {b}, BA(b) = {ba0}, . . .

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from Model Bank–ATM to Component b

(c.cb, b.bc)pinOk()

current(b) = null

(c.cb, b.bc)pinNotOk()

balance(b, MO17) = 50MOP

pending(b) = {}

. . .

(b.bc, c.cb)verifyPIN(MO17,25)

pending(b) = {}
current(b) = ba1

(atm1.ab1, b.ba1)verifyPIN(MO17,99)

. . . pending(b) = {}
current(b) = ba1

(b.ba0, atm.ab0)pinOk()
(b.ba1, atm1.ab1)pinNotOk()

(b.bc, c.cb)verifyPIN(MO17,99)

(atm0.ab0, b.ba0)verifyPIN(MO17,25)

verifieds(b) = {}

clearingData(c) = {(MO17, 25)}

pending(b) = {(ba0, MO17, 25)}
. . .

pending(b) = {}
current(b) = ba0

pending(b) = {}
current(b) = ba0

pending(b) = {(ba1, MO17, 99)}
. . .

. . .

. . .

. . .

. . .

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from Model Bank–ATM to Component b

(c.cb, b.bc)pinOk()

current(b) = null

(c.cb, b.bc)pinNotOk()

balance(b, MO17) = 50MOP

(b.ba1, atm1.ab1)pinNotOk()

pending(b) = {}

. . .

pending(b) = {}
current(b) = ba1

. . .
current(b) = ba1

. . .

(b.ba0, atm.ab0)pinOk()

(b.bc, c.cb)verifyPIN(MO17,99)

(b.bc, c.cb)verifyPIN(MO17,25)(atm0.ab0, b.ba0)verifyPIN(MO17,25)

pending(b) = {}

pending(b) = {(ba0, MO17, 25)}
. . .

pending(b) = {}
current(b) = ba0

pending(b) = {}
current(b) = ba0

pending(b) = {(ba1, MO17, 99)}
. . .

verifieds(b) = {}

clearingData(c) = {(MO17, 25)}

. . .

.

(atm1.ab1, b.ba1)verifyPIN(MO17,99)

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Reduct from Model Bank–ATM to Component b

bc.pinOk() /

current(b) = null

bc.pinNotOk() /

balance(b, MO17) = 50MOP

pending(b) = {}

. . .

pending(b) = {}
current(b) = ba1

(atm1.ab1, b.ba1)verifyPIN(MO17,99)

. . .
current(b) = ba1

/ ba0.pinOk()

(b.bc, c.cb)verifyPIN(MO17,99)

pending(b) = {}

ba0.verifyPIN(MO17,25) / / bc.verifyPIN(MO17,25)

/ ba1.pinNotOk()

verifieds(b) = {}

clearingData(c) = {(MO17, 25)}

pending(b) = {(ba0, MO17, 25)}
. . .

pending(b) = {}
current(b) = ba0

pending(b) = {}
current(b) = ba0

pending(b) = {(ba1, MO17, 99)}
. . .

. . .

.

. . .

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Example Bank–ATM: Reconfiguration

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

atm0:ATM

atm1:ATM

Port instances:
AB(atm0) = {ab0},
AB(atm1) = {ab1},
BA(b) = {ba0}

Connector instances:
ABBA = {(ab0, ba0)}

Port instances:
AB(atm0) = {ab0},
AB(atm1) = {ab1},
BA(b) = {ba0, ba1}

Connector instances:
ABBA = {(ab0, ba0),

(ab1, ba1)}

Company
b:Bankc:Clearing−

:CB :BC

:AB

:AB

:BankATM

:BA

:BA

atm0:ATM

atm1:ATM

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Checking Connectors for JAVA/A

What is checked?
Syntactically: interface conformance
Semantically: absence of deadlocks

How is it checked?
interface conformance: by the compiler
absence of deadlocks: model checking using Hugo/RT

for finite state systems only . . .

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Hugo/RT

javac

uppaal

kiv

UML−Editor
Smile

Hugo/RT

spin

MagicDraw
Poseidon
ArgoUML

(counter) example

(counter) example

verification

simulation

code skeleton

verification

theorem

proving

.java

.pr

.ta

.spec

XMI

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Applying Hugo/RT in CCP

Model checking connnectors
“one-click”
no model checking knowledge necessary

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Correctness of (Static) Configurations

Theorem
Let Ξ1 and Ξ2 be port specifications. Let Γ be a configuration
containing two component instances c1 and c2, such that c1
has a port instance p1 satisfying Ξ1 and c2 has a port instance
p2 satisfying Ξ2 and p1 and p2 are connected.

Ξ1 ‖ Ξ2 |= ¬δ ⇒ Γ |= ¬δ

Rolf Hennicker Architectural Programming

Software Architecture
An Architectural Programming Language: JAVA/A

An Algebraic Component Model

Conclusions and Future Work

Architectural Programming with Java/A
bridging the gap between software architecture and
programming languages
based on an algebraic component model

Future Work
extensions: ”explicit” ports of composite components,
n-ary connectors, shared components, . . .
specification framework: for reconfigurations, internal
component behavior, . . .
proof techniques (for refinements, . . .)
black box and glass box semantics

Rolf Hennicker Architectural Programming

	Software Architecture
	An Architectural Programming Language: Java/A
	An Algebraic Component Model

