
Theoretical Computer Science 365 (2006) 109–142
www.elsevier.com/locate/tcs

rCOS: A refinement calculus of object systems!

He Jifenga, Xiaoshan Lib, Zhiming Liuc,∗

aSoftware Engineering Institute, East China Normal University, Shanghai, China
bFaculty of Science and Technology, University of Macau, Macao, China

cUnited Nations University, International Institute for Software Technology, P.O. Box 3058, Macao SAR, China

Abstract

This article presents a mathematical characterization of object-oriented concepts by defining an observation-oriented semantics
for a relational object-based language with a rich variety of features including subtypes, visibility, inheritance, type casting, dynamic
binding and polymorphism. The language can be used to specify object-oriented designs as well as programs. We present a calculus
that supports both structural and behavioural refinement of object-oriented designs. The design calculus is based on the predicate
logic in Hoare and He’s Unifying Theories of Programming (UTP).
© 2006 Elsevier B.V. All rights reserved.

Keywords: Object orientation; Refinement; Semantics; UTP

1. Introduction

Software engineering is mainly concerned with using techniques to systematically develop large and complex pro-
gram suites. In the search for techniques for making software development more productive and software systems
more reliable, object-oriented programming and formal methods are two important but largely independent approaches
which have been influential in recent years.

The concept of objects is an important concept in software development. Experimental languages of the 1970s
provided various definitions of package, cluster, module, etc. They promote modularity and encapsulation, allowing
the construction of software components which hide state representations and algorithmic mechanisms from users,
and export only pertinent features. This produces components with a level of abstraction by separating the view of
what a module does from the details of how it does them. It is clear that certain features of the objects, particularly
inheritance and the use of object references as part of the data stored by an object, could be used to construct large
system incrementally and efficiently, as well as making it possible to reuse objects in different contexts.

It is essential that software engineering is given the same basis in mathematics as other engineering disciplines. There
has been good progress, resulting in three main paradigms: model-based, algebraic and process calculi. Practitioners
of formal methods and experts in object technology have investigated how formal specification can supplement object-

! This is a combination of revised and extended versions of [26,39]. This work is partially supported by the project HighQSoftD funded by Macao
Science and Technology Development Fund, the 973 projects 2002CB312001 and 2005CB321904 of the Ministry of Science and Technology of
China.

∗ Corresponding author.
E-mail addresses: jifeng@sei.ecnu.edu.cn (H. Jifeng), xsl@umac.mo (X. Li), Z.Liu@iist.unu.edu (Z. Liu).

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.07.034

mailto:Z.Liu@iist.unu.edu
http://www.elsevier.com/locate/tcs
mailto:jifeng@sei.ecnu.edu.cn
mailto:xsl@umac.mo

110 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

oriented development [34], and how it may help to clarify the semantics of object-oriented notations and concepts.
Examples of such work include the formalization of the OMG’s core object model [29] using Z.

Model-based formalisms have been used extensively in conjunction with object-oriented techniques, via languages
such as Object-Z [53], VDM++ [17], and methods such as Syntropy [16] which uses the Z notation and Fusion
[15] that is based on VDM. Whilst these formalisms are effective at modelling data structures as sets and relations
between sets, they are not designed for defining semantics of object-programs and thus do not deal with more so-
phisticated object-oriented mechanisms of object-oriented programming languages, such as dynamic binding and
polymorphism.

Cavalcanti and Naumann defined an object-oriented programming language, called ROOL, with subtypes and poly-
morphism [13,45] using predicate transformers. Sekerinski [51,43] defined a rich object-oriented language by using
a type system with subtyping and predicate transformers. However, neither reference types nor mutual dependency
between classes are within the scope of these approaches. Because of the complex flow of control, it is not feasible
to calculate the weakest precondition of an object-oriented program for a given postcondition. Thus, semantic proofs
of refinement rules in ROOL are quite hard and complex even without references. Without the inclusion of reference
types, some interesting refinement rules cannot be proved [10]. America and de Boer have given a logic for the parallel
language POOL [4]. It applies to imperative programs with object sharing, but without subtyping and method over-
riding. Abadi and Leino have defined an axiomatic semantics for an imperative, object-oriented language with object
sharing [1], but it does not permit recursive object types. Poetzsch-Heffter and Müller have defined a Hoare-style logic
for object-oriented programs that relaxes many of the previous restrictions [47]. However, the specification of a method
in the Poetzsch-Heffter and Müller logic is derived from the method’s known implementation [36]. Leino has presented
a logic in [36] with imperative features, subtyping, and recursive types. It allows the specification of methods, but
inheritance is restricted and visibility is not considered.

In this article, we present part of a model and a refinement calculus (named as rCOS) for component and object
systems. We focus on a mathematical characterization of object-oriented concepts, and provide a proper semantic basis
essential for ensuring the correctness of programs and for developing tool support for formal techniques. We define
an object-oriented language with subtypes, visibility, reference types, inheritance, type casting, dynamic binding and
polymorphism. The language is similar to Java and C++. It has been used to develop meaningful case studies and
to capture some of the central difficulties in modelling object-oriented designs and programs. However, we will not
consider garbage collection, attribute hiding, multiple inheritance and exception handling.

rCOS is class-based and refinement is about making correct changes to the structure, methods of classes and the main
program. The logic of rCOS is a conservative extension of standard predicate logic [28]. In our model, both commands
and class declarations are identified as predicates whose alphabets include logic variables representing the initial and
final values of program variables, as well as those variables representing the contextual information of classes and their
links. A variable of a built-in primitive type, such as the type Int of integers, stores data of the corresponding type
whereas a variable of an object type holds the identity or reference and the current type information of an object as its
value. We define the traditional programming constructs, such as conditional, sequential composition and recursion,
in exactly the same way as their counterparts in an imperative programming language without reference types. This
makes our approach more accessible to users who are already familiar with the existing imperative languages. All the
laws about imperative commands remain valid without the need of reproving.

Another contribution of this work is to relate the notions of refinement and data refinement [27,44,6] in imperative
programming to refactorings [19] and object-oriented design patterns for responsibility assignments [20,35]. Initial
attempts to formalize refactorings in [50,54] are advanced by providing a formal justification of the soundness of
the refactoring rules. The theories in [13,36,5,10] on object-oriented refinement are also advanced by dealing with
large scale object-oriented program refinement with refactorings, functionality delegation, data encapsulation and class
decomposition. Our refinement rules have been strongly motivated by the formal treatment of transformations of
multi-view models, such as UML [40,41] and rational unified process [31,33].

For simplicity, we do not consider attribute domain redefinition or attribute hiding. Our interest is in program
requirement specification, design, verification and refinement; attribute domain redefinition and attribute hiding are
language facilities mainly used for programming around defects in requirement specification or for the reuse of classes
in a way that was not originally intended. For similar reasons, we ignore interfaces, throws clauses, concurrency, method
name overloading, inner classes and method pointers. Some issues, such as concurrency and exception handling will
be treated in a planned extension of this work.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 111

The notion of designs in Unifying Theories of Programming [28] is introduced in Section 2. In Section 3, we define
the syntax of rCOS. The semantics is given in Section 4, with a discussion about behavioural refinement of object-
oriented designs (commands) under the same class declarations. The laws just extend the laws in UTP to object-oriented
commands. In Section 5, we define a notion of object-oriented refinement that allows us to (i) refine both the class
declarations and main methods and (ii) explore structural refinement. In Section 6, we present refinement laws that
capture the essence of object-oriented design and programming. We provide proofs for some of these laws. The semantic
definition of rCOS is essential for the precise justification of these laws. We will draw conclusions and discuss related
and future work in Section 7.

2. Semantic basis

The execution of a program is modelled as a relation between program states. Here, the concept of state is more
general than in a sequential language. For example, for a terminating sequential program, we are only interested in
the initial inputs and final outputs. For a program which may not terminate, we need an observable by which we can
describe whether or not the program terminates for its input. For concurrent and communicating programs, we observe
the possible traces of interactions, divergencies and refusals, in order to verify if a program is deadlock free and livelock
free. For real-time programs, we might observe time. Identifying what to observe in systems is one of the core ideas
of UTP.

For a program P, we call what is to be observed the observables or alphabet of P, denoted by !(P) or simply !
when there is no confusion. An observable of P may take different values for different executions or runs, but from the
same value space called the type of the observable. Therefore, an observable is also a variable. Observables need not
to appear in the program text but they are needed to define the semantics of the program.

Given an alphabet !, a state of ! is a (well-typed) mapping from ! to the value spaces of the observables. A program
P with an alphabet ! is then defined as a pair of predicates, called a design, represented as Pre ! Post, with free variables
in !. It is generally interpreted as if the value of observables satisfies the precondition Pre at the beginning of the
execution, the execution will generate observables satisfying the postcondition Post.

2.1. Programs as designs

This subsection summarizes how the basic programming constructs can be defined as designs. For further details we
refer the reader to the book on UTP [28].

For an imperative sequential program, we are interested in observing the values of the input variables in! and output
variables out!. Here we take the convention that for each input variable x ∈ in!, its primed version x′ is an output
variable in out!, that gives the final value of x after the execution of the program. We use a Boolean variable ok to denote
whether a program is started properly and its primed version ok′ to represent whether the execution has terminated.
The alphabet ! is defined as the union in! ∪ out! ∪ {ok, ok′}, while a design is of the form

(p(x) ! R(x, x′)) def= ok ∧ p(x) ⇒ ok′ ∧ R(x, x′),

where
• p is a predicate over in! and R is a predicate over in! ∪ out!,
• p is the precondition, defining the initial states,
• R is the postcondition, relating the initial states to the final states,
• ok and ok′ describe the initiation and termination of the program, respectively; they do not appear in the program

texts.
The design represents a contract between the “user” and the program such that if the program has started properly in
a state satisfying the precondition it will terminate in a state satisfying the postcondition R.

A design is often framed in the form

" : (p ! R)
def= p ! (R ∧ w′ = w),

where w contains all variables in in! except for those in ".

112 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

Fig. 1. Basic commands as designs.

Before we define the semantics of a program, we first define some operations on designs:
• Given two designs such that the output alphabet of P is the same as primed version of the input alphabet of Q, the

sequential composition

P(in!1, out!1); Q(in!2, out!2)
def= ∃m · P(in!1, m) ∧ Q(m, out!2).

• Conditional choice: (D1 ! b " D2)
def= (b ∧ D1) ∨ (¬b ∧ D2).

• Demonic and angelic choice operators:

D1) D2
def= D1 ∨ D2, D1 * D2

def= D1 ∧ D2.

