Component-Based Software Engineering*

The Need to Link Methods and Their Theories

He Jifeng!**, Xiaoshan Li%, and Zhiming Liu®* * *

! International Institute for Software Technology,
United Nations University, Macao SAR, China
{hjf, lzm}@iist.unu.edu
2 Faculty of Science and Technology, University of Macau, Macao SAR, China
xsl@umac.mo

Abstract. We discuss some of the difficulties and significant issues that we need
to consider when developing a formal method for component-based software en-
gineering. We argue that to deal with the challenges, there is a need in research
to link existing theories and methods of programming for effective support to
component-based software engineering. We then present our initiative on a uni-
fied multi-view approach to modelling, design and analysis of component sys-
tems, emphasising the integration of models for different views.

Keywords: Components, Interfaces, Contracts, Protocols, Functionality, Con-
sistency, Composition, Refinement, Simulation.

1 Introduction

The idea to exploit and reuse components to build and to maintain software systems
goes back to “structured programming” in the 70s. It was a strong argument for de-
velopment of object oriented methods and languages in the 80s. However, it is today’s
growing complexity of systems that forces us to turn this idea into practice [5].

While component-based software development is understood to require reusable
components that interact with each other and fit into system architectures, there is so
far no agreement on standard technologies for designing and creating components, nor
on methods of composing them. Finding appropriate formal approaches for describing
components, the architectures for composing them, and the methods for component-
based software construction, is correspondingly challenging. It seems component-based
programming is now in the similar situation of object-oriented programming in the 80s:

My guess is that object-oriented programming will be in the 1980s what struc-
tured programming was in the 1970s. Everyone will be in favor of it. Every
manufacture will promote his products as supporting it. Every manager will

* Partly supported as a research task of E-Macao Project funded by the Macao Government.
** On leave from East China Normal University, Shanghai, China. The work is partially
supported by the 211 Key project of the Ministry of Education, and the 973 project
2002CB312001 of the Ministry of Science and Technology of China.
* ** Corresponding author.

D.V. Hung and M. Wirsing (Eds.): ICTAC 2005, LNCS 3722, pp. 70-03] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Component-Based Software Engineering 71

pay lip service to it. Everyone programmer will practice it (differently). And
no one will know just what it is [32]. — T. Rentsch, September 1982

In this paper, we discuss some of the concepts and issues that are important for a
formal method to support component-based software engineering (CBSE). We argue
that there is a need to integrate existing theories and methods of programming. We then
propose a unified multi-view modelling approach that is intended to support separation
of concerns. Different concerns are described in different viewpoints of a system at
different levels of abstraction, including those of the syntactic dependency among com-
ponents, static behavior, dynamic behavior and interactions of components. We show
how in the model to integrate a state-based model of functional behavior and an event-
based model of inter-component interactions. The state-based model is for white-box
specification to support component design and the event-based model is for black-box
specification used when composing components. Linking the theories will also shed
light on the integration of tools, such as model checkers, theorem provers and testing
tools, for system verification.

An integrated approach allows knowledge sharing among different people in a com-
ponent system development, such as requirement engineers and analysts, system assem-
blers, component designers, component certifiers and system verifiers. Different people
play different roles and are only concerned with and use the models of aspects relevant
to their jobs.

After this introduction, we will discuss in Section [2] the concepts of components,
interfaces and architectures. These are the three most primary concepts, on which peo-
ple have not yet reached an agreement. In Section 8] we will give an overview about
the recent frameworks for component systems modelling, and argue about the need to
link methods. We will in Section [4] give an outline of the framework that is being de-
veloped at UNU-IIST, and point out its difficulties and limitations. We will conclude in
Section [5] with a discussion about future work.

2 Components, Interfaces and Architectures

The notions of components, interfaces and architectures are the most important, but not
yet commonly defined three concepts in CBSE. This section discusses how different
views on these concepts can be reconciled.

2.1 Components

Looking into Oxford Advanced Learners Dictionary, we can find:
A component is any part of which something is made.

In software engineering, this would allow a software system to have as “components”
assembly language instructions, sub-routines, procedures, tasks, modules, objects,
classes, software packages, processes, sub-systems, etd]. This definition obviously is

! Notice these entities have very different natures.

72 J. He, X. Li, and Z. Liu

too general for CBSE to provide anything new. To decide what is to be ruled in and
what is to be ruled out, we first clarify the purposes of using “components” in software
development, and then study their implications or necessary properties.

As we said earlier, the widely accepted goal of component-based development is
to build and maintain software systems by using existing software components, e.g.
(3813412912 113311 3lI8]. It is understood that the components are required to be reusable
components. They must interact with each other in a system architecture
[36/4.2912/40433]]. This goal of CBSE implies four orthogonal properties for a truly
reusable component [38]]:

P1 contractually specified interfaces,
P2 fully explicit context dependencies,
P3 independent deployment,

P4 third party composition.

Based on these conditions, it is argued in [20] that an assembly language instruction and
software packages should not be treated as components, but classes in a class library
are components. However, classes can hardly be components if we require P3 when
composing components without access to the source code. On the other hand, we can
lift a class to make it usable as a component, by providing a description of its required
classes and methods.

The usage of a component in a software system includes using it to replace an out
of date component to upgrade the system or a failed component to repair the system,
adding it to the system to extend the system services, or composing it into the system
while the system itself is still being built. Some researchers insist on a component be-
ing reusable during dynamic reconfiguration. The implications of properties P1-P4 are
different when a component is used in different applications, for different purposes or
in different kinds of systems. This is the main reason why some people give more strin-
gent definitions than others (e.g. [8.34]). In [8], a component is defined by the following
three axioms :

A1l A component is capable of performing a task in isolation; i.e. without being com-
posed with other components.

A2 Components may be developed independently from each other.

A3 The purpose of composition is to enable cooperation between the constituent com-
ponents.

These properties are in fact those required for a “sub-system” in [37]].
The paper [8] argues that the three axioms further imply a number of more proper-
ties, called corollaries of components:

C1 A component is capable of acquiring input from its environment and/or of present-
ing output to its environment.

C2 A component should be independent from its environment.

C3 The addition or removal of a component should not require modification of other
components in the composition.

C4 Timeliness of output of a component should be independent from timeliness of
input.

Component-Based Software Engineering 73

CS5 The functioning of a component should be independent of its location in a compo-
sition.

C6 The change of location of a component should not require modifications to other
components in the composition.

C7 A component should be a unit of fault-containment.

The implication of the corollaries from the axioms is only argued informally. Property
C2 implies that a component has no state and this is also insisted on in [38]. This is
now generally understood to be only required in some limited circumstances, such as
for dynamic reconfiguration. Property C4 only applies to real-time systems and prop-
erties C5&C6 are only relevant to distributed mobile systems. We do not see why C7
is needed at all unless a component is to be used to replace another during the runtime
of the system. In fact, in many applications coordinators or managers can be used to
coordinate fault-prone components to achieve fault-tolerance [25]].

On the other hand, it is argued in [34] that a software component itself is a static
abstraction with plugs which are not only used to provide services, but also to require
them. This implies that components are not usually used in isolation, but according to
a software architecture that determines how components are plugged together. This in
fact is the kind of component called a module in [37].

2.2 Interfaces

Although there is no consensus on what components are, all definitions agree on the
importance of interfaces of components, and interfaces are for composition without the
access to source code of components. This indicates that the differences are mainly
reflected in decisions on what information should be included in the interface of a com-
ponent.

