
Modelling the CoCoME with
the Java/A Component Model

Rolf Hennicker, Alexander Knapp
Ludwig-Maximilians-Universität München

August 2007

The Java/A Team
I Ludwig-Maximilians-Universität München

I UML modelling, qualitative analysis

I Florian Hacklinger
I Rolf Hennicker
I Stephan Janisch
I Alexander Knapp
I Martin Wirsing

I University of Edinburgh
I quantitative analysis

I Allan Clark
I Stephen Gilmore

I Danmarks Tekniske Universitet, Lyngby
I UML modelling, qualitative analysis

I Hubert Baumeister

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 2/43

Overview

I Java/A component model
I Modelling the CoCoME
I Analysis of our model for the CoCoME
I Tools
I Open issues

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 3/43

The Java/A Component Model (1)

Feature

0..1

required

0..1

provided
Interface

Port

Behavior

Operation

Property

operations
operations

*

properties

*

behavior

1

*

*

operations

Port
Property

type

1
 properties}

behavior

1

Operation

Behavior

Property

Port

Simple
Component

properties

*

ports

{subsets

*

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 4/43

Simple Components: Example

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 5/43

The Java/A Component Model (2)

Component

Component
Simple

Property
Component

Property
Property

Port

Property
Connector

*

connectors

Connector Port

type

1

Component
Composite components

*

relayPorts

*

ports2

type1

2

ports

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 6/43

Composite Components: Example

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 7/43

Modelling the CoCoME — Procedure (1)

1. Primary scenarios from CoCoME description
I static structure of simple components
I port and component behaviour
I analysis of behaviour (embedded system part)
I integration of simple components into composite components

2. Alternative and exceptional scenarios from CoCoME
description

3. Iteration

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 8/43

Modelling the CoCoME — Procedure (2)
I Deriving state machines from interactions

: CashDeskApplication

ref payment mode card

expressModeEnabledopt

: Coordinator

saleStarted

saleFinished

paymentMode(CASH)

cashAmountEntered

changeAmountCalculated

cashBoxClosed

saleRegistered

alt

Process salesd

: CashBox

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 9/43

Modelling the CoCoME — Procedure (3)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 10/43

Modelling the CoCoME — Overview
CashDeskLine Store::CashDeskLine

CashDesk CashDesk
CardReaderController CardReader
CashBoxController CashBox
CashDeskApplication CashDeskApplication
CashDeskGUI CashDeskGUI
LightDisplayController LightDisplay
PrinterController Printer
ScannerController Scanner

Coordinator Coordinator
EventBus Not modelled

Inventory Not explicitly; distinguished Enterprise/Store
Application Ditto due to distinct Enterprise/Store

Reporting Enterprise::Reporting
Store Store::Inventory

Data Data
Enterprise Data instantiated in Enterprise
Store Data instantiated in Store
Persistence integrated in ports of Data

GUI modelled as operator ports
Reporting ports of Enterprise::Reporting
Store ports of Store::Inventory

DataBase DataBase

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 11/43

TradingSystem — Static Structure

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 12/43

Store — Static Structure

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 13/43

CashDeskLine — Static Structure

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 14/43

Coordinator — Static Structure

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 15/43

Coordinator — Port Behaviour

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 16/43

Coordinator — Component Behaviour

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 17/43

CashDesk — Static Structure

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 18/43

Functional Analysis

Interested in:
Behaviour of ports and components (simple and composite)

Basis:
Given behaviour specifications of ports and simple components

Properties to be checked:
I Deadlock-freeness of port and component behaviours
I Correctness of components w.r.t. their ports

Focus of our analysis: Embedded system part

Analysis process:
I Starts with the analysis of simple components and their ports
I Derives results for composite components

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 19/43

Composite Component CashDeskLine (revisited)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 20/43

Behaviour Specifications and their Formalisation

State machines 7→ I/O-transition systems

with input, output, internal labels + τ -action

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 21/43

I/O-transition System for Component Coordinator

Notation: beh(Coordinator)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 22/43

Behaviour of Port Coordinator–CashDesk

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 23/43

Analysis of Simple Components

Steps:
I Check the deadlock-freeness of ports and simple components
I Check the compliance of component and port behaviours

Definition (Component correctness)

Observable behaviour of a component C at port p : P

obsp(beh(C)) ≈ beh(P)

Example: obscd(beh(Coordinator)) ≈ beh(C-CD)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 24/43

Analysis of Composite Components

Assume given: Correct and deadlock-free subcomponents

Analysis steps:
I Examine (pairwise) the interaction behaviour of connected

ports
I Check the deadlock-freeness of the composite component
I Check the correctness of the composite component w.r.t. its

ports

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 25/43

Interaction Behaviour of Connected Ports

Example:
Interaction behaviour of the Coordinator and CashDesk ports

beh(CDA-C)

beh(C-CD)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 26/43

Port product beh(CDA-C)⊗ beh(C-CD)

Definition (Behavioural compatibility of ports)

beh(P)⊗ beh(Q) is deadlock-free.