• while b do D, also denoted by b ∗ c, is defined as the worst fixed point of the relation expression ((D; X) ! b " skip),
where the worst fixed point of F(X) is the lest upper bound of {F i(true)|i = 0, 1, . . .}.
Some primitive programming commands as framed designs are given in Table of Fig. 1. Composite statements are

then defined by semantics operations on designs:
In general, when giving a semantics, preconditions are usually strengthened with some well-definedness conditions

of the commands. Thus, the semantics of a program or command c is generally of the form

[[c]] def= D(c) ⇒ Spec,

where Spec is a design and D(c) is the well-definedness condition of c. Well definedness may be dynamic.
Strengthening preconditions by conjoining well-definedness conditions allows us to modify an ill-defined command

to a well-formed one by means of a refinement. This approach supports incremental development as most cases of
ill-definedness commands are due to insufficient data or services. The addition of data, services and components can
thus be considered as refinements in our framework.

In this article, variables capturing aspects of dynamic typing, visibility, etc, are used to define the semantics of
object-oriented programs. This ensures that the logic of rCOS is a conservative extension to that used for imperative
programs. All the laws about imperative commands remain valid without the need of revision.

2.2. Refinement of designs

The refinement relation between designs is defined to be logic implication.

Definition 1. A design D2 = (!, P2) is a refinement of design D1 = (!, P1), denoted by D1 + D2, if P2 entails P1,
that is

∀x1, . . . , xn, x
′
1, . . . , x

′
n, ok, ok′ · (P2 ⇒ P1),

where x1, . . . , xn, x
′
1, . . . , x

′
n are the variables in !. D1 = D2 if D1 + D2 ∧ D2 + D1.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 113

If the two designs do not have the same alphabet, we can use data refinement to relate their state spaces, as well as
their behaviour

Definition 2. Let #(!2, !1) be a many to one mapping from the state space of !2 to the state space of !1. Design
D2 = (!2, P2) is a refinement of design D1 = (!1, P1) under #, denoted by D1 +# D2, if

((true ! #(!2, !′
1)); P1) + (P2; (true ! #(!2, !′

1))).

Notice that both sides of the above refinement have the same alphabet !1 ∪ !2.

It is easy to prove that chaos is the worst program, i.e. chaos + P for any program P. For more algebraic laws of
imperative programs, please see [28].

The following theorem establish that designs can be used for defining a semantics of programs.

Theorem 1. The notion of designs is closed under programming constructors:

((p1 ! R1); (p2 ! R2)) = ((p1 ∧ ¬(R1; ¬p2)) ! (R1; R2)),

(p1 ! R1)) (p2 ! R2) = (p1 ∧ p2) ! (R1 ∨ R2),

(p1 ! R1) * (p2 ! R2) = (p1 ∨ p2) ! ((p1 ⇒ R1) ∧ (p2 ⇒ R2)),

((p1 ! R1) ! b " (p2 ! R2)) = ((p1 ! b "p2)) ! (R1 ! b "R2).

The proof can be found in [28].

3. Syntax of rCOS

In rCOS, an object system (or program) S is of the form Cdecls • Main, consisting of class declaration section Cdecls
and a main method Main. The main method is a pair (extvar, c), where extvar is a finite set of external variables and c

is a command. The class declaration section Cdecls is a finite sequence of class declarations cdecl1; . . . ; cdeclk , where
each class declaration cdecli is of the form

[private] class M[extends N]{
private T11a11 = d11, . . . , T1m1a1m1 = d1m1;
protected T21a21 = d21, . . . , T2m2a2m2 = d2m2;
public T31a31 = d31, . . . , T3m3a3m3 = d3m3;
method m1(T11x1; T12y1

; T13z1){c1};
· · · ;

m!(T!1x!; T!2y!
; T!3z!){c!}

}
where
• A class can be declared as private or public (the default is public). The class section is a Java-like package and Main

an application program using the package. Only a public class or a primitive type can be used in the external variable
declarations of Main.

• N and M are distinct names of classes, and N is called the direct superclass of M.
• Attributes annotated with private, protected and public are private, protected and public attributes to the class,

respectively. The types and initial values of attributes are given in the declaration.
• A method declaration declares the method, its value parameters (Ti1 xi), result parameters (Ti2 y

i
), value–result

parameters (Ti3 zi) and bodies (ci).
We use the Java convention, and assume that an attribute is protected when it is not tagged with private or public.
We assume, for simplicity, that all methods are public and can be inherited by a subclass.

Symbols: We assume the following disjoint infinite sets of symbols:
• CNAME is used for the set of class names. We use C, D, M and N with possible subscripts to range over this set.
• ANAME is the set of symbols to be used as names of attributes, ranged over by a with possible subscripts.
• VNAME denotes the set of simple variables names. We use x, y, and z, etc. for simple variable names.

114 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

3.1. Commands

rCOS supports typical object-oriented programming constructs. It also provides some commands for the purpose of
specification and refinement. The syntax of rCOS commands is:

c ::= skip|chaos| var Tx[= e]| end x|c; c|c ! b " c|c) c|b ∗ c|le.m(e; e; e)|le := e|C.new(le),

where b is a Boolean expression, e a general expression, e a list of expressions and le an expression which may appear
on the left-hand side of an assignment, obeying the form

le ::= x|self|le.a,

where
• x is a simple variable and a an attribute.
• le.m(ve; re; vre) denotes a method m call within the object le. Expression lists ve, re and vre are the actual value

input parameters, result parameters and actual value–result parameters, respectively.
• The command C.new(le) creates a new object of class C whose attributes have the initial values as declared in C

and attaches the new object to le. When C has attributes whose types are classes, we allow nested object creation.
For example, if D a is an attribute of C, C.new(le)[D.new(a)] creates a new object of class C and a new object of
D attached to C’s attribute a.

• Command var T x = e declares a local variable x of type T with an initial value e; end x ends the scope of the
local variable x.
A local variable can be declared a number of times with different types and values before it is undeclared. Thus, a

local variable x may have a sequence of declared types and it may takes sequence of values.

3.2. Expressions

Expressions, which can appear on the right-hand side of an assignment, are constructed according to the rules below:

e ::= x|a|null|self |e.a|(C)e|f(e),

where null represents the special value (or object), self is used to denote the active object in the current scope (some
object-oriented languages use this), e.a is the attribute a of e, (C)e is type casting, and f is a built-in operation for a
built-in primitive type.

4. Semantics

We now show how to use the basic model of the UTP to define the semantics of rCOS. We use [[E]] to denote the
semantics of an element E , such as a command and a class declaration. The semantics takes into account the following
features:
• A program operates not only on variables of primitive types, such as integers and Booleans, but also on variables of

object reference types.
• To protect attributes from illegal accesses, the model addresses the problem of visibility.
• An object can be associated with any subclass of its original declaration. To validate expressions and commands in

a dynamic binding environment, the model keeps track of the current type of each object.
• The dynamic type M of an object can be cast up to any superclass N and later cast down to any class which is a

subclass of N and a superclass of M (or M itself). We record both the cast type N and the current type M of the object.

4.1. Structure, value and object

The class declaration section Cdecls of a program defines the types (value space) and static structure of the program.
Structure: We introduce the following structural variables:
• pricname = {private C|C is declared in Cdecls}. We use pubcname to record the sets of names of the public

classes declared in Cdecls. Let cname be the union of these two sets.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 115

• superclass: the partial function

{M -→ N|[private] class M extends N is declared in Cdecls}.
This function defines that N is a direct superclass of M. We define the general superclass class relation / to be the
transitive closure of superclass, and N # M if N / M or N = M.

• pri, prot, and pub: these variables associate each class name C ∈ cname to its private attributes pri(C), protected
attributes prot(C), and public attributes pub(C), respectively:

pri(C)
def= {〈a : T, d〉|Ta = dis a private attribute ofC},

prot(C)
def= {〈a : T, d〉|Ta = dis a protected attribute ofC},

pub(C)
def= {〈a : T, d〉|Ta = dis a public attribute ofC}.

We define the following functions over attributes:
(1) The function attr is the union of pri, prot and pub; for each C, attr(C) is the set of attributes declared in C

itself.
(2) The function Attr extends attr(C) for each C to include all the attributes that C inherited from its superclasses.
(3) ATTR(Cdecls) denotes the set of {C.a|C ∈ cname ∧ a ∈ Attr(C)}
(4) init(C.a) denotes the initial value of attribute a of C.
(5) dtype(C.a) denotes the declared type T if 〈a : T, d〉 ∈ Attr(C).
(6) ATTR(C) is the set of all attributes that are associated to class C: it is the smallest set such that:

(a) Attr(C) ⊆ ATTR(C).
(b) Attr(dtype(N.a)) ⊆ ATTR(C) if N.a ∈ ATTR(C) and dtype(N.a) is a class in cname.

• op: associates each class C ∈ cname to its set of methods (op)(C)

op(C)
def= {m -→ (x : T1; y : T2; z : T3, c)|m(x : T1; y : T2; z : T3){c} is declared as method of C}.

The set of the above structural variables is denoted by $Cdecls. A class declaration is a command that modifies these
structural variables. However, the values of these variables remain unchanged during execution of the main method.

Attribute expression: The set eATTR(C) of attribute expressions of class C is defined inductively below:
(1) % ∈ eATTR(C);
(2) C.a ∈ eATTR(C) for each attribute a of C;
(3) if C.a ∈ eATTR(C) and dtype(C.a) ∈ cname, then dtype(C.a).b ∈ eATTR(C) for any b ∈ Attr(dtype(C.a));
(4) if ei ∈ eATTR(C) for i = 1, . . . , n, dtype(ei) are built-in primitive types and expression f (x1 : dtype(e1), . . . , xn :

dtype(en)) is well-defined on these primitive types, then f (e1, . . . , en) ∈ eATTR(C).
Value and object: We assume a set T of built-in primitive types. We also assume an infinite set REF of object identities

(or references), with null ∈ REF. A value is either a member of a primitive type in T or an object identity in REF with
its dynamic typing information. Let VAL be the set of values

VAL def=
⋃

T ∪ (REF × CNAME).

For a value v = 〈r, C〉 ∈ REF × CNAME, we use ref(v) to denote r and type(v) to denote C.

Definition 3. An object o is either the special object null, or a structure 〈r, C, &〉, where:
• reference r , denoted by ref(o), is in REF;
• C, denoted by type(o), is a class name;
• & is called the state of o, denoted by state(o), and it is a mapping that assigns each a ∈ Attr(C) to a value in dtype(a)

if dtype(a) ∈ T and otherwise to the null object or a value in REF × CNAME. We use o.a to denote &(a).

We extend equality to a relation over both values and objects

(v1 = v2)
def=




(type(v1) = type(v2)∧
(type(v1) ∈ T ∧ (v1 = v2))∨
∀ a ∈ Attr(type(v1)) · (v1.a = v2.a)



 .

This equality ignores object references, but relating underlying primitive attributes.

116 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

Some notations: Let O be the set of all objects, including null. The following notations are employed:
• For sets S and S1, S1!S is the set difference removing elements in S1 from S. Let ! have higher associativity 1

than the normal set operators like ∪ and ∩.
• For a mapping f : D −→ E, d ∈ D and r ∈ E,

f !{d -→ r} def= f ′ where f ′(b)
def=

{
r if b = d;
f (b) if b ∈ {d}!D.