We further argue that interfaces for different usages and different applications in
different environments may contain different information, and have different properties:

— An interface for a component in a sequential system is obviously different from one
in a communicating concurrent system. The later requires the interface to include a
description of the communicating protocol while the former does not.

— An interface for a component in a real-time application will need to provide the
real-time constraints of services, but an untimed application does not.

— Components in distributed, mobile or internet-based systems require their inter-
faces to include information about their locations or addresses.

— An interface (component) should be stateless when the component is required to be
used dynamically and independently from other components.

— A service component has different features from a middleware component.

Therefore, it is the interface that determines the external behavior and features of the
component and allows the component to be used as a black box.

Based on the above description, our framework defines the notion of an interface for
a component as a description of what is needed for the component be used in building
and maintaining software systems. The description of an interface must contain infor-
mation about all the viewpoints among, for example functionality, behavior, protocols,

74 J. He, X. Li, and Z. Liu

safety, reliability, real-time, power, bandwidth, memory consumption and communica-
tion mechanisms, that are needed for composing the component in the given architec-
ture for the application of the system. However, this description can be incremental
in the sense that newly required properties or view points can be added when needed
according to the application.

2.3 Architecture

The main concerns about programming in the small are the flow of control and the data
structure. The specifications, design and verification all focus on the algorithm and the
data structure of the program.

For programming in the large, the major concerns are components and their consis-
tent integration in an architectural context. The architectural design becomes a critical
issue because of the important roles it plays in communication among different stake-
holders, system analysis and large-scale reuse [4]].

There are numerous definitions of software architecture, such as [2/4429.37]]. The
common basis of all of them is that an architecture describes a system as structural
decomposition of the system into subsystems and their connections. Architecture De-
scription Languages (ADLs), such as [2/4/29], are proposed for architecture description.
The basic elements of ADLs are components and connectors. An ADL also provides
rules for putting (composing) components together with connectors. They suffer from
the disadvantage that they can only be understood by language experts — they are inac-
cessible to domain and application specialists. Informal and graphical notations, such
as UML, are now also widely used by practical software developers for architecture
specification [10l33]]. However, the semantic foundation for these UML-based models
has not yet been firmly established.

A mere structural description of a system is not enough in supporting further sys-
tem analysis, design, implementation, verification, and reconfiguration. More expres-
sive power is needed for an ADL [3]. In particular, an ADL should also support the
following kinds of views:

Interaction: the interaction protocol and mechanisms,

Functionality and Behavior: functional services, key properties of its components
(e.g. safety and reliability),

Resources and Quality of Service: hardware units required, real-time, power, band-
width, etc. These details allow analysis and critical appraisal, such as the quality of
service.

It is a great advantage if an architectural description supports the separation of these
concerns and allows them to be consistently integrated for system analysis.

One of the biggest challenges in formal CBSE is to develop a model that effectively
supports the separation of the views for analysis of different concerns, while they can
be consistently linked or combined in a whole system development process.

3 State of the Art of Formal Theories

This section gives an overview of existing component-based models, and summarises
the common requirements on component-based models.

Component-Based Software Engineering 75

3.1 Models of Architectures

Most of the early theories, such as [27026/39/1129]], focus on modelling system archi-
tectures. All these models of architectures deal with coordinations among components,
in an event-based approach. They can also be used for specification of connectors and
coordinators. However, they do not go to the level of component design, implementa-
tion and deployment. This might be reason why ADLs still do not play any major role
in practical software engineering.

Recently, more delicate models are proposed for describing behavior of compo-
nents and their coordinations, such as [3l13]]. Reo [3] is a channel-based model with
synchronous communication. The composition of components (and connectors) are de-
fined in terms of a few operators. The model is defined operationally and thus alge-
braic reasoning and simulation are supported for analysis. The disadvantage of this
approach is that it is not clear how it can be extended to deal with other viewpoints,
such as timing and resources. Also, being even-based, the model in [13] considers a
layered architecture for composition, provided by connectors (glueing operations). It
considers real-time constraints and scheduling analysis. The behavior of a component
is defined in a form of a timed automaton. This provides a good low level model of exe-
cution of a component. However, the use of local clocks for modelling delays can hardly
be said to be component-based. We need talk about a component at a higher level of
granularity.

The Stream Calculus [6/7/41] is a denotational framework, but otherwise similar
to those of [3l13] for being a channel-based model. In general a denotational model
supports the notion of stepwise development by refinement and links specifications at
different levels of abstraction better. With the scream calculus, Broy also proposes a
multi-view modelling to include interface model, state machine model, process model,
distributed system model, and data model [|6/7)].

The main disadvantage of message/event based approaches is that changes of the
data states of a component are not specified directly. While they are good at modelling
behavior of electronic devices and communicating protocols, they are not inclined to
the software engineering terminology and techniques. The relation of these models to
program implementations is not clear and practical software design techniques, such as
design patterns, is not well supported. These lead to difficulties in understanding the
consistency between the interaction protocol and the functionality.

3.2 The Need to Link Methods and Theories

The grand aim of CBSE is to support independently development of components and
compositional design, analysis and verification of overall systems.

To achieve this aim, it is essential that the approach provides a notation for multi-
view modelling, that allows separation of concerns and supports modelling and rea-
soning about properties at different levels of abstraction. The nature of multi-view and
separation of concerns allows us to independently identify, describe and compose dif-
ferent correctness conditions/aspects [19]] of different views of components, including
syntactic interfaces, static and functional behavior, dynamic and synchronization be-
havior, interaction protocols, timing and resource constraints, etc. Separation is the key
principle to ensure the simplicity of the model [21]].

76 J. He, X. Li, and Z. Liu

It is crucial that the model supports abstraction with information hiding so that we
can develop refinement and transformation based design techniques [2116411]]. This will
provide a theoretical foundation for the integration of formal design techniques with
practical engineering development methods. Design in this way can preserve correct-
ness to a certain level of abstraction and support code generation that ensures certain
correctness properties (i.e. being correct by construction [30]).

Refinement in this framework characterises the substitutability of one component
for another. It involves the substitutability of all the aspects, but we should be able to de-
fine and carry out refinement for different features separately, without violating the cor-
rectness of the other aspects. The integration of event-based simulation and state-based
refinement facilitates assurance of global refinement by local refinement. Global refine-
ment is specified as set containment of system behavior (such as the failure-divergence
semantics of CSP). Global refinement is verified in a deductive approach supported
possibly with support of a theorem prover. Local refinement is specified in terms of pre
and post conditions of operations and verified by simulation often supported by a model
checker. Also, refinement in CBSE must be compositional in order to global reasoning
about the system can be done by local reasoning about the components [1].

We would also like the refinement calculus to support incremental and iterative de-
sign, analysis and verification. This is obviously important for scaling up the application
of the method to large scale software development, and for the development of efficient
tool support. We believe being incremental and iterative is closely related and comple-
mentary to being compositional, and important for lowering the amount of specification
and verification and reducing the degree of automation [30].

To benefit the advantages of different methods for dealing with different aspects of
component systems, an integration of these methods is needed so that their theories and
tools are linked to ensure the consistency of the different views of a system. For example,
the static functionality described by pre- and post conditions, dynamic behavior by
state machines (or transition systems) and interaction protocols by traces have to be
consistent.

Summary. A number of formal notations and theories have been well-established and
proved themselves effective as tools for the treatment of different aspects of computer
systems. Operational simulation techniques and model checking tools are believed to be
effective for checking correctness, consistency and refinement of interaction protocols,
while deductive verification and theorem provers are found better suited for reasoning
about denotational functionality specification. For CBSE, analysis and verification of
different aspects of correctness and substitutability can thus be carried out with differ-
ent techniques and tools. However, integration of components requires the integration
of the methods for ensuring different aspects of correctness and substitutability. The
integration requires an underlying execution model of component software systems.