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 27/43

Important Observation

c : Cb : B

«component»

CC

a : A

Behavioural compatibility of the connected ports
+ deadlock-freeness of all subcomponents

6⇒
deadlock-freeness of the composite component

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 28/43

Reflection of Port Behaviour

Definition (Reflection of port behaviour)

The interaction behaviour of P and Q reflects the behaviour of P, if

beh(P) ≈ beh(P)⊗ beh(Q)

Example:

The interaction behaviour of the CashDesk and the Coordinator ports
reflects the behaviour of the CashDesk port

beh(CDA-C) ≈ beh(CDA-C)⊗ beh(C-CD)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 29/43

Deadlock-freeness of Composite Components

Assume:
I Deadlock-freeness and correctness of all subcomponents
I Behavioural compatibility of all connected ports
I Behaviour reflection for n− 1 connected ports

Then the composite component CC is deadlock-free.
R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 30/43

Deadlock-freeness of the CashDesk Component

I All subcomponents are deadlock-free and correct
I All connected ports are behaviourally compatible
I Only the connection between the CashDeskApplication and the

CashBox is not behaviour reflecting

Hence the CashDesk component is deadlock free.
R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 31/43

Deadlock-freeness of the CashDeskLine

I The subcomponents Coordinator and CashDesk are
deadlock-free and correct

I The connected ports are behaviourally compatible (and even
behaviour reflecting)

Hence the CashDeskLine component is deadlock free.
R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 32/43

Implementation Model with Event Bus (1)

Claim
I If the event bus works in FIFO manner, communication order is

preserved.
I Deadlock-freeness is preserved.

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 33/43

Implementation Model with Event Bus (2)

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 34/43

Non-Functional Analysis

I Assessment of Service-Level Agreements
I currently to be done manually (PEPA)
I only exemplified for express checkout

I Assessment of advantage of using express checkout
I customers with eight items or fewer may also use normal

checkout

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

Time

Differences between the express checkout and a normal checkout

express checkout
normal checkout

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

Time

Differences between the express checkout and a normal checkout

express checkout
normal checkout

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 35/43

Tools

I MagicDraw
I UML modelling

I Labelled Transition System Analyser (LTSA)
I based on process algebra FSP
I used for analysis of deadlock and observational equivalence

I Hugo/RT
I UML model translator for model checking (SPIN, UPPAAL),

theorem proving (KIV), and code generation (Java, SystemC)
I used for code generation for Java/A

I Imperial PEPA Compiler (IPC)
I based on Performance Evaluation Process Algebra (PEPA)
I used for quantitative analysis with Continuous-Time Markov

Chains

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 36/43

Java/A: Architectural Programming

I Architectural programming language
I integration of architectural notions into Java
I avoiding architectural erosion in implementation

composite component SimplifiedStore {
assembly {
components {
Inventory, CashDesk

}
connectors {
Inventory.Sale, CashDesk.CDAI;

}
}
constructor SimplifiedStore() {
initial configuration {
active component Inventory inv = new Inventory();
active component CashDesk cd = new CashDesk();
connector Connector con = new Connector();
con.connect(inv.Sale, cd.CDAI);

}
}

}

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 38/43

Java/A: Components and Ports

simple component CashDeskApplication {
int itemCounter = 0; ...
port CDACB {
provided { async saleStarted();

async productBarCodeEntered(int barcode);
async saleFinished();
async paymentModeCash(); ... }

required { async changeAmountCalculated(double amount);
async saleSuccess(); }

protocol <! behaviour {
states { initial init;

simple a; simple b; simple e; ... simple h; }
transitions { init -> a;

a -> b { trigger saleStarted; }
b -> b { trigger productBarCodeEntered; }
...
e -> h { effect out.saleSuccess(); }
h -> b { trigger saleStarted; }

} } !>
}
...

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 40/43

Java/A: Interface Implementation

void saleStarted() implements CDACB.saleStarted() {
Event event = Event.signal("send saleStarted",

new Object[]{});
this.eventQueue.insert(event);

}
...
void processSaleStarted() {
try {
CDAP.saleStarted();
CDACDG.saleStarted();

}
catch (ConnectionException e) {
e.printStackTrace();

}
}
...

}

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 42/43

Open Issues

I Extension of functional analysis
I integration of pre- and post-conditions for synchronous

operations
I n-ary connectors

I Integration of non-functional analysis
I annotation of state machines and sequence diagrams by

performance properties

I Runtime reconfiguration
I e.g., opening and closing cash desks

I Deployment view

R. Hennicker, A. Knapp: Modelling the CoCoME with the Java/A Component Model 43/43