• For an object o = 〈r, M, &〉, an attribute a of M and a value d,

o!{a -→ d} def= 〈r, M, &!{a -→ d}〉.

• For a set S ⊆ O of objects,

S 6 {〈r, M, &〉} def= {o|ref(o) = r}!S ∪ {〈r, M, &〉},
ref(S)

def= {r|r = ref(o), o ∈ S}.
For a given class declaration section Cdecls, 'Cdecls, called the object space of Cdecls, denotes the set of all objects
declared in Cdecls. The pair ($Cdecls, 'Cdecls) is called a program context and denote it by (Cdecls. When there is
no confusion, we omit the subscript Cdecls. All dynamic semantic definitions are given under a fixed class declaration
section. Therefore, the evaluation value(e) of an expression e is carried out in the context (and the semantics [[c]](
defines the state change produced by execution of c in the context (.

4.2. Static semantics

We treat each class declaration as a command and its semantics is defined as a design. A class declaration changes
the values of the structural variables pricname, pubcname, cname, superclass, pri, prot, pub and op. We first define the
well-definedness of a class declaration.

Definition 4. A class declaration cdecl is well-defined if the following conditions hold:
(1) M has not been declared before: M 7∈ cname.
(2) N and M are distinct: N 7= M.
(3) The attribute names in the class are distinct.
(4) The method names in the class are distinct.
(5) The parameters of every method are distinct.
We use D(cdecl) to denote the conjunction of the above conditions for the class declaration of cdecl.

A well-defined private class declaration for M with a superclass N will modify the structural variables:

[[cdecl]] def= {pricname, pubcname, superclass, pri, prot, pub, op} : D(cdecl) !
(

modifyPriCname ∧ modifyPubCname ∧ modifySuper
∧ modifyPri ∧ modifyProt ∧ modidyPub ∧ modifyOp

)
,

where

modifyPriCname def= pricname′ = pricname ∪ {M},

modifyPubCname def= pubcname′ = pubcname,

modifySuper def= superclass′ = superclass!{M -→ N},

1 This is the purpose of using this “strange” notation for set difference.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 117

Bank

name:String;
address: String

withDraw(aID,amount;;)
getBalance (aID;res;)
openAcc (amount;;)

Account
a No:Int
balance: Int

withDraw (amount;;)
getBalance (;res;)

SA CA

withDraw
(ammount;;)

*ac

Fig. 2. A bank system.

modifyPri def= pri′ = pri!{M -→ {〈a11 : T11, d11〉, . . . , 〈a1m1 : T1m1 , d1m1〉}},

modifyProt def= prot′ = prot!{M -→ {〈a21 : T21, d21〉, . . . , 〈a2m2 : T2m2 , d2m2〉}},

modifyPub def= pub′ = pub!{M -→ {〈a31 : T31, d31〉, . . . , 〈a3m3 : T3m3 , d3m3〉}},

modifyOp def= op′ = op!{M -→ {m1 -→ (〈x1 : T11; y
1

: T12; z1 : T13〉, c1), . . . ,

m! -→ (〈x! : T!1; y
!

: T!2; z! : T!3〉, c!)}}.

We can similarly define a class declaration for the cases when the class M is declared as a public class and when it is
not declared as a subclass of another.

Definition 5. Let Cdecls ≡ (cdecl1; . . . ; cdecln)be a class declaration section. Its semantics is defined by the sequential
composition of the designs of the individual class declarations starting with all structural variables initialized to the
empty set

[[Cdecls]] def= Empty; [[cdecl1]]; . . . ; [[cdecln]],

where

Empty def= true !

(
pricname′ = ∅ ∧ pubcname′ = ∅ ∧ superclass′ = ∅

∧ pri′ = ∅ ∧ prot′ = ∅ ∧ pub′ = emptyset ∧ op′ = ∅
)

.

Definition 6. A class declaration section Cdecls is well-defined, denoted D(Cdecls), if the following conditions hold:
(1) each class name M ∈ cname and the name of its direct superclass N are distinct;
(2) if M ∈ cname and superclass(M) = N, then N ∈ cname;
(3) any type used declarations of attributes and parameters is either a built-in primitive type or a class in cname;
(4) the superclass relation / is acyclic;
(5) any attribute of a class is not redeclared in its subclasses, i.e. we do not allow attribute hiding in a subclass;
(6) the names of the attributes of each class are distinct;
(7) the names of the methods of each class and the names of parameters of each method are distinct, respectively.

A well-defined rCOS declaration section corresponds to a UML [9] class diagram. For related work on formal
support to UML-based development, we refer to our work in [40,41,58].

Example 1. Consider a bank system illustrated by the UML class diagram in Fig. 2. Account has two subclasses:
a current account CA and a savings account SA.

118 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

The declaration of public class Bank has three attributes: name and address are of primitive types, say String, and
association ac which is of the power type PAccount of class type Account. A specification of class declaration for
Bank is given below:

class Bank {
private : String name, address;
private : PAccount ac = ∅;
method : withDraw(Int aID, Int amount){

∃a ∈ ac · a.aNo = aID !
∨

a∈ac∧a.aNo = aId
(a.balance′ = a.balance − amount)

};
getBalance(Int aID; Int res){
∃ac · a.aNo = aID !

∨

a∈ac∧a.aNo=aId
(res′ = a.balance)

}
openAcc(Int amount){
var Account a = null;

∃n,∀b ∈ ac · n 7= b.aNo ∧




Account.new(a);
a.aNo := n;
a.balance := amount





}
}

Note designs can appear in the body of a method. We need to make a few remarks about the above specification:
(1) At the level of specification of the methods, we assume the attributes of class Account are all public and can be

directly referred in the specification of the methods of call Bank.
(2) In a later design stage, the specification of these methods are refined into statement in which invocation of methods

of Account are allowed, and after such refinements, the attributes of Account can be encapsulated and become
protected.

(3) To refine the specification of method openAcc, we need to add a method, say named by openAc, that implements
the code in the big brackets.

The declaration of class Account, denoted by declAccount, is written as follows:

private class Account {
protected : Int aNo = 0, Int balance = 0;
method : getBalance(∅;Int b; ∅){b := balance};

withDraw(Int x; ∅; ∅){balance$x ! balance′ = balance − x}
}

The declaration declCA of CA is given as

private class CA extends Account {
method : withDraw(Int x; ∅; ∅){balance := balance − x}
}

We can write the declarations of SA (in which method withDraw is inherited from Account) and Bank (which has a set
of accounts associated with it) in a similar way.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 119

It is easy to see that both declAccount and declCA are well-formed. The semantics of declAccount is defined by the
following design, where unchanged variables are omitted:

[[declAccount]] = true !





pricname′ = {Account} ∪ pricname
∧ prot′ = prot!{Account -→ {〈aNo : Int, 0〉, 〈balance : Int, 0〉}}
∧ op′ = op!{Account -→ {getBalance -→ (〈∅; b : Int; ∅〉, b := balance),

withDraw -→ (〈x : Int; ∅; ∅〉,
balance$x ! balance′ = balance − x)}}




.

The semantics of declCA is the following:

[[declCA]] = true !




pricname′ = {CA} ∪ pricname

∧ op′ = op!{CA -→ {withDraw -→
(〈x : Int; ∅; ∅〉, balance := balance − x)}}



 .

The semantics of declSA and declBank for classes SA and Bank can be defined in the same way, but with Bank declared
as public class. Their composition

[[declAccount; declCA; declSA; declBank]]
combines the class names, attributes and methods together. The composition is well-defined.

4.3. Dynamic variables

Now consider the variables that can be changed during program execution.
System configuration: First, we introduce a variable) whose value is the set of objects created so far. We call) the

current configuration [46]. During the execution of the program,) takes a value in the powerset 2' that satisfies the
following conditions:
(1) objects in) are complete: if o ∈) and a ∈ Attr(type(o)) with a class type, then o.a is either null or there is an

object o1 ∈) and ref(o.a) = ref(o1) and
(2) objects are uniquely identified by their references: for any objects o1 and o2 in) if ref(o1) = ref(o2) then:

(a) type(o1) = type(o2) and
(b) ref(state(o1)) = ref(state(o2)), where for each a : T ∈ Attr(type(o))

ref(state(o))(a)
def=

{
ref(o.a) if T ∈ cname,
o.a if T ∈ T .

When a new object is created or the value of an attribute of an existing object is modified, the system configuration)
will be changed. For each class C, we use variable)(C) to denote the set of existing objects of class C.

External variables: A set extvar = {x1 : T1, . . . , xk : Tk} of variables with their types are declared in the main method
of the program, where each type Ti is called the declared type of xi , denoted as dtype(xi). A declared type is either a
built-in primitive type or a public class in pubcname. Their values can be modified by methods and commands of the
main method containing them.

Local variables: A set localvar identifies the local variables which are declared by local variable declaration com-
mands. This set includes self (whose value represents the current active object), and parameters of methods. The sets
localvar and extvar are disjoint.

Method calls may be nested. Thus, self and a parameter of a method may be declared a number of times with
possible different types before it is undeclared. A local variable x has a sequence of declared types represented as
(x : 〈T1, . . . , Tn〉). We use TypeSeq to denote the sequence of types of x, with T1 being the most recently declared type
dtype(xi).

We use x to denote the value of a local variable x. This value comprises a finite sequence of values, whose first (head)
element, which is simply denoted by x itself, represents the current value of the variable. We use the conventions that
x : 〈T〉 and x for x for an external variable x : T ∈ extvar.

Visibility: We introduce a variable visibleattr to hold the set of attributes which are visible to the command under
execution. The value of visibleattr defines the current execution environment. A method of an object o sets visibleattr

120 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

to Attr(o) (the attributes of the current type of o) which including all the declared attributes of the class, the protected
and public attributes of its superclasses and all public attributes of public classes; and the method resets visibleattr to
the global environment (consisting of all the public attributes of the public classes) when exit its execution. Notice that
the value space of visibleattr is the powerset of {C.a|C ∈ CNAME, a ∈ ANAME}.

We use
• var to denote the union of extvar and localvar,
• VAR is the set of dynamic variables consisting of the variables in var plus) and visibleattr,
• internalvar is the set of elements of VAR excluding those of extvar.

4.4. Dynamic states

Definition 7. For a program S = Cdecls • Main, a (dynamic) state of S is a mapping * from the variables VAR to their
value spaces that satisfies the following conditions:
(1) If x ∈ VAR and dtype(x) ∈ T then *(x) is a value in dtype(x).
(2) If x ∈ VAR and dtype(x) ∈ cname then *(x) is

(a) either null, or
(b) a value in v ∈ REF × CNAME such that there exists an object o ∈ *()) for which ref(o) = ref(v) and

type(o) % type(v).
This attachment of an object o to a variable x provides the information about type casting: type(o) is the

current (base) type of x, denoted as atype(x), and type(v) is the cast type of x.
Two states *1 and *2 are equal, denoted by *1 = *2, if
(1) *1(x) = *2(x) for any x ∈ VAR such that dtype(x) ∈ T ,
(2) for any x ∈ VAR and dtype(x) ∈ cname

(a) *1(x) = null if and only if *2(x) = null, and
(b) if oi ∈ *i ()) and ref(*i (x)) = ref(oi), where 1& i&2, then o1 = o2 and type(*1(x)) = type(*2(x)).