A component may not have to be designed and implemented in an object-oriented
framework. However, the current component technologies such as COM, CORBA, and
Enterprise JavaBeans are all built upon object-oriented programming. Object programs
are now widely used in applications and many of them are safety critical. This leads
to the need to investigate the techniques of modelling, design and verification of ob-
ject systems and the construction of component systems on underlying object systems.

Component-Based Software Engineering 77

Also, the unification of the theories of imperative programming and object-oriented
programming is naturally achievable [[16,24]14].

4 rcCos

At UNU-IIST, we are developing a model and calculus, called rCOS, for component
and object systems. In this section, we focus on the main theme and features of this
model, instead of technical details.

Based on discussion the previous sections, we intend to formalize the characteris-
tics of a component in a model with the following elements and notions which serve
different purposes for different people at different stages of a system development:

— interfaces: describe the structural nature of a system and are only used for check-
ing syntactic dependencies and compositionality. They are represented in terms of
signatures of service operations.

— contracts: are semantic specifications of interfaces. A contract relates an interface

to an application by specifying the (abstract) data model, functionality of the ser-
vice operations, synchronization protocols, and other required qualities of service
(QoS) depending on the application.
The model also provides a definition of consistency among these views and and
method for checking this consistency. A contract can be extended horizontally by
adding more services, more properties (e.g. QoS). In this paper, we are only con-
cerned with functionalities and protocols.

— components: are implementations of contracts. The execution model of component
is defined. The relation of a component to a contract is defined for the correctness
of the component.

— operations: are defined for interfaces, contracts and components so that they can
be composed in different ways.

— substitutability: is defined in terms of refinement which covers and relates state-
based refinement and even-based simulation.

— coordination: is defined as predicates on protocols to glue and manage a group of
components.

— class model: is used to define the data model that is more general than pure data
types and makes it easier to link a contract to a component with an object-oriented
implementation.

Interfaces and contracts are used by assemblers to check compatibilities of components
when assembling or maintaining a system. If components do not match with each other,
assemblers can consider to write connectors with glue code to put them together. Con-
nectors can sometimes be built as components. The protocols in the contracts are used
to avoid deadlock when putting components together. The functional specification of
the operations are used to ensure that the user (the other components) provides correct
inputs and the component returns with correct outputs.

The designer of a component has to ensure that the component satisfies its contract,
in particular to avoid livelock and design errors. The verifier (certifier) must have access
to the code of the component to verify the satisfaction of the contract by the component.

78 J. He, X. Li, and Z. Liu

4.1 UTP: The Semantic Basis

rCOS is based on Hoare and He’s Unifying Theories of Programming (UTP) [L8].
UTP takes an approach to modelling the execution of a program in terms of a relation
between the states of the program. Here, a state of a program P is defined over a set of
variables called the alphabet of the program, denoted by «(P) (simply a when there is
no confusion). Given an alphabet «, a state of « is a (well-typed) mapping from « to
the value space of the alphabet.

Programs as Designs. For an imperative sequential program, we are interested in ob-
serving the values of the input variables inc and output variables oura. We use a Boolean
variable ok to denote whether a program is started properly and its primed version ok’ to
represent whether the execution has terminated. The alphabet « is defined as the union
inac U outae U {0k, ok’ }, and a design is of the form

(p(z) F R(z,y")) < ok Ap(z) = ok’ A R(z,y)

where

— p s the precondition, defining the initial states

— R is the postcondition, relating the initial states to the final states in terms the of
input value z and the output value y'. Note that some variable z is modified by a
program and in this case we say z € ina and the primed version 2’ € ourc.

— ok and ok’: describe start and termination, they do not appear in expressions or
assignments in program texts

The design represents a contract between the “user” and the program such that if the
program is started properly in a state satisfying the precondition it will terminate in a
state satisfying the postcondition.

A design is often framed in the form

Bi(pl—R)défpl—(R/\wlzw)

where w contains all the variables in inae — 3, which are the variables in in but not in 3.
We can use the conventional operations on programs statements for designs too.

Given two designs such that the output alphabet of P is the same as the primed
version of the input alphabet of Q, the sequential composition

P(inay, outar); Q(inaz, outors) © 3. P(inar, m) A Q(m, outarz)
def

Conditional choice: (D1 D2) = (bAD1)V (=bAD2)
Demonic and angelic choice operators:

DD DivDy DiUD: Y Dy AD,

while bdo D is defined as the weakest fixed point of
X =((D;X) Qbr> skip)

We can now define the meaning of primitive program commands as framed designs in
Table [Tl Composite statements are then defined by operations on designs.

Component-Based Software Engineering 79

Table 1. Basic commands as designs

command: ¢ design: [c] description
skip () : true - true dotes not change anything, but termi-
nates
3 includi) N
chaos () : false - true anything, including non-termination,
’ can happen

side-effect free assignment; updates =

with the value of e o
m(in; out) is the signature with input

parameters in and output parameters
out; body(m) is the body command of
the procedure/method

Ti=e {z} : true - 2’ = val(e)

[var in, out];
m(e;v) [in:=e]; [body(m)]; [v:=out];
[end in, out]

Refinement of Designs. The refinement relation between designs is then defined to
be logical implication. A design D, = («, P2) is a refinement of design D; = («, P1),
denoted by D1 C Do, if P, entails Py

’

Va,x',...,2,2" - (P2 = P1)

where z,2',. .., 2, 2" are variables contained in a. We write Dy = D; if they refine each
other.

If they do not have the same alphabet, we can use data refinement. Let p be a map-
ping from as to «;. Design Dy = (a2, P2) is a refinement of design D1 = (1, P1) under
p, denoted by D1 T, Do, if (p; P1) C (P2;p). It is easy to prove that chaos is the worst
program, i.e. chaos C P for any program P. For more algebraic laws of imperative pro-
grams, please see [18]].

The following theorem is the basis for the fact that the notion of designs can be used
for defining the semantics of programs.

Theorem 1. The notion of designs is closed under programming constructors:
((pr = R1); (p2 = R2)) = ((pr A =(Ra; —p2)) b (Ra; R2))
P1 F Ry (p2 [RQ)) = ((p1 /\pz) = (R1 Vv Rg))

(()
((p2 F R1) U (p2 F R2)) = ((p1 Vp2) F ((p1 = R1) A (p2 = Re)))
((p1F R1) b (p2 F R2)) = ((p1 90> p2) = (R Ra))

n
L

Linking Designs with Predicate Transformers. A widely used method for program
analysis and design is the calculus of predicate transformers [9]]. The link from the de-
sign calculus to the theory of predicate transformers is given by the following definition

wp(pF R,q) Y p A=(R;~q)

It gives the weakest precondition for the design p - R to ensure the post condition gq.
Design p - R is feasible iff wp(p - R, false) = false, or equivalently

Vo e (p(v) = Fv’' @ R(v,v")
meaning p - R can deliver a result whenever its execution terminates.

In [[15], we show this definition of wp ensures validity of all the algebraic rules of
the wp transformer. For example

wp(true = @' = f(z),q(z)) = q[f(z)/z] assignment
wp(D1V D2,q) = wp(D1,q) A wp(D2, q) disjunction /non-determinism

80 J. He, X. Li, and Z. Liu

4.2 Interfaces

In our framework, the notion of interface is different from that in Section 2.2. There, an
“interface” is actually an interface specification and the same as the notion of contracts
that we are to define in the next subsection.

A primitive interface is a collection of features where a feature can be either a field
or a method. We thus define a primitive interface as a pair of feature declaration sections:

I = (FDec, MDec)

where FDec is a set of field declarations, denoted by I.FDec, and MDec a set of method
declarations, denoted by L. MDec, respectively.

A member of FDec has the form x : T where x and T represent respectively the name
and type of this declared field. It is forbidden to declare two fields with the same name.

A method op(in inx, out outx) in MDec declares the name op, the list of input param-
eters inx and the list of output parameters of the method. Each input or output parameter
declaration is of the form u : U giving the name and type of the parameter.

The method name together with the numbers and types of its input and output pa-
rameters forms the signature of a method. In general both inx and outx can be empty.
For simplicity and without losing any generality in the theory, we assume a method
has one input parameter and one output parameter and thus can be represented in the
form op(in : U, our : V) by removing the key words in and out. Notice that the names of
parameters are irrelevant. Thus, op(iny : U, out; : V) and op(ina : U, outs : V) are treated
as the same method.

Interface Inheritance and Hiding Operations. Inheritance is a useful means for reuse
and incremental programming. When a component provides only part of the services
that one needs or some of the provided operations are not quite suitable for the need, we
may still use this component by rewriting some of the operations or extending it with
some operations and attributes.

Definition 1. (Interface inheritance) Let I; (i = 1, 2) be interfaces. I, and I» are com-
posable if no field of 1, is redefined in I; for i # j. When they are composable, notation
I, ® I represents an interface with the following field and method sectors

FDec def FDecy U FDeco
MDec “ MDecs U {op(in : U, out : V')|op € MDec1 N\ op ¢ MDec>}

To enable us to provide different services to different clients of a component, we al-
low to hide operations in an interface to make them invisible when the component is
composed with certain components. Hiding operations provides the opposite effect to
interface inheritance and is to be used to restrict an interface. In a graphical notation
like UML, this can be achieved by the notation of generalization alone.

Definition 2. (Hiding) Let I be an interface and S a set of method names. The notation
I\S denotes the interface I after removal of methods of S from its method declaration
sector.

FDec ™ 1.FDec, MDec ™ 1.MDec\ S

Component-Based Software Engineering 81

The hiding operator enjoys the following properties.

1. Hiding two sets of operations separately is the same as hiding all of the operations
in the two set together, (1\S1)\S2 = I\(S1 U S2). Thus, the order in which two sets
of operations are hidden is inessential too.

2. Hiding distributes among operands of interface inheritance

(TS I\S = (I\S) & (J\S)

4.3 Contract

A contract gives the functional specification of an interface.
Definition 1. (Contract) A contract is a pair Ctr = (I, MSpec), where

1. Iis an interface,
2. MSpec maps each method op(in : U,out : V) of I to a specification of op that is a
design with the alphabet

ina < {in} U LFDec, outa = {out'} ULFDec'

For a contract Cir = (I, MSpec), we will use Cir.1, Ctr.FDec, Ctr.MDec and Ctr.MSpec to
denote respectively I, I.FDec, I.MDec and MSpec.

Two contracts can be composed to extend both of them only when their interfaces
are composable and the specifications of the common methods are consistent. This com-
position will be used to calculate the provided and required services when components
are composed.

Definition 2. (Composable contracts) Contracts Ctr; = (I;, MSpec,), i =1, 2, are
composable if

1. I and I are composable, and
2. for any method op occurring in both I, and I,

MSpec,(op(x : U,y : V)) =
MSpec,(op(u: Uyv: V)[z, 2, y, y'/u, v, v, V']

In this case their composition Ctry||Ctrs is defined by

1% I ® Iz, MSpec def MSpec, ®MSpec,
where MSpec, ®MSpec., denotes the overriding MSpec, (op) with MSpec,(op) if op occurs
in both I and I>.

Notice that for the purpose of compositional reasoning, condition (2) makes the com-
position conservative extension and serves as a limited form of UML generalization.

Based on this definition, a calculus of refinement of contracts and components is de-
veloped in [23]]. In the rest of this section, we present the generalized notion of contracts
and components.

82 J. He, X. Li, and Z. Liu

4.4 Reactive Contracts

A contract defined in the previous subsection specifies the static functionality of a com-
ponent that does not require synchronization when the operations are used. Such com-
ponents are often used in the functional layer [[L1]. Business process and rules are,
however, accomplished by invoking particular sequences of operations. This means a
protocol of using the function operation must be imposed, often by composing a com-
ponent in the functional layer and a component in the system layer [[11]]. The component
then becomes reactive and only reacts to the calls of the operation that come in the right
order. To describe synchronisation, we introduce two Boolean observables wair and wait’
to the alphabet of an operation op(in : U, our : V) in a contract. A design D on such an
extended alphabet is called reactive if W(D) = D holds for the linking function

W(D) = (true - wait') < wait > D
And we extend the specification MSpec(op) to a guarded design («,g,D) denoted as
g&D, where

— g is boolean expression over I.FDec and represents the firing guard of op
— D s a reactive design over o = {in, wait, ok} U LFDec U {out’, ok', wait'} U I.FDec’.

The semantics of a guarded design g&D is defined as (true - wait') <t ~g > D. The fol-
lowing theorem forms the theoretical basis for using reactive designs as the semantic
domain of a programming language.

Theorem 1. (Reactive designs are closed under programming constructors)

1. For anydesignpt R, W(p & R) is a design.

2. W maps a design to a reactive design: W? (D) = W(D)

3. If D is a reactive design, so is the g-guarded version g&D.

4. W is monotonic: W(D1) C W(D2) iff (~wait = (D2 = D1)). So, all reactive designs
form a complete lattice.

5. Reactive designs are closed under the conventional programming operators.

We can now formally define a reactive contract.

Definition 3. (Reactive Contract) A reactive contract is tuple Ctr=(1, Init, MSpec, Prot),
where

I is an interface
Init is a design that initialises the state and is of the form

true & Init(v') A —wait’, where Init is a predicate

MSPec assigns each operation to a guarded design («, g, D).
Prot, called the protocol, is a set of sequences of call events. Each is of the form

?op1(x1), ..., Topk(zk)

where ?op;(x;) is a (receipt of) call to operation op; in . MDec with an input value ;.

We use guard(op) to denote the guard in MSPec(op) for an operation op € MDec.

Component-Based Software Engineering 83

Notice that a contract defined in Section 4.3 can be used as the model of the static
behavior of the component, and can seen as special case of reactive contract with all the

guards of the operations being true, and the protocol being the whole set of sequences
of the operations MDec*.

Definition 4. (Semantics of Contracts) The dynamic behavior of Ctr is described by
the triple (Prot, F(Ctr), D(Ctr)), where

— the set D(C'tr) consists of the sequences of interactions between Ctr and its envi-
ronment which lead the contract to a divergent state

de
D(Ctr) < {(2op1 (1), 0p1 (1)), - .-, 20pi(@x), o1 (i), Poprs1 (Tr41)) - 5 |
Fu, v, wait’ e (Init; g1&D1[z1,y1/in1, outy];

gkXLDk [Tk, yr/ing, outy,])[true /ok][false/ok']}

where op;(y;)! represents the return event generated at the end of execution of op;
with the output value y;, in1 and out; are the input and output parameters of opi,
and ¢;&D; is the guarded design of method op;.