For state * and a subset V ⊆ VAR, *()↓V) projects) onto V and it is defined as follows:
(1) if x : C ∈ V, C ∈ cname, o ∈ *()) and ref(*(x)) = ref(o), o ∈ *()↓V);
(2) if o∈*()↓V) and a is an attribute of type(o) with a class type, o1∈*()) and ref(o.a) = ref(o1), then o1∈*()↓V);
(3) *()↓V) only contains objects constructed from *()) and the values of the external variables following the above

two rules.
In particular, when we restrict a state * to the external variables extvar and project) onto these variables, we obtain
an external state in which all objects in the system configuration are attached to variables.

For a given state, each expression e, visible(e) is true if and only if one of the following conditions holds:
(1) e is a declared simple variable, i.e. e is x, where x ∈ var, or
(2) e ≡ self.a and there is a class name N ∈ cname such that N # atype(self) and N.a ∈ visibleattr, or
(3) e is of the form e1.a and e1 is not self such that visible(e1), there exists a N # type(e1) and N.a ∈ visibleattr.
Condition (2) says that if type(self) is C and atype(self) is D, then the attributes of D can be accessed in the method
bodies of the methods of D which are inherited or overwritten from the casted class C. Condition (3) ensures an attribute
of an object other than self can be directly accessed if and only if it is an attribute in the cast type, i.e. the type of the
expression itself.

4.5. Evaluation of expressions

The evaluation of an expression e under a given state determines its type type(e) and its value that is a member
of type(e) if this type is a built-in primitive type, otherwise a value in REF × CNAME. The evaluation makes use of
the system configuration. Only well-defined expressions are evaluated. Well-definedness conditions can be static and
dynamic. The evaluation results of expressions are given in table of Fig. 3.

4.6. Semantics of commands

An important aspect of an execution of an object-oriented program is the attachment of objects to program variables
(or entities [42]). An attachment is made by an assignment, the creation of an object or passing a parameter in a method

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 121

Fig. 3. Evaluation of expressions.

invocation. With the approach of UTP, these different cases are unified as an assignment of a value to a program variable.
All other programming constructs are defined in exactly the same way as their counter parts in a procedural language.
We only define the object-oriented commands. The definition of other commands remains the same as in an imperative
language. The semantics [[c]] of each command c has its well-defined condition D(c) as part of its precondition and
thus has the form of D(c) ⇒ (p ! R).

Assignments: An assignment le := e is well-defined if both le and e are well-defined and the current type of e matches
the declared type of le

D(le := e)
def= D(le) ∧ D(e) ∧ type(e) ∈ cname ⇒ type(e) % dtype(le)).

Notice that this definition requires dynamic type matching. In fact the semantics ensures that if dtype(e) % dtype(le)
then type(e) % dtype(le). When the value of e is an object D(le := e) ensures that atype(e) % dtype(le).

There are two cases of assignment. The first is to (re-)attach a value to a variable (i.e. change the current value of
the variable). This can be done when the type of the object is consistent with the declared type of the variable. The
attachment of values to other variables are not changed.

[[x := e]] def= {x} : D(x := e) ! (x′ = 〈value(e)〉 · tail(x)).

As we do not allow attribute hiding or redefinition in subclasses, an assignment to a simple variable does not have
side-effect. Thus, the Hoare triple

{o2.a = 3}o1 := o2{o1.a = 3}
is valid in our model, where o1 : C1 and o2 : C2 are variables, C2 % C1 and a : Int is protected attribute of C1. These
assumptions make the theory simpler than alternative Hoare-logic based semantics, e.g. [46].

122 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

The second case is the modification of the value of an attribute of an object attached to an expression. This is done
by finding the attached object in the system configuration) and modifying its state accordingly. All variables attached
to the reference of this object are updated:

[[le.a := e]] def= {)(dtype(le))} : D(le.a := e) !

(
)(dtype(le))′ =)(dtype(le))6
{o!{a -→ value(e)}|o ∈) ∧ ref(o) = ref(le)}

)
.

For example, let x be a variable of type C such that C has an attribute d of D and D has an attribute a of integer type.
x.d.a := 4 changes the state of x = 〈r1, C, {d -→ r2}〉, where reference r2 is the identity of 〈r2, D, {a -→ 3}〉 to the
state x = 〈r1, C, {d -→ r2}〉, where x is as before but the underlying reference r2 is modified and it is now the identity
of the object 〈r2, D, {a -→ 4}〉. This semantic definition also shows that an assignment can have side effects.

Law 1. (le1 := e1; le2 := e2) = (le2 := e2; le1 := e1), provided le1 and le2 are distinct simple names which do not
occur in e1 or e2.

Note that the law might not be valid if either le1 or le2 is composite expressions. For instance, the following equation
is not valid when x and y have the same reference:

(x.a := 1; y.a := 2) = (y.a = 2; x.a = 1).

Object creation: The C.new(le) is well-defined if

D(C.new(le)) def= C ∈ cname ∧ D(le) ∧ dtype(le) # C.

The command creates a new object, attaches the object to le and sets the initial values of the attributes of class C to
those of object le.

[[C.new(le)]] def= {le,)(C)}:D(C.new(le)) ! ∃r 7∈ ref())·(AddNew(C, r) ∧ Modify(le)),

where

AddNew(C, r)
def=)(C)′ =)(C) ∪ {〈r, C, {ai -→ init(C.ai)}〉|ai ∈ Attr(C)},

Modify(le) def=
(

le
′ = 〈r, C〉 · tail(le)∧

TypeSeq′(le) = 〈C〉 · tail(TypeSeq(le)).

)
.

Here assume if dtype(C.ai) = M, the assignment ai -→ init(C.ai) is ai -→ M.new(C.ai).
For creation of objects, we have the following laws:

Law 2. C1.new(x); C2.new(y) = C2.new(y); C1.new(x), provided x and y are distinct.

Law 3. If x is not free in the Boolean expression b, then

C.new(x); (P ! b " Q) = (C.new(x); P) ! b " (C.new(x); Q).

Local variable declaration and undeclaration: Command var Tx = e declares a variable and initializes it:

[[var Tx = e]] def= {x} : D(var Tx = e) ! (x′ = 〈value(e)〉 · x) ∧ TypeSeq′(x) = 〈T〉 · TypeSeq(x),

where

D(var T x = e) def= (x ∈ localvar) ∧ D(e) ∧ type(e) 7∈ T ⇒ type(e) % T.

We define [[var T x]] def=)d∈T[[var T x = d]].
Command end x terminates the block (i.e. the current scope) of variable x:

[[end x]] def= {x}:D(end x) ! x′ = tail(x) ∧ TypeSeq′(x) = tail(Tseq(x)),

where D(end x)
def= x ∈ localvar. Please refer to [28] for the algebraic laws of declaration and undeclaration.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 123

Method call: For a method signature m(T1x; T2y; T3z), let ve, re and vre be lists of expressions. Command
le.m(ve; re; vre) is well-defined if le is well-defined and it is a non-null object such that a methodm -→ (T1x; T2y; T3z, c)

is in the casted type type(le) of le:

D(le.m(ve; re; vre)) def= D(le) ∧ type(le) ∈ cname ∧ (le 7= null)

∧ ∃ N ∈ cname · (N # type(le)

∧ ∃ (m -→ (T1x; T2y; T3z, c1)) ∈ op(N)).

The execution of this method invocation assigns the values of the actual parameters v and vr to the formal value and
value–result parameters of the method m of the object o that le refers to, and then executes the body of m under the
environment of the class owning method m(). Before termination, the value of the result and value–result parameters
of m are passed back to the actual parameters r and vr.

[[le.m(ve; re; vre)]] def= (D(le.m(ve; re; vre)) ⇒ ∃C ∈ cname · (atype(le) = C)

∧





[[var T1 x = ve, T2y, T3z = vre]];
[[var C self = le]];
[[Execute(C.m)]]; [[re, vre := y, z]];
[[end self, x, y, z]]



 ,

where Execute(M.m) sets the execution environment, then executes the body and finally resets the environment. This
is formalized by considering the following cases:

Case 1: If m(T1x; T2y; T3z) is not declared in C but in a superclass of C, i.e. there exists a command c such that
(m -→ (T1x; T2y; T3z, c1)) ∈ op(N) for some N#C, then

Execute(C.m)
def= Execute(M.m),

where M = superclass(C) is the direct superclass of C.
Case 2: If m(T1x; T2y; T3z) is declared in class C itself, i.e. there is a command c such that (m -→ (T1x; T2y; T3z, c1))

∈ op(C), then

Execute(C.m)
def= Set(C); SELFC(body(C.m)); Reset,

where
• body(C.m) is the body c of the method being called.
• The design Set(C) determines those attributes visible to class M. Reset resets the environment to the set of variables

that are accessible by the main program:

Set(C)
def= {visibleattr} : true !

visibleattr′ =




{C.a|a ∈ pri(C)}∪⋃

C%N {N.a|a ∈ prot(N) ∪ pub(N)}∪⋃
N∈pubcname {N.a|a ∈ pub(N)}



 ,

Reset def= {visibleattr} : true !
visibleattr′ = ⋃

N∈pubcname {N.a|a ∈ pub(N)}.

Set and Reset are used to ensure data encapsulation is controlled by visibleattr and the well-definedness condition
of an expression.

• The transformation SELFC on a command is defined in Fig. 4, which adds a prefix self to each attribute and each
method in the command. Notice that as a method call may occur in a command that will change the execution
environment, after the execution of the nested call is completed the environment needs to be set back to that of C.

124 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

Fig. 4. The definition of SELF.

Notice that the semantics of a method call defines a method binding mechanism to ensure that
• only a method with a signature declared in the cast type or above the cast type in the inheritance hierarchy can be

accessed and
• the method executed is the lowest one in the inheritance hierarchy of the current type of the active object.

Example 2. We illustrate the semantics of method invocation. Consider the bank system in Example 1 again. We
define Execute(C.m) for the method withDraw() in the classes CA and SA. Assume all classes, except for Bank, are
private classes. For class CA,

Execute(CA.withDraw) = Set(CA); SELFCA(balance := balance − x); Reset

= visibleattr :=
{

CA.balance, CA.aNo,

Account.balance, Account.aNo

}
;

self.balance := self.balance − x;
visibleattr := ∅.

Let o be an object of CA. The semantics of the method call o.withDraw(e) attaches o to self and then performs
Execute(CA.withDraw) as defined above.