— F(Ctr) is the set of pairs (s, X) where s is a sequence of interactions between C
and its environment, and X denotes a set of methods which the contract may refuse
to respond to after it has engaged all events in s

. d . .
rej =f (true, false, true, false | ok, wait, ok’ , wait')

. def
rej,
F(Ctr) def {({), X) | I @ Init[rej] ANV?0p € X @ ~guard(op)[v' /v]}

((Pop1(z1),0p1(y1)Y, ..., ?opk(zk), op(yr)!), X) |

(true, false, true, true / ok, wait, ok’ , wait")

' e (Init; g1 & D1[x1, y1 /in, out!];

{ gk87ch [k, Y /ing, outy,))[rej] AV?70p € X e —guarad(op)[v' /v]
{ ((Pop1(x1), 0p1(y1)}, - . -, Topr (), opr(y)!), X) |

I’ e (Init; g1& D1 [x1, y1 /ina, out!];

gr& D[k, yr [ing, outy])[rej] A opi! & X
((?0p1(x1),0p1(y1)!, s 7?0pk(mk)>7x) |
' e (Init; g1& D1 w1, y1 /in1, out!];

Gk—1&Dy—1[xr—1, Yk—1/ing—1, out),_1])[rej]; g& D[z, /iny][rej]
U {s,X)|seD(Ctr) A\V?op € X e —g;[v' /v]}

F(Crr) defines fives cases when events may be refused and thus deadlock may occur if
the environment only offers these refusals:

1. The first subset of the refusals records the cases when the operation call events ?op
in X cannot occur because their guards do not hold in the initial state.

2. The second subset identifies those cases where after a sequence of calls executed,
the system may reach a state where the guards of the events in X are false.

3. The third case is when the execution of an operation opy, is waiting to output its
result.

84 J. He, X. Li, and Z. Liu

4. The fourth case defines the scenarios when the execution of an operation opy, enters
a waiting state.
5. Finally, the fifth case takes the divergent traces into account.

We define the traces of a contract as those traces in the failure set

T(Cir) 2 {5 | 3X o (s, X) € F(Cir)}
which are prefix closed.

Notice that the guarded designs of the operations defines a state-based model of the
dynamic behavior of the component. It corresponds to a state transition system [28/17]]
and it has a clear link to temporal logic approaches for analysis and verification [22/25]].
When the state space can be reduced to a finite one, the specification of the operations
can be represented by a finite state machine or automaton, that model checking tools are
based on. From the guarded designs, we can obtain a the model of the static behavior
too. This is how a contract model combines the event-based model of the protocol, the
stated based model dynamic behavior and the pre- and postcondition specification of the
static behavior of a component. However, the protocol and the functional specification
of the operations have to be consistent.

Definition 5. (Consistency) A contract Cir is consistent, denoted by Consistent(Ctr), if
it will never enter a deadlock state if its environment interacts with it according to the
protocol. That is for all (?opy(z1), ..., ?opr(zk)) € Prot,

wp(Init;g1& D1 [z1/in1); . . . ; ge& Di[zk /ing], ~wait A Jop € MDeceguard(op)) = true

It is shown in [[15] that a contract Ctr is consistent if and only if for all sequences #r in
Prot

1. there is a trace s in T(Crr) whose projectiorﬁ on operation calls s|{?} equals #, and
2. for any failure (s, X') € F(Crr), if s|{?} is a prefix of # then not all operations and
operation returns are refusals, that is X # {?op, op! | op € MDec}.

The following useful properties of consistency are proved in [15]:

1. The union of consistent protocols is a consistent protocol (with respect to a speci-
fication for the operations), that is, if Ctr; = (I, Init, MSPec, Prot;), i = 1,2, are con-
sistent, so is Ctr = (I, Init, MSPec, Prot1 U Prots).

2. If contract Ciry = (I, Init, MSPec, Prot) is consistent and Prot> C Prot1, then contract
Ctry = (I, Init, MSPec, Prot2) is consistent. This allows us to restrict the services of a
component.

3. For contracts Ctr; = (I, Init;, MSPec;, Prot), i = 1,2, if Ctry is consistent, Inity T Inito,
and MSPecq(m) C MSPec2(m), for all m € LMDec, then Ctr; is consistent.

Therefore, for a given (1, Init, MSPec), there is more than one protocol consistent with it.
We call the largest one the weakest consistent protocol, denoted as WProt(I, Init, MSPec),
such that

Consitent(1, Init, MSPec, Prot) = Prot C WProt(I, Init, MSPec)

2 We use | for the projection (or restriction) operator in general.

Component-Based Software Engineering 85
The weakest consistent protocol can be directly defined as

de . . .
WProt™s {(?op1(z1),- .., ?opk(zk)) | Wwp(Init; g1 &D1 [x1/in1]; . . . ; gp&Dy [z /ing],
—wait \ Jop € MDec e guard(op))}

We can prove that WProt is prefix closed [[15]. We, for simplicity, use (I, Init, MSPec) to
denote (I, Init, MSPec, WProt).

Example 1. Consider a one-place buffer with an interface
BI = (empty : Boolean, {put(in : Item), get(out : Item))})

Given MSPec to assign pur and ger as

MSPec(put) def empty& (true = —empty’), MSPec(get) = —empty& (true - empty’)
With the initial condition Inir "/ empty, we can calculate the weakest consistent protocol
to be (?put, ?get)” which is the set of alternating sequences of pur and ger, starting with
a put. An n-place buffer can be similarly defined.

Definition 6. (Contract Refinement) Contract Cir, is refined by contract Ctra, denoted
by Ctr1 C Ctra, lf

1. Ctrs provides no less services than Ctri:Ctri.MDec C Ctra.MDec
2. Ctry is not more likely to diverge than Ctr1: D(Ctr1) 2 D(Ctrz)|Ctri .MDec, and
3. Ctry is not more likely to deadlock than Ctry: T (Ctr1) 2 T (Ctrz)|Ctri.MDec.

Notice that refinement allows us to add new services. The following two theorems (see
[L5] for the proofs) link the notions of simulation and refinement and combine event-
based and state-based modelling.

Theorem 2. (Refinement by Downwards Simulation) Let Ctr; = (I;, Init;, MSPec;) be
two contracts. Ctr1 C Ctro, if there exists a total mapping p(u,v') from the fields FDecy
of Ctry to the fields FDecs of Ctra such that the following conditions are satisfied

1. p preserves the initial condition: Inito = (Init1; p)

2. p preserves the guards of all operations: p = (guard,(op) = guard,(op)) for all
op € MDec.

3. The function specification of each operation by Ciry is preserved by Ctra: for each
op € MDec

MSpec,(op); p T p; MSPeca(op)
Notice that the state mapping p is used as a design which does not change wait.

Theorem 3. (Refinement by Upwards Simulation) Ler Crtr; = (I;, Init;, MSPec;) be
two contracts. Ctr1 C Ctra, if there exists a surjective mapping p(v,u') from the fields
FDecs of Cirs to the fields FDec: of Ciry such that the following conditions are satisfied

86 J. He, X. Li, and Z. Liu

1. p preserves the initial condition: (Init2; p) = Init,

2. p preserves the guards of all operations: p = (guard,(op) = guard,(op)) for all
op € MDec;.

3. The function specification of each operation by Ciry is preserved by Ctra: for each
op € MDec

MSpecy(op); p 3 p; MSPecy(op)

The same results can be found about transitions systems and the temporal logic of ac-
tions [2225]).

Theorem 4. (Completeness of simulations) If Ciri T Ciro, then there exists a contract
Ctr such that

1. There is an upwards simulation from Ctr to Ctr.
2. There is a downwards simulation from Ctr to Ctrs.

Contract Operations. All the operations defined by an interface are public, i.e, they
are directly accessible by the environment of the interface. We can remove cervices
from a contract as we did for an interface.

Definition 7. (Removing Services) Let Ctr = (I, Init, MSPec) be a contract and S a sub-

set of the operations MDec, then contract Cri\S = (I\S, Init, MSPec|(MDec — S)), where
we use “—” for set difference.

The behavior of Ctr\S is defined by

D(Ctr\S) = {s| s € D(Crt) A s € {?op,op! | op € MDec — S}*}
F(Ctr\S) ={(s,X) | (s,X) € F(Crt) N s € {?op, op! | op € MDec — S}*N
X C {?op,op! | op € MDec — S}}

When a component is to be implemented, an operation can be used in the code of
another. We would like to be able to remove the former from the interface but at the
same the implementation of the latter method should still work without the need for
any modification. To handle this problem, we introduce in this section the notion of
private (or internal) methods/operations, which are not available to the public, but can
be used by the component itself. For this we need to generalize the notation of contracts
to general contracts.

Definition 8. (General Contract) A general contract GCtr extends a contract Ctr with
a set of private methods declarations PriMDec and their specification PriMSPec

GCtr = (Ctr, PriMDec, PriMSPec)
The behavior of GCtr is defined to be that of Cir.

Now we can hide a public operation in MDec of a general contract to make it internal.

Component-Based Software Engineering 87

Definition 9. (Hiding Service) Let GCtr = (Ctr, PriMDec, PriMSPec) be a general con-
tract, and S a subset of the public methods MDec. The restricted contract GCir\S is
defined as

(Ctr\S, PriMDec U S, PriMSPec U MSPec|S)
We are now ready to define the composition of two general contracts.

Definition 10. (Composition of Contracts) Let GCtr;, i = 1,2 be two general con-
tracts such that

1. all shared fields have the same types,
2. all shared methods have the same specification
3. the initial conditions of the two contracts are consistent, that is satisfiable.

The composition GCtry||GCtr; is the general contract

GCtr = ((I, MSPec), PriMDec, PriMSPec)

where
L.FDec ™ I1.FDec U I>.FDec union of the fields
I.MDec I1.MDec U Iz.MDec union of the public methods
MSPec <! MSpec, & MSPec> overriding union of the specifications

PriMDec *< PriMDecy U PriMDeca union of the private methods
PriMSPec PriMSpec, @& PriMSPecy overriding union of the specifications

Properties of the operations on contracts can be found in [15].

4.5 Components and Their Compositions

A component is an implementation of a contract. The implementation of an operation,
however, may call operations of other components. Therefore, a component may op-
tionally have a required interface as well as a provided interface and executable code.

Definition 11. (Component) A component C is a tuple
(I, MCode, PriMDec, PriMCode, InMDec)

where

1. Iis an interface.

2. PriMDec is a set of method declarations which are private to the component.

3. The tuple (I, MCode, PriMDec, PriMCode) has the same structure as a general con-
tract, except that the functions MCode and PriMCode map each method op in the
sets I.MDec and PriMDec respectively to a guarded command of the form g — c,
where g is called the guard, denoted as guard(op) and c is a command, denoted as
body(op).

4. InMDec denotes the set of input methods which are called by public or internal
methods, but not defined in MDec U PriMDec.

88 J. He, X. Li, and Z. Liu

We use C.I, C.Init, C.MCode, C.PriMDec, C.PriMCode and C.InMDec to denote the corre-
sponding parts of C.

The semantics of a component is defined to be a function that given a contract for the
required interface, returns a general contract calculated from the code of the operations.

Definition 12. (Semantics of Components) Let InCtr be a contract such that its inter-
face methods are the same as the required methods of C, InCtr.MDec = C.InMDec. The
behavior C(InCtr) of C with respect to InCtr is the general contract

((I, MSPec), Init, PriMDec, PriMSPec)

where
LFDec Y C.FDec U InCir.FDec
IMDec < C.MDec U InCtr.MDec

MSsPec ™ | MDec
PriMSPec < & | PriMDec
Init ¢ nit A InCtr.Init

where function & assign each operation in Mdec U PriMDec the guarded design calcu-
lated from the code:

®(op) < guard(op)&[body(op)]

where if m € InMDec is called in body(op), the specification of op assigned by InCir is
used in the calculation [15|].

It is easy to show that if InCtry T InCrra, then C(InCtry) C C(InCtra)

Definition 13. (Component Refinement) A component C; is refined by component Cs,
denoted by C1 C Ca, if C1.MDec C C3.MDec, Ci.InMDec O Cz.InMDec, and the contract
refinement C1(InCtr) T Ca(InCtr) holds for all the input contracts InCtr.

Composition of Components. The most natural composition is to plug the provided
operations of one component into the required operation of the other to chain these two
together.

Definition 14. (Chaining) Let C, and Cs be components such that

1. none of the provided or private methods of C» appears in C1,
2. Cy and Cs have disjoint field declarations.

The chain C1))Cs of C1 with Cy is the component, which has

the fields C1FDec U Cz.FDec.

the required operations Ci.InMDec U Co.InMDec — C1.MDec N Ca.InMDec
the provide operation C1.MDec U C2.MDec — C1.MDec N C2.InMDec

the initial condition C1Init N\ Ca Init

the code C1.Code U Cy.Code

the private code C,.PriCode U C2.PriCode

Component-Based Software Engineering 89

Theorem 5. For any given input contract InCtr

(C1))C2)(InCtr) = (C1(InCtry)||C2(InCtrz))\(C1.MDec N Ca.InMDec)

where

InCtry < InCrr|C1 .InMDec
InCtry ™ InCir|(Ca.InMDec — C1.MDec)||Cy (InCtry) | (Cy.MDec N Ca.InMDec)

The chaining operator is monotonic and commutes with the hiding operator [[15]. The
other often used composition is disjoint parallel composition.

Definition 15. (Disjoint Composition) Letr C1 and C2 be components such that they
do not share fields, public operations. Then C1 @ Cs is defined to be the composite
component which has the provided operations of C1 and Cs as its provided operations,
and the required operations of C1 and C» as its required operations:

(C1 ® Ca)(InCtr) < €1 (InCir|Cy .InMDec) || C (InCir| Co.InMDec)

Obviously, chaining C1))C; is the same as disjoint parallel composition C; ® C2 when
the provided services of C; are disjoint from the required services of Cs.

We also allow a provided operation to call another (possibly the same) provided
operation, so as to link a required a operation to a provided operation.

Definition 16. (Feedback) Let C be a component and m € C.MDec and n € C.InMDec.
C[m < n] is the component such that for any InCrt

Clm — n)(InCtr) 2 C(InCtr.MSPec & {n — (g&[c]})\{m}

C.MCode(m) = g — c. Notice here the design [c] is the weakest fixed point of a recur-
sive equation if it calls other methods [15]].

Putting Components Together. Please notice that the conditions for disjoint parallel
composition can be easily checked and carried out by either assemblers or designers.

When an putting two components together using the chaining composition C1))Ca,
one may not have access to the codes. In this case, a black box specification of C;
must be given for C; in the form of a pair of (PCtr;, RCir;) of a provided (or promising)
contract and a required (or relied) contract for the components C;. They are provided
by the designer who has checked to ensure

C; (RCm-) 3 PCtr;

In fact, in these black box specifications, it is not necessary for the specification of
operations to include the guards of the operations. The guards are only used by the
designers to ensure the consistency of the protocol and the functional behavior.