For the case of a saving account

Execute(SA.withDraw)

= Set(SA); SELFSA(Account.withDraw); Reset

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 125

= visibleattr :=
{

SA.blance, SA.aNo,

Account.balance, Account.aNo

}

;

self.balance > x ! self.balance′ = self.balance − x;
visibleattr := ∅.

Thus, the invocation to a withDraw method of a saving account is executed according to the definition of the method
in the superclass Account.

4.7. Semantics of a program

Having defined the semantics of a class declaration section and a command, we combine them to define the semantics
of an object program (Cdecls • Main).

Recall that Main consists of a set of external variables and a command c. For simplicity, we assume that any primitive
command in c is in one of the following forms:
(1) an assignment x := e such that x ∈ extvar and e does not contain subexpressions of the form le.a. That is, we do

not allow direct access to object attributes in the main method;
(2) a creation of a new object C.New(x) for a variable x ∈ extvar,
(3) a method call x.m(ve; re; vre), where x is a variable in extvar.
Main is well-defined if the types of all variables in extvar are either built-in primitive types or public classes declared
in pubcname:

D(Main)
def= ∧

x∈extvar
(dtype(x) ∈ pubcname ∨ dtype(x) ∈ T).

The semantics of Main is then defined to be

[[Main]] def= D(Main) ⇒ [[c]].
Before Main is executed, the local variables have to be initialized to empty sequences:

Init def= D(Cdecls) ! visibleattr′ = ∅ ∧ ()′ = ∅) ∧ ∧
x∈var

(x′ = 〈 〉 ∧ TypeSeq′(x) = 〈 〉).

Definition 8. The semantics of an object program Cdecls • Main is defined as

[[Cdecls • Main]] def= ∃$, $′, internalvar, internalvar′ · ([[Cdecls]]; Init; [[Main]]).

This black box semantics hides the internal information, including the objects states of the external variables in
the execution of a program, only observing the relation between the prestate and poststate of the external variables.
We cannot observe information about states of objects attached to these variables.

We define the white box semantics [[Cdecls • Main]]o as

∃ {)}!internalvar, {)′}!internalvar′, $, $′·
([[Cdecls]]; Init; [[Main]]; [[)′ :=)↓extvar]]).

The white box semantics allows us to observe all information about the external variables including the states of the
objects that are attached to them. We can insert the command)′ :=)↓extvar at any point of the main method without
changing the white box and close box semantics of a program.

Lemma 1. The white box semantics has the following properties.
For any object program S = Cdecls • Main with main command c, we have:

(1) [[Cdecls • c]] = ∃),)′ · [[Cdecls • c]]o.
(2) [[Cdecls • c1; c2]]o = [[Cdecls • c1;)′ :=)↓extvar; c2]]o.
(3) [[Cdecls • (c1; b ∗ (c2; c3); c4)]]o = [[Cdecls • c1; b ∗ (c2;)′ :=)↓extvar; c3); c4]]o.
(4) [[Cdecls • (c1; (c2; c3) ! b " c4; c5)]]o = [[Cdecls • (c1; (c2;)′ :=)↓extvar; c3) ! b " c4); c5]]o.
(5) [[Cdecls • (c1; (c2; c3)) c4)]]o = [[Cdecls • c1; (c2;)′ :=)↓extvar; c3)) c4]]o.

126 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

5. Object-oriented refinement

We would like the refinement calculus to cover all stages of requirements analysis and specification. This section
presents the results of our exploration on two kinds of refinement:
(1) Refinement relation between object systems.
(2) Refinement relation between declaration sections (structural refinement).

5.1. Object system refinement

We define what we mean by a refinement between two object programs.

Definition 9. Let Si = Cdeclsi • Maini , i = 1, 2, be object programs which have the same set of external variables
extvar. S1 is a refinement of S2, denoted by S1 ;sys S2, if the following implication holds:

∀extvar, extvar′, ok, ok′ · ([[S1]] ⇒ [[S2]]).

Example 3. For any class declaration Cdecls, we have the following:
(1) S1 = Cdecls • ({x : C}, C.new(x)) and S2 = Cdecls • ({x : C}, C.new(x); C.new(x)) are equivalent.
(2) Assume class C ∈ pubcname, 〈a:Int, d〉 ∈ attr(C), get(∅;Int z; ∅){z:=a} and update(){a:=a + c} in op(C),

then

Cdecls • ({x : C, y : Int}, C.new(x); x.update(); x.get(y))

and

Cdecls • ({x : C, y : Int}, C.new(x); x.update(); x.get(y); C.new(x))

are equivalent.

Proof. We give a proof for item (2) of this example. We denote the first program by S1 and the second by S2. Assume the
declaration section is well-defined. It is easy to check the main methods are both well-defined. The structural variables
$ are calculated according to the definition. Let d be the initial value of attribute a of C and &0 denote the initial state
of an object of C when it is created. We calculate the semantics of S1:

[[C.new(x); x.update(), x.get(y)]]

=
(

true ! ∃r ∈ REF · ()′ = {〈r, C, &0〉} ∧ x′ = 〈r, C〉);
[[x.update(); x.get(y)]]

)

=




true ! ∃r ∈ REF · ()′ = {〈r, C, &0〉} ∧ x′ = 〈r, C〉)∧
self′ = 〈 〉 ∧)′ = {〈r, C, &0!{a -→ d + c}〉|r = ref(x)});
[[x.get(y)]]





=




true ! ∃r ∈ REF · ()′ = {〈r, C, &0!{a -→ d + c}〉}∧

x′ = 〈r, C〉) ∧ self′ = 〈 〉;
[[x.get(y)]]





=





true ! ∃r ∈ REF · ()′ = {〈r, C, &0!{a -→ d + c}〉}∧
x′ = 〈r, C〉) ∧ self′ = 〈 〉;

true ! self′ = 〈 〉 ∧ z′ = 〈 〉 ∧ y′ = d + c∧
visibleattr′ = {M.a|M ∈ pubname ∧ a ∈ pub(M)}





=




true ! ∃r ∈ REF · ()′ = {〈r, C, &0!{a -→ d + c}〉}∧

x′ = 〈r, C〉) ∧ self′ = 〈 〉 ∧ z′ = 〈 〉 ∧ y′ = c + d∧
visibleattr′ = {M.a|M ∈ pubname ∧ a ∈ pub(M)}



 .

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 127

The semantics [[S1]] hides $,), self and z by existential quantification. Let [[Cdecls]] be true ! $ = ∅ ∧ $′ = $0,
we have [[S1]] equals to

∃
{

$, $′, self, self′, z, z′,

visibleattr, visibleattr′

}

· ([[Cdecls]]; Init; [[C.new(x); x.update(), x.get(y))]])

= true ! ∃r ∈ REF · x′ = 〈r, C〉 ∧ y′ = c + d.

The main method of S2 is the main method of S1 followed by command C.new(x) and thus its semantics equals

[[C.new(x); x.update(), x.get(y)]]; [[C.new(x)]]

=





true ! ∃r ∈ REF · ()′ = {〈r, C, &0!{a -→ d + c}〉∧
x′ = 〈r, C〉) ∧ self′ = 〈 〉 ∧ z′ = 〈 〉 ∧ y′ = c + d∧
visibleattr′ = {M.a|M ∈ pubname ∧ a ∈ pub(M)};

true ! ∃p 7∈ ref()) ·)′ =) ∪ {〈p, C, &0〉} ∧ (x′ = 〈p, C〉)





=





true ! ∃r, p ∈ REF · ((p 7= r)∧
)′ = {〈p, C, &0〉, 〈r, C, &0!{a -→ d + c}〉}∧
x′ = 〈p, C〉) ∧ self′ = 〈 〉 ∧ z′ = 〈 〉 ∧ y′ = c + d∧
visibleattr′ = {M.a|M ∈ pubname ∧ a ∈ pub(M)}




.

After hiding the internal variables, [[S2]] is simplified to

true ! ∃p ∈ REF · x′ = (p, C) ∧ y′ = c + d.

Thus, S1 and S2 refine each other. However, program S1; x.get(y) is not equivalent to S2; x.get(y). The final value of
y for the first program still remains d + c. For the second program, the final value of y is d . On the other hand, if we
take the white box semantics, S1 and S2 would not be equivalent in the first place. '

This example shows that program refinement is non-compositional. Given two main methods, Maini = (extvar, ci),
i = 1, 2,

Cdecls1 • Main1 ;sys Cdecls2 • Main2

then it does not necessarily follow that

Cdecls • (extvar, c1; c) ;sys Cdecls • (extvar, c2; c).

Non-compositionality is caused by the global internal variable) being hidden in the semantics. However, if we define
the refinement relation by the white box semantics, the above non-compositionality would disappear if s only refers
to calls to methods of objects attached to the external variables. Therefore, refinement according to the white box is a
subrelation of the refinement according to the black box semantics and it is more compositional.

Theorem 2. Let Cdecls • Main, C be a public class declared in Cdecls and Cdecls1 be obtained from Cdecls by
changing C to a private class. Then if C is not referred in Main,

Cdecls • Main =sys Cdecls1 • Main,

where =sys is the equivalence relation ;sys ∩ +sys.

The relation ;sys is reflexive and transitive.

5.2. Structure refinement

The proof in Example 3 shows that the local variables and visibleattr of a program are constants after each method
invocation. When the main methods in the programs are syntactically identical, the relation between their system states

128 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

is determined by the relation between the structure of these programs, i.e. their class names, attributes, sub–superclass
relations, and methods in the classes.

An object-oriented program design is mainly about designing classes and their methods. A class declaration section
can in fact support many different application main programs. The rest of this section focuses on structural refinement.

Definition 10. Let Cdecls1 and Cdecls2 be two declaration sections. Cdecls1 is a refinement of Cdecls2, denoted by
Cdecls1 ;class cdecls2, if the former can replace the later in any object system:

Cdecls1 ;class Cdecls2
def= ∀Main · (Cdecls1 • Main ;sys Cdecls2 • Main).

Informally, Cdecls1 supports at least as many services as Cdecls2. It is obvious that ;class is reflexive and transitive.
We use =class to denote the equivalence relation ;class ∩ +class. When there is no confusion, we omit the subscript.

A structural refinement does not change the main method. Every public class in Cdecls2 has to be declared in the
refined declaration section Cdecls1, and every method signature in a public class of Cdecls2 has to be declared in
Cdecls1. Recall that a main method only changes objects by method invocations to public classes.

When considering a refinement between Cdeclsi , i = 1, 2, we use $i ,)i , cnamei , etc. to denote the structural
variables and configuration of Cdeclsi and [[E]]i to denote the semantic definition of E under the declaration Cdeclsi .
The notation of structural refinement is actually an extension to the notion of data refinement [28].