When C; and C; are to be chained, we need to check to ensure the compatibility of
PCiry and RCirs, i.e. PCtr1 J RCtrs, so that the protocol in the required contract RCtro
agrees with that in the provided protocol, and the functional designs of the operations
in the provided contract PCrr; refine those in RCtrs.

90 J. He, X. Li, and Z. Liu

Furthermore, the components we have considered so far are passive components.
Therefore, we treat sequences in the required protocol in RCtry as non-deterministic
choices, but the provided protocol in PCtri as providing deterministic choice.

Let Spec, = (PCtr;,RCtr;), i = 1,2, be two black box specifications, PProt; and
RProt; the provided protocol and required protocol, and MDec; and InMDec; the pro-
vided and required operations, respectively. We define

PPVOZ1/RPV0l2déf {s|3t1 € PProt1,t2ERProtze(t1|(InMDec3)[!/?] = taA
t1|(MDec1 — InMDecs2) = s}

Definition 17. (Interaction compatibility) For a provided protocol PProt, and a re-
quired protocol RProt, given in the previous paragraph, we say they are compatible
if PProty|InMDec2 D RProtz[?0p/lop | op € InMDec|, where a sequence in the required
protocol is of the form (lop1(z1),. .., opk(zk)) and lop;(z;) is the call out eveneqo op-
eration op.

Furthermore, when they are compatible, we define the (largest) provided protocol
after the provided operations are plugged in the required operations

PProt1))RProty def PProt1 /RProts
Example 2. For the one-place buffer, the provided protocol is (?put, 7get)*. Assume a
producer requires to interact with the buffer to place items into the buffer only three
times. The required protocol would be {(!put, \put, !put)}. It is compatible with the pro-
vided protocol, and the protocol (?put, ?get)* /{{\put, \put, \pur) } = {{!get, get, get) }. So a
consumer that can be composed in must have such a required protocol.

When we have a number of components requiring services from following PPror;, the
chaining compositions can be done (compatibility checking too) one by one

PProt1))RProt2)) . ..))RProty,

The black box specifications of components are in fact the interfaces in UML. They
represent the static structural dependency among components as illustrated in Figure[Tl
which is from the example in [23]].

For general system assembly, the model of components needs to be extended by
adding the notion of ports to represent the Service Access Points (SAPs) [35]. Each
port is attached with a pair of provided and required interfaces specified by their con-
tracts (PCtr, RCtr), either can be optionally empty. We require that interfaces at different
ports are independent. For interaction between two components, a binding has to be
established between the required interface at a port of one component and a compatible
provided interface at a port of another. This extension allows us to refine a component
by adding ports.

4.6 Active Components and Connectors

The components (and contracts) we have studied so far are only passive components.
When a provided service is called (according to the protocol), the component starts to

3 It is different from op(y)! which is the return of the method op.

Component-Based Software Engineering 91

CustomerService LocateParcel ()

0 €— DispatchParcel ()

<<component>> $:|

GIS

l TParcellnfo
? where()

[ParceLoc <«<component>> $:| [Somelnterface

—0O >— —O >—
MLS GTS CarrierSystem

<<component>> E <<c0mp0nem>> E

Fig. 1. Static dependency among components

execute and during the execution it may call services of other components. In general
a component may be active (i.e. an actor in the sense of ROOM [33])) and have its own
control and once it is started it can execute its internal actions, call services of other
components, and wait to be called by other components. For purely active components,
we can simply give the specification of the required contracts, including the protocol.
The sequences in the protocol do not have to be non-deterministic choices in general.
However, it is always safe to assume the worst case, i.e. the choice over input (namely
method calls) is non-deterministic. Otherwise, the failure set must be given to describe
when a choice is in the refusal set.

For a more general active component the provided and required operations may
be tightly related and it is not always possible to separate the provided protocol and
required protocol by projections.

For example, an active producer that uses the buffer in Example 2 only produces
the next item after receiving an acknowledgement of the receipt of the previous one
from the consumer. The protocols of the producer Prd and the consumer Con are given
respectively as

Prd < (‘put, ?ack)*, Con def (Iget, lack)*

Again, we can introduce ports into the mode of active components to represent inde-
pendently defined interfaces that allows components to be connected in arbitrary con-
figuration.

If we changed Prd to a pair of provided and required protocols by projections, we
would have the provided protocol (!pur)* and the required protocol (?ack)*. With these,
we would not have been able to check deadlock freedom when composing it with the
producer and the buffer.

We believe composing this kind of active element with gray box specifications will
require the full power of a theory of concurrency, such as a process algebra (CSP or
CCS) or automata theory. In fact, most of the existing models adopt such a gray box
specification approach, e.g. [2J6/3113].

Connectors are often treated as first class elements in component-based architec-
ture description languages. In our framework, the simple connectors are defined by the
operations of chaining, disjoint parallel composition and hiding. More general connec-

92 J. He, X. Li, and Z. Liu

tors are defined as predicates of protocols of the form C(Prory, ..., Proty, Prot), where
Prot1, . .., Prot, can be seen as roles that are mapped to components’ protocols and Prot
can be seen as the glue which is the resulting protocol [2]]. We call C a connector if the
roles are to be linked to the required protocols of components and the resulting protocol
is linked to the provided protocol of a component. C is a coordinator or manager if the
roles are to be linked to the provided protocols of components and the resulting protocol
is used as a provided protocol (i.e. linked to a required protocol). Connectors and coor-
dinators for passive components are often simple. More complicated coordinators and
glues can be defined for general active components. Again the need of writing compli-
cated glue codes would push the users away from using component-based development.

4.7 Component-Based and Object-Oriented Methods

In most books on component-based design in the UML framework, e.g. [10J31]], a com-
ponents is taken as a family of collaborating objects (or class at the level of templates
or styles) without being formally defined. Some papers, e.g. [6l3], are critical to object-
orientation and think that objects or classes are not composable and thus cannot be
treated as objects. To some extent, this is true as objects or classes do not specify their
required interfaces. On the other hand, all the existing component technologies, such as
JavaBeans, EJB, .NET and COM, are based on object-oriented methods. Therefore, it
is useful to investigate the integration of the models of components and objects.

In our framework, we can take a class and translate it to primitive components easily
by calculating the required methods from the code of the class methods. However, in
general, a component in our proposed model can be realized by a family of collaborating
classes. Therefore, for a component C, we treat the interface methods of C and the
protocol as the specification of the use cases of the component and the components in
environment of C as the actors of these use cases. The design and implementation of
this component can then be carried out in a UML-based object-oriented framework.

The types of the fields in interfaces and components can be classes. The classes and
their associations form the information (data) model. This model can be represented
as a UML class diagram and formalized as class declaration in rCOS [16414124]]. The
implementation of a contract in a component is based on the implementation of the
class model. Also, for example UML2.0, a port of a component is realized by a class
too (a port in an active component is realized by an active class). The component-based
part of rCOS presented here and its object-oriented part in [[16/14)24] form a consistent
combination.

5 Conclusion and Future Work

We have discussed the basic concepts of components and argued for the need to link
methods and their theories for programming. The link will go in two dimensions. In the
horizontal direction, we need the integration of theories of state-based functional re-
finement [18]], event-based interaction simulation, real-time [[17,25113]], fault-tolerance
[25], security, mobility and general QoS. In the vertical dimension, we need to link
the theories of domain and requirements analysis, system construction by assembly of
components, component construction, and component deployment.