Definition 11. For i = 1, 2, let Cdeclsi be two class declaration sections. A structural transformation from Cdecls1 to
Cdecls2, is a relation between the object space '1 of Cdecls1 and the object space '2 of Cdecls2 that can be represented
as a design true ! #($1, $′

2) such that the following conditions hold:
(1) Cdecls1 declares at least those public classes declared in Cdecls2. That is # implies

true ! pubcname′
2 ⊆ pubcname1.

(2) For each public class C declared in both Cdecls1 and Cdecls2, Cdecls1 offers at least those methods offered by C
than Cdecls2. That is for every C ∈ pubcname′

Sig(op′
2(C)) ⊆ Sig(op1(C)),

where Sig returns the set of method signatures of a set of method declarations.
(3) The restriction of # on the attributes #(ATTR1(C), ATTR′

2(C)) for each public class C in both declaration sections
can be described in terms of attribute expressions over ATTR1(C) in Cdecls1 and ATTR′

2(C) in Cdecls2 that
(a) the attributes’ initial values #(init(ATTR1(C)) and init(ATTR2(C))) are preserved
(b) the operations on attribute expressions are preserved: if #(+i , "i) hold for all i=1, . . . , n, then #(+1 · +2, "1·"2)

and #(f (+1, . . . , +n), f ("1, . . . ,"n)) hold.

A structural transformation corresponds to a consistent transformation between the corresponding UML class
diagrams [37].

Example 4. Fig. 5 provides two class declaration sections, Cdecls1 on the left and Cdecls2 on the right. Fig. 6 shows
the class diagrams of the two declaration sections.

In the “abstract” version Cdecls1 contains two classes, C and C1. C1 has two integer attributes a and b, and two
methods: geta() which returns the value of attribute a and updatea() which increments attributes a with the input value
parameter. Correspondingly, class C has an attribute o linked to C1, and a method geta() which calls o’s method geta()
and a method updatea() which simply calls the updating method of o.

Class declaration section Cdecls2 implements C1 using four classes in which
• C2 acts as an interface to C as C1 without storing or manipulating attributes. Each of C3, C4 and C5 stores and

manipulates an attribute.
• The attribute C1.a is implemented by the sum of C3.a3 and C4.a4
• The attribute C1.b is implemented by C5.a5.
• The geta() method in C2 is implemented by getting each of the two attributes in C3 and C4 and then adding them

together.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 129

Fig. 5. Example 4.

• The updatea() in C2 is implemented by non-deterministically updating and attribute of C3 and C4.
We define a structural transformation #1 from Cdecls1 to Cdecls2 as

true !




C.o′ = C.o

∧ C1.a
′ = C2.o3.a3 + C2.o4.a4

∧ C1.b
′ = C2.o5.a5



 .

Note that the primed attributes of C and C1 are about attributes in Cdecls2. '

Consider a structural transformation # from Cdecls1 to Cdecls2. Let C be a public class in both declaration sections,
o1 : C an object of Cdecls1 and o2 : C an object of Cdecls2. We say #(o1, o2) holds if #(ATTR1(C)[o1/C], ATTR′

2(C)

[o2/C]) holds, where ATTRi (C)[oi/C] is obtained from ATTRi (C) by replacing
(1) C.a with oi.a for each attribute a of C.
(2) D.b with oi.a1. . . . ak.b if there exists a1, . . . , ak, b such that C.a1. . . . ak.b is an attribute expression over ATTRi (C)

and D is the type of ak .
We say that # is a many-to-one transformation if for each object o1 : C under Cdecls1 there is only one o2 : C under
Cdecls2 such that #(o1, o2).

Theorem 3 (Upwards simulation implies refinement). Cdecls1 is a refinement of Cdecls2 if there is a many-to-one
structural transformation true ! #($1, $′

2) such that for any public class name declared in both Cdecls1 and Cdecls2,
any variable x : C and any method m(x : T 1; y : T 2; z : T 3){c1} in a public class C of Cdecls1 and its corresponding
method m(x : T 1; y : T 2; z : T 3){c2} in Cdecls2,

130 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

Fig. 6. Example 4.

([[x.m(ve; re; vre)]]1; [[)1 :=)1↓{x,re,rve}]]; #()1,)′
2))

; (#()1,)′
2); [[x.m(ve; re; vre)]]2; [[)2 :=)2↓{x,re,rve}]]),

(1)

where #()1,)′
2) holds iff for each variable y and o1 ∈)1 such that ref(o1) = ref(y) there is exactly one o2 ∈)′

2 and
#(o1, o2).

Proof. Let V be a set of variables and Main = (V, c) be the main method for both Si = Cdeclsi • Main, i = 1, 2. From
the general theory in UTP [28], we only need to prove there exists a many-to-one mapping #̂ from the state space of
{)1, visibleattr1} to that of {)2, visibleattr2} such that

[[Init]]1; [[c]]1; [[)1 :=)1↓V]]; #̂ ; #̂; [[Init]]2; [[c]]2; [[)2 :=)2↓V]]. (2)

For this, we define

#̂()1,)′
2)

def=#()1,)′
2),

#̂(visibleattr1, visibleattr′2)
def= visibleattr′2 = {C.a|C ∈ pubcname2 ∧ a ∈ pub(C)}.

Because of the syntactic definition of the main method of a program, if c is a well-defined primitive command, it can
only be one of the following two cases:
(1) It is a command that only involves variables of built-in primitive types. In this case, the theorem obviously holds.
(2) It is an object creation C.new(x) for some x ∈ V and public class C.
In the case when c is an object creation, C.new(x) does not change visibleattr. We also notice both [[Init]]i set)i to be
empty. So after the initialization, #()1,)2) holds. We thus have for i = 1, 2

[[C.new(x)]]i; [[)i :=)i↓V]]
= true !

(∃ r 7∈ ref()i) · ()′
i = ∅ ∪ {〈r, C, initi (C)〉}∧

(x′ = 〈r, C〉)); [[)i :=)i↓V]]
)

= true ! ∃r 7∈ ref()i) · ()′
i =)i↓{x}!V ∪ {〈r, C, init1(C)〉}) ∧ (x′ = 〈r, C〉)

= true ! ∃r ∈ REF · (()′
i = {〈r, C, initi (C)〉}) ∧ (x′ = 〈r, C〉)).

So we have

([[C.new(x)]]1; [[)1 :=)1↓V]]; #()1,)′
2)) ⇒ ([[C.new(x)]]2; [[)2 :=)2↓V]]).

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 131

Assume that Refinement (2) holds for command c, we need to prove it holds for command c; c1. As the mapping on
visibleattr is constant, we can ignore it in the proof. Furthermore, from Lemma 1, we can equivalently take c to be
c;)′ :=)↓V. Let [[c]]i = pi ! Ri (V ∪ {)i},V′ ∪ {)′

i}) for i = 1, 2. The proof heavily use the definition of sequential
composition of designs

(p1(!) ! R1(!, !′); p2(!) ! R2(!, !′)) def= ∃sm · (p1(!) ! R1(!, sm) ∧ p2(sm) ! R2(sm, !′)).

Case 1: If c1 only involves external variables of built-in primitive types, the refinement obviously holds as it does
not change the system configuration.

Case 2: Command c is an object creation C.new(x). We have

[[c; C.new(x)]]i; [[)i :=)i↓V]]

= [[c]]i; true !

(∃ r 7∈ ref()i) · (()′
i =)i ∪ {〈r, C, initi (C)〉})∧

(x′ = 〈r, C〉)); [[)i :=)i↓V]]

)

= ∃ Vm,)mi
i ·



pi !





Ri(V ∪ {)i},Vm ∪ {)mi
i })∧

∃ r 7∈ ref()mi
i) · ((x′ = 〈r, C〉)∧

()′
i =)mi

i ↓{x}!V ∪ {〈r, C, initi (C)〉}))







 .

The induction assumption implies that for any V,)1,)2,)
m1
1 ,)m2

2 ,

p1 ! R1(V ∪ {)1},Vm ∪ {)m1
1 }) ∧ #()m1

1 ,)m2
2) ⇒ p2 ! R2(V ∪ {)2},Vm ∪ {)m2

2 }). (3)

Also the structural transformation ensures that #()m1
1 ,)m2

2) implies

#()m1
1 ↓{x}!V ∪ {obj01(C)},)m2

2 ↓{x}!V ∪ {obj02(C)}),

where obj0i (C) is the object of C with its initials state defined in Cdeclsi for i = 1, 2. This proves the refinement for
this case.

Case 3: c1 is x.m(ve; re; vre). For i = 1, 2, let

[[x.m(ve; re; vre)]]i def= pi
1 ! Ri

1(V ∪ {)i},V′ ∪ {)′
i}).

By the definition of composition, [[c; x.m(ve; re; vre)]]i equals

∃Vm,)mi
i ·

(
pi ! R(V ∪ {)i},Vm ∪ {)mi

i })∧
pi

1(Vm ∪)mi
i) ! Ri

1(Vm ∪)mi
i ,V′ ∪ {)′

i})

)

. (4)

Notice that the method call x.m(ve; re; vre) only changes the object attached to x and those variables whose reference
values are the same as x, and it may modify the objects attached to re and vre if they and their types are classes.

The structural transformation ensures that if #()m1
1 ,)m2

2) and #()n1
1 ↓V1

,)n2
2 ↓V1

) for a subset V1 of V, we then
have

#()m1
1 !)n1

1 ↓V1
,)m2

2 !)n2
2 ↓V1

), (5)

where ! replace the objects in)mi
i that are attached to the variables in V1 with those in)ni

i .

132 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

From formula 4

[[c; x.m(ve; re; vre);)1 :=)1↓V]]1; #()1,)′
2)

= ∃ Vm,)m1
1 ,)m

1 ·





p1 ! R(V ∪ {)1},Vm ∪ {)m1
1 })∧

p1
1(Vm ∪)m1

1) ! R1
1(Vm ∪)m1

1 ,V′ ∪ {)m
1 })∧

#()m
1 ,)′

2)



 .

Notice that)m
1 =)m1

1 !)m
1 ↓{x,re,vre}. Property 5 of structural transformation together with Condition 1 and the

induction assumption 3 proves the refinement for this case.
Case 4: If c1 is a command only involved in variables of built-in primitive types, the refinement obviously holds.
Case 5: If c1 is an assignment x := y of one object variable to another, the execution of)i :=)↓V after the

execution of c1 only removes from)i the object originally attached to y.
Case 6: If c1 is x := (C)y, it changes)i in the same way as in Case 4, but assign the value 〈ref(y), C〉 to x in both

programs.
Case 7: Let c1 be a conditional choice c11 ! b " c12 and b an expression of variables of built-in primitive types (and

constants). b is evaluated to true after the execution of c in S1 if and only if it is evaluated to true after the execution
of c in program S2 because of the induction assumption. This case can then be proven for each c11 and c12 separately.