Component-Based Software Engineering 93

So far most models focus on the theories of interfaces and coordination models to
support system construction by composing components. The link of these theories and
model to software technology for component construction is still weak. We have pro-
vided some initial results towards this direction in TCOS. More work needed in the areas
of component-based domain and requirements analysis and component deployment. In
the horizontal direction, it is still a long way to deal with general QoS issues. Another
challenge is the combination of synchronous communication and asynchronous com-
munication. This could be done by adding message queues at the end of the receiving
components or allowing shared fields in components. However, it is not clear whether
there is any better way at a higher level of abstraction.

We have presented the ongoing research on rCOS to support this argument. We
realize the tradeoff between the simplicity of the model required for the support to
CBSE and the expressiveness of the model. While linking methods will help to ease the
difficulties by localising a method to a stage of the development, the need to develop
sophisticated ‘glueware’ to coordinate components in applications is one reason why the
saving from using “off-the-shelf” components is sometimes not as great as anticipated.
If general active components and coordinators among them have to be all covered,
the formal method and theory of CBSE cannot be expected to be simpler than those
established for general concurrent and distributed systems. On the other hand, linking
methods and their theories is useful for general software and system engineering.

Acknowledgement

We would like to thank Chris George, Liu Xiaojian, Chen Xin and Rodrigo Ramos for
their comments on earlier versions of the paper.

References

1. R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon, School
of Computer Science, 1997.

2. R. Allen and D Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213 — 249, 1997.

3. F. Arbab. Reo: A channeled based coordination model for components composition. Math-
ematical Structures in Computer Science, 14(3):329-366, 2004.

4. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1999.

5. G. Beneken and U. Hammerschall ef al. Componentware - sate of the art 2003. Background
Paper for Understanding Components Workshop of the CUE Initiative, 2003.

6. M. Broy. Multi-view modeling of software systems. In Z.Liu and J. He, editors, Math-
ematical Frameworks for Component Software: Models for Analysis and Synthesis. World
Scientific, to appear.

7. M. Broy and K. Stglen. Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement. Springer, 2001.

8. ML.R.V. Chaudron and E. de Jong. Components are from Mars. In Proc. 15 IPDPS 2000
Workshops on Parallel and Distributed Processing, Lecture Notes In Computer Science; Vol.
1800, pages 727 — 733, 2000.

94

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

J. He, X. Li, and Z. Liu

. E.W. Dijkstra. A Discipline of Programming. Prentece-Hall, INC, 1976.
. D. D’Souza and A.C. Wills. Objects, Components and Framework with UML: The Catalysis

Approach. Addison-Wesley, 1998.

Hartmut Ehrig, Werner Damm, Jorg Desel, Martin Grofle-Rhode, Wolfgang Reif, Ecke-
hard Schnieder, and Engelbert Westkdmper, editors. Integration of Software Specification
Techniques for Applications in Engineering, Priority Program SoftSpez of the German Re-
search Foundation (DFG), Final Report, volume 3147 of Lecture Notes in Computer Science.
Springer, 2004.

D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based
systems. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 47—68. Cambridge University Press, 2000.

G. Gossler and J. Sifakis. Composition for component-based modeling. Science of Computer
Programming, 55(1-3), 2005.

J. He, Z. Liu, and X. Li. rCOS: A refinement calculus for object systems. Technical Report
UNU-IST Report No 322, UNU-IIST, P.O. Box 3058, Macau, March 2005.

J. He, Z. Liu, and X. Li. A theory of contracts. Technical Report UNU-IIST Report No 327,
UNU-IIST, P.O. Box 3058, Macau, July 2005.

J. He, Z. Liu, X. Li, and S. Qin. A relational model of object oriented programs. In Proceed-
ings of the Second ASIAN Symposium on Programming Languages and Systems (APLASO4),
Lecture Notes in Computer Science 3302, pages 415-436, Taiwan, March 2004. Springer.

T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-time sys-
tems. In Proceedings of the 8th ACM Annual Symposium on Principles of Programming
Languages, pages 269-276, U.S.A, 1991. ACM Press.

C.AR. Hoare and J. He. Unifying theories of programming. Prentice-Hall International,
1998.

Tony Hoare. The verifying compiler: A grand challenge for computer research. Journal of
the ACM, 50(1):63-69, 2003.

J.P. Holmegaard, J. Knudsen, P. Makowski, and A.P. Ravn. Formalization in component
based development. In Z.Liu and J. He, editors, Mathematical Frameworks for Component
Software: Models for Analysis and Synthesis. World Scientific, to appear.

D. Hybertson. A uniform component modeling space. Informatica, 25:475-482, 2001.

L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Pearson Education, Inc., 2002.

Z. Liu, J. He, and X. Li. Contract-oriented development of component software. In Proc.
3rd IFIP International Conference on Theoretical Computer Science.

Z.Liu, J. He, and X. Li. TCOS: Refinement of component and object systems. Invited Talk
at 3rd International Symposium on Formal Methods for Component and Object Systems. To
Appear in Lecture Notes of Computer Science, 2005.

Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing and schedul-
ing. ACM Transactions on Languages and Systems, 21(1):46-89, 1999.

D.C. Luckham and J. Vera. An event-based architecture definition language. IEEE Transac-
tions on Software Engineering, 21(9):717-734, 1995.

J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec-
tures. In Proc. of 5th European Software Engineering Conference (ESEC95), pages 137-153.
Springer-Verlag, 1995.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1991.

N. Medvidovic and R.N. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26(1):70—
93, 2000.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Component-Based Software Engineering 95

A. Pnueli. Looking ahead. Workshop on The Verification Grand Challenge February 21-23,
2005 SRI International, Menlo Park, CA.

R. Pooley and P. Steven. Using UML: Software Engineering with Objects and Component.
Addison-Wesley, 1999.

T. Rentsch. Object-oriented programming. SIGPLAN Notices, 17(2):51, 1982.

R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and D. Zhang. Understanding trade-
offs among different architectural modeling approaches. In Proceedings of the Fourth Work-
ing IEEE/IFIP Conference on Software Architecture (WICSAO4).

J.-G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca, J. Hall, and
P. Hall, editors, Software Architectures Advances and Applications, pages 13 —25. Springer,
1999.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time object-oriented modeling. Wiley, 1994.
M. Shaw and D. Garlan. Software Architectures: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

I. Sommerville. Software Engineering (6th Edition). Addison-Wesley, 2001.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 1997.

R.N. Taylor, N. Medvidovic, K.M. Anderson, E. J. Whitehead Jr., J.E. Robbins, K.A. Nies,
P. Oreizy, and D.L. Dubrow. A component- and message-based architectural style for gui
software. IEEE Transactions on Software Engineering, 22(6):390 — 406, 1996.

A. van de Hoek, M. Rakic, R. Roshandel, and N. Medvidovic. Taming architecture evolution.
In Proceedings of the 6th European Software Engineering Conference (ESEC) and the 9th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-9), 2001.

M. Wirsing and M. Broy. Algebraic state machines. In T. Rus, editor, Proc. 8th Internat.
Conf. Algebraic Methodology and Software Technology, AMAST 2000. LNCS 1816, pages
89-118. Springer, 2000.

	Introduction
	Components, Interfaces and Architectures
	Components
	Interfaces
	Architecture

	State of the Art of Formal Theories
	Models of Architectures
	The Need to Link Methods and Theories

	rCOS
	UTP: The Semantic Basis
	Interfaces
	Contract
	Reactive Contracts
	Components and Their Compositions
	Active Components and Connectors
	Component-Based and Object-Oriented Methods

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