Case 8: If c1 is a loop b ∗ c11, the refinement can then be proven by the induction and the properties of the weakest
fixed point. '

Theorem 4 (Downwards simulation implies refinement). Cdecls1 is a refinement of Cdecls2 if there is a one-to-many
structural transformation true ! #($2, $′

1) such that for any public class name declared in both Cdecls1 and Cdecls2,
any variable x : C and any method m(x : T 1; y : T 2; z : T 3){c1} in a public class C of Cdecls1 and its corresponding
method m(x : T 1; y : T 2; z : T 3){c2} in Cdecls2,

(#()2,)′
1); [[x.m(ve; re; vre)]]1; [[)1 :=)1↓{x,re,rve}]])

; ([[x.m(ve; re; vre)]]2; [[)2 :=)2↓{x,re,rve}]]; #()2,)′
1)).

(6)

Example 5. For the class declaration sections in Example 4, we can also define a structural transformation #2 from
Cdecls2 to Cdecls1:

true !

(
C.o = C.o′ ∧ C1.b = C2.o5.a

′
5

∧ C1.a = C2.o3.a
′
3 + C2.o4.a

′
4

)
.

It is a one-to-many transformation. With this transformation, we can check if Cdecls2 is also a refinement of Cdecls1.

In the same way that we prove Theorem 3 we can prove the following theorem.

Theorem 5. Let Cdecls1 ; Cdecls2 and Cdecls be a class declaration such that if a : C ∈ Attr(M) for some M in
Cdecls and C in Cdecls1 then C is a public class. We have

Cldecls1; Cdecl + Cdecls2; Cdecls.

The proof is similar to Theorem 3.

Remarks. A structural refinement corresponds to a consistent transformation between the corresponding UML class
diagrams, sequence diagrams and state diagrams [37]. A (upwards) structural refinement of a program under # is shown
in Fig. 7.

Theorems 3 and 4 do not appear very helpful as refinement does not directly mention refinement of private classes.
However, the theorems allow us to take a method m in a public class C as a “main method”. This method may call
methods of classes that are directly linked to C. Treating these classes as “‘public classes” with respect to C and

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 133

State2 Main2

State1'State1

State2'

Main1

Fig. 7. Commuting diagram for class refinement.

these classes together with their associated classes as a declaration section, the refinement Conditions 1 and 6 can be
established for this subdeclaration section.

In general, finding and formulating a refinement mapping # is design step. It is easier to develop a system in a
stepwise process in which each step is modest. This approach leads itself to establishing correctness in an incremental
manner.

This framework suggests that a development process should first focus on structural refinement and then carries out
further refinement of methods of classes and the main method of the program under a fixed class declaration, without
hiding the internal states. This can be done entirely within the classical theories of programming provided in UTP [28].

6. Refinement rules

We have given some refinement laws for refining commands in Section 4.6. Those laws are about command refinement
under the same class declaration sections. They can all be proven in the classical theory of programming [28].

We now present refinement rules for program structures that capture the nature of incremental development in
object-oriented programming. Most of the laws are intuitively understandable. Their proof involves finding structural
transformations and then using Theorems 3 and 4 (refinement by upwards or downwards simulations). The structural
transformations are quite obvious for the laws presented and we omit most of the proofs.

We first introduce some notations. We use N[supclass, pri, prot, pub, op] to denote a well-formed class declaration
that declares the class N that has supclass as its direct superclass; pri, prot and pub as its sets of private, protected
and public attributes; and op as its set of methods. supclass is always of either a class name M, when M is the direct
superclass of N, or ∅ when N has no superclass. We may only refer to some, or even none of M, pri, prot, pub, op when
we talk about a class declaration. For example, N denotes a class declaration for N, and N[pri] a class declaration that
declares the class N that has pri as its private attributes.

Law 4. The order of the class declarations in a declaration section is not essential:

N1; . . . ; Nn = Ni1; . . . ; Nin ,

where Ni is a class declaration and i1, . . . , in is a permutation of {1, . . . , n}.

A law like this may look utterly trivial after we formalize the structural variables $, but it is not so obvious that a
semantic definition of a class declaration to guarantee this law. For example, if the precondition of the class declaration
requires that the direct superclass be declared before this class declaration, this law would not hold.

The next law says that more services may become available after adding a class definition.

Law 5. If a class name N is not in Cdecls, but M is in Cdecls

Cdecls + N[M, pri, prot, pub, op]; Cdecls

provided the right-hand side is well-defined.

The structural transformation only extends the set cname. The consequence is only that a command c in the main
method which is not well-defined in the original declaration becomes well-formed in the extended declaration.

The next law states that the introduction of a private attribute has no effect.

134 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

Law 6. If neither N nor any of its superclasses and subclasses in Cdecls has x as an attribute

N[pri]; Cdecls ≡ N[pri ∪ {Tx = d}]; Cdecls

provided d lies in T and either T is a primitive type, or T is declared in Cdecls or T = N.

Although adding an attribute has no effect, it will allow more well-defined classes and methods to be introduced
using other laws.

Law 7. Changing a private attribute into a protected one may support more services.

N[pri ∪ {T x = d}, prot]; Cdecls + N[pri, prot ∪ {Tx = d}]; Cdecls.

This refinement becomes equivalence if both sides are well-defined. This condition is required as we do not allow a
protected attribute of a class to be redeclared in its subclass.

Similarly, changing a protected attribute to a public attribute refines the declaration too. This together with the above
two laws allow us to add new attributes as long as the well-definedness is not violated.

Law 8. Adding a new method can refine a declaration. If m is not defined in N, let m(paras){c} be a method with
distinct parameters paras and a command c. Then

N[op]; Cdecls + N[op ∪ {m(paras){c}}]; Cdecls.

The structural transformation only extends op(N) in the new declaration section, and does not change the dynamic
state variables.

Law 9. We can refine a method. If c1 + c2,

N[op ∪ {m(paras){c1}}]; Cdecls + N[op ∪ {m(paras){c2}}]; Cdecls.

The refinement of the command is done under the same dynamic variables.

Law 10. Inheritance introduces refinement. If none of the attributes of M is defined in N or any superclass of N in
Cdecls,

M[∅, pri, prot, pub, op]; Cdecls + M[N, pri, prot, pub, op]; Cdecls

provided the right-hand side is well-formed.

Introducing an inheritance in this way in fact enlarges the set of attributes of N (and those of the subclasses of N). A
structural transformation from the new declaration section just projects the enlarged set attribute back to the original
attributes.

Law 11. We can introduce a superclass. Let

C1 = M[∅, pri ∪ A, prot, pub, op],
C2 = M[{N}, pri, prot, pub, op].

Assume N is not declared in Cdecls,

C1; Cdecls + C2; N[∅,∅, A,∅,∅]; Cdecls.

This can be in fact derived from adding a class and then introducing inheritance. After introducing a subclass this
way, we can continue to apply other laws to introduce more attributes and methods.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 135

Law 12. We can move some attributes of a class to its superclass. If all the subclasses of N but M do not have attributes
in A, then

N[prot1]; M[{N}, prot ∪ A]; Cdecls + N[prot1 ∪ A]; M[{N}, prot]; Cdecls.

This only enlarges the set of attributes of N. This law and the law for promoting an attribute to a protected attribute
allow us to move a private attribute to the superclass too. Repeated application of this law allows us to move the common
attributes of the direct subclasses of a class to the class itself.

Law 13. If N has M1, . . . , Mk as its direct subclasses,

N[prot]; M1[proti ∪ A]; . . . ; Mk[protk ∪ A]; Cdecls + N[prot ∪ A]; M1[prot1]; . . . ; Mk[protk]; Cdecls.

Law 14. We copy (but not remove) a method of a class to its superclass. Let m(paras){c} be a method of M, but not a
method of its superclass N:

N[op]; M[{N}, op1 ∪ {m(paras){c}}]; Cdecls + N[op ∪ {m(paras){c}}]; M[{N}, op1 ∪ {m(paras){c}}]; Cdecls.

Copying a method subclass to its direct of a class does not change any dynamic variable.

Law 15. Let m(paras){c} be a method of N, then

N[op]; M[{N}, op1]; Cdecls + N[op]; M[{N}, op1 ∪ {m(paras){c}}]; Cdecls.

We can remove a redundant method from a subclass.

Law 16. Assume class N is the direct superclass of M, m(paras){c} ∈ op ∩ op1, and c only involves in the protected
attributes of N,

N[op]; M[{N}, op1]; Cdecls + N[op]; M[{N}, {m(paras){c}}!op1]; Cdecls.

Similarly, we can remove any unused private attributes.

Law 17. If (Tx) is a private attribute of N[pri] that is not used in any command of N,

N[pri]; Cdecls + N[{Tx = d}!pri]; Cdecls.

We can also remove any unused protected attributes.

Law 18. If (Tx = d) is a protected attribute of N[prot] that is not used in any command of N and any subclass of N,

N[prot]; Cdecls + N[{Tx = d}!prot]; Cdecls.

Law 19. We can change a private class into a public class.

private N; Cdecls + N; Cdecls.

A class is allowed to delegate some tasks to its associated classes. 2

Law 20 (Expert pattern for responsibility assignment). Suppose M[op1] is declared in Cdecls, where Csecls has
(1) an attribute x,
(2) a method m(){c1(x)} ∈ op1 which may manipulate attribute x through execution of command c1.

2 This law is very useful in object-oriented system designs [35].

136 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

o: M

N N

o:M

M

x

M

x

n {c[c1 (o.x)]}

m {c1 (x)} m {c1 (x)}

n {c [o.m]}

Fig. 8. Object-oriented functional decomposition.

Assume that (Mo) is an attribute of N, then

N[op ∪ {n(paras){c[c̃1]}}]; Cdecls + N[op ∪ {n(paras){c[o.m()]}}]; Cdecls.

Here, c1 is obtained from c̃1 by replacing o.x with x, that is, c1 = c̃1[x/o.x]. Assume that c̃1 does not refer to any
attribute of N. While c[c̃1] denotes that c̃1 occurs as part of command c, and c[o.m] denotes that the command obtained
from c[c̃1] by substituting o.m for c̃1.

Proof. Assume that M and N are public classes. It is easy to see there is a structural transformation that is identical
except for op(N). The dynamic state variables are the same in both declaration sections. For the left-hand side declaration
section to be well-defined, x has to be a public attribute of M.

Without losing any generality, assume that in the left hand side declaration section,

[[c1(o.x)]]2 = p(y1, y3, o.x,)) ! R(y1, y3, o.x, y′
2, y

′
3, o.x′,)′) ∧ (y′

1 = y1),

where y1 does not appear in the left side of an assignment, the initial value of y2 is not relevant in the execution of
c1 and y3 is a general variable. We assume that they are not attributes of M. In this case y1, y2 and y3 are the actual
parameters of o.M() in the declaration section on left-hand side of the law. According to the semantics of a method
call, we calculate the design for [[o.m()]]2 in the right-hand side of the law.

[[o.m()]]1 = var M self = o, T1f1 = y1, T2f2, T3f3 = y3; Set(M);
p(f1; f2; f3, self.x,)) ! R(f1, f3, self.x, f ′

1, f
′
2, f

′
3, self.x′,)′);

y2 := f2; y3 := f3; end self, f1; f2; f3; Reset

⇒ p(y1; y3, o.x,)) ! R(y1, y3, o.x, y′
2, y

′
3, o.x′,)′) ∧ (y′

1 = y1)

= [[c1(o.x)]]2.

This implies that method n() in class N satisfies the condition of Theorem 3 for the structural transformation. In case
one or both of N and M are private, the refinement law holds because of Theorem 2. '

This law is illustrated by the UML class diagram in Fig. 8. It will become an equation if x is a public attribute of M.
To understand this law, let us consider the simple example from the aforementioned bank system in Examples 1 and 2.

Consider the method getBalance of class Bank. Initially, we might have the following design for it:

getBalance(Int aID, Int res,∅)
def=

∃ a ∈)(Account) · a.aNo = aID ! ∃a ∈)(Account) · a.aNo = aID ⇒ res′ = a.balance.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 137

Note that it requires the attributes of class Account to be visible (public) to other classes (like Bank). Applying Law 20
to it, we can get the following design:

getBalance(Int aID,Int res,∅)
def=

∃ a ∈)(Account) · a.aNo = aID ! ∃a ∈)(Account) · a.aNo = aID ⇒ a.getBalance(∅; res; ∅).

The refinement delegates the task of balance lookup to the Account class.
It is important to note that method invocation, or in other words, object interaction takes time. Therefore, this object-

oriented refinement (and the one described in Law 22) usually exchanges efficiency for ease of reuse and maintainability,
and data encapsulation.

After functionalities are delegated to associated classes, data encapsulation can be applied to increase security and
maintainability. The visibility of an attribute can be changed from public to protected, or from protected to private
under certain circumstances.

Law 21 (Data encapsulation). Suppose M[pri, prot, pub], and (T1a1 = d1) ∈ pub, (T2a2 = d2) ∈ prot.
(1) If no operations of other classes have expressions of the form le.a1, except for those of subclasses of M, we have

M[pri, prot, pub]; Cdecls + M[pri, prot ∪ {T1a1 = d1}, {T1a1 = d1}!pub]; Cdecls.

(2) If no operations of any other classes have expressions of the form le.a2, we have

M[pri, prot, pub]; Cdecls + M[pri ∪ {T2a2 = d2}, {T2a2 = d2}!prot, pub]; Cdecls.

The structural transformation only changes the different kind of attributes, it may thus affect visibility of attributes,
and thus the well-definedness of commands. However, this will not happen because of the side conditions.

After applying Law 20 exhaustively to method getBalance, and applying Law 21 to the class diagram on the right-
hand side of Fig. 8, we achieve the encapsulation of the attribute balance of the class Account. The attribute aNo can
be encapsulated in a similar way.

Another principle of object-oriented design is to make classes simple and highly cohesive. This means that the
responsibilities (or functionalities) of a class, i.e. its methods, should be strongly related and focused. We therefore
often need to decompose a complex class into a number of associated classes, so that the system will be
• easy to comprehend,
• easy to reuse,
• easy to maintain,
• less delicate and less effected by changes.
We capture the High Cohesion design pattern [35] by the following refinement rule.

Law 22 (High cohesion pattern). Assume M[pri, op] is a well-formed class declaration, pri = {x, y} are (or are lists
of) attributes of M , m1(){c1(x)} ∈ op only contains attribute x, method m2(){c2[m1]} ∈ op can only change x by
calling m1 (or it does not have to change it at all). Then
(1) M; Cdecls + M[prinew, opnew]; M1[pri1, op1]; M2[pri2, op2]; Cdecls, where

• prinew = {M1o1, M2o2},
• opnew = {m1(){o1.m1}, m2(){o2.m2}},
• pri1 = {x}, op1 = {m1(){c1(x)}},
• pri2 = {y, M1o1}, op2 = {m2(){c2[o1.m1()]}}

such that ∀o : M · (o.o1 = o.o2.o1) is an invariant of M. This invariant has to be established by the constructors
of these three classes.

This refinement is illustrated by the diagram in Fig. 9.
(2) M; Cdecls + M[prinew, opnew]; M1[pri1, op1]; M2[pri2, op2]; Cdecls, where

• prinew = {M2o2},
• opnew = {m1(){o1.m1()}, m2(){o2.m2()}},
• pri1 = {x}, op1 = {m1(){c(x)}},

138 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

m2 {o2 .m2}
m1 {o1 .m1}

M

M1 o1

M2 o2

 M2

o : M (o . o1 = o . o2 . o1) .

m2 {c2 [m1]}

m1 {c1 (x)}

y

x

M

M1 y

m2 {c2 . [o1. m1]}

x
m1 {c1 (x)}

M1 o1

Fig. 9. Class decomposition (1).

 M2

m2 {o2 .m2}

M1 y

M

M2 o2

m1 {o1 .m1}

m2 {c2 [m1]}
m1 {c1 (x)}

x
m1{c1 (x)}

y
x

M

m2 {c2 [o1. m1]}
m1{o1 . m1}

M1 o1

Fig. 10. Class decomposition (2).

• pri2 = {y, M1o1},
• op2 = {m1(){o1.m1()}, m2(){c2[o1.m1()]}}.

This refinement is illustrated by the diagram in Fig. 10.

The structural transformations for the two cases have been nearly given in the law. The proofs of the two refinements
in the law are similar to that for the expert pattern. First, take M to be a public class and then use Theorem 2.

Notice that the first refinement in Law 22 requires that M be coupled with both M1 and M2; and in the second
refinement M is only coupled with M2, but more interaction between M2 and M1 is needed than in the first refinement.
We believe that the above three laws, together with the other simple laws for incremental programming effectively
support the use-case driven and iterative RUP development process [35]. The use of the patterns for responsibility
assignment in object-oriented software development is clearly demonstrated in Larman’s book [35].

For each of the laws, except for Law 9, let LHS and RHS denote the declarations on the left- and right-hand sides,
respectively. For any main program Main, each refinement law becomes an equational law: LHS • Main ≡ RHS • Main,
provided LHS • Main is well-defined.

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 139

7. Conclusions

We have shown how Hoare and He’s design calculus [28] can be used to define an object-oriented language.
A program or a command is represented as a predicate called a design, and the refinement relation between designs is
defined as logic implication. Our model reflects most of the features of object-oriented designs [11]. For example, the
model shows that inheritance with attribute hiding and method overriding makes system analysis difficult, while method
invocation on an object may change external states. The good news is that we have been able to impose constraints on
system development so that the “bad” features are not used.

7.1. Related work

Formal techniques for object-orientation have been extensively studied [3,56,45,12,1,8]. The work there concerns
programming languages. A large amount of work on operational semantics [56,12] supports methods of simulation
and model checking. Our calculus is based on a relational model that supports state-based reasoning and stepwise
(or incremental) refinement in system development.

There are a number of recent articles on Hoare logics for object-oriented programming (see, e.g. [46,55,30,47,36,13]).
The normal form of a program in our article is similarly to that of [13,46]. However, one major difference of our work
is that we also provide a formal characterization and refinement of the contextual (or structural) features, i.e. the
declaration section, of an object program. This is motivated by our work on the formalization of UML models [40,41].
This characterization has been proven to be very useful in defining semantics for integrated specification languages in
general.

Class or object refinements are studied in [5,36]. A refinement object-oriented language (ROOL) and some general
notions of refinement are defined in [13] using predicate transformers without treating reference types. The work in
[10], also without treatment of reference types, describes a set of algebraic laws for ROOL, that can be used to derive
refactorings [18,19]. Our initial version of rCOS (called OOL) with a relational semantics and the idea object-oriented
refinement were presented in [24]. OOL does not have references types or nested variable declarations. In this article,
we have revised OOL and its semantics. We have also provided refinement laws that reflect the characteristic aspects,
functionality delegation, data encapsulation and class decomposition for high cohesion, of object-oriented design and
the ideas of design patterns [21,35]. We also take a weak semantic approach meaning that when the precondition of a
contract is not satisfied, the program will behave as chaos; any program modification made, such as adding exception
handling, is a refinement. We also describe static well-formedness conditions in the precondition so that any correction
of any static inconsistency in a program, such as static-type mismatching, missing variables, missing methods, etc. can
be treated as refinements too. This allows us to treat refactoring [18] as refinement and to combine it with behavioural
refinement. This combination is important for composing different UML models and reasoning about their consistency
[40,41,37].

Our work on formal support for object-oriented design using UML [40,41,37] has provided us with the insight of
functional decomposition in the object-oriented setting and its relation with data encapsulation and class decomposition.
The main ideas of those article are summarized in the following subsection.

7.2. Support UML-like software development

Consider the incremental and iterative rational unified process (RUP) [33] and the use-case driven approach [31].
System requirements capture and analysis starts by identifying domain (or business) services and the domain structure
that consists of the domain classes (or concepts) and their associations. Business services can be described by a UML
use-case model and the domain structure is represented as a UML class diagram. The UML class diagram can be
formally specified as a rCOS class declaration section, and each use case is declared as a set of methods of a use-case
controller class. Then the application program is specified as a main method that uses the services, i.e. calls to the
methods, provided in the use-case controller classes. Therefore, the normal requirement specification is of the form

(CM; Controller1; · · · ; Controllern) • Main,

where CM is a sequence of class declarations obtained from the class diagram (an association is also declared
as a class). Each Controlleri is a use-case controller class (following the facade controller pattern [21,35]) that

140 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

contains the functional specifications (in terms of designs in rCOS) and formalizes the system sequence diagram
of the corresponding use case. The consistency of the class diagram and the use cases (their sequence diagrams and
functional specifications) has to ensure that the class diagram fully supports the use cases. Formally, this means that the
declaration section (CM; Controller1; · · · ; Controllern) of the program is well-formed and any invocation of a method
in a use-case controller in P does not end with chaos. In case of any inconsistency, we can modify the class diagram
or the use cases (or both) according to the refinement laws that allow us to change the UML model consistently.

We design each use case by applying Law 20 to delegate its partial responsibilities to other classes in the class
diagram according to what information a class maintains or knows via its associations with other classes. In the mean
time, we can decompose complex classes according to Law 22 and encapsulate data according to Law 21. Obviously,
before applying Law 20 or 22, we have to add classes, attributes and methods. These design or refinement activities
lead to incremental creation of the sequence diagrams and design class diagram of the system, and the refined laws will
ensure that the design class diagram refines the requirement class diagram. For details about formalization of UML
models of requirements and designs in rCOS, we refer the reader to [40,41,37]. For detailed, but informal, application
of the design patterns that have been formalized as refinement laws in this article, please see Larman’s book [35].

rCOS captures the commonality and difference between structured functional development and object-oriented
development. In the traditional structured approach, a software project starts with the identification of data and functions.
A specification of a procedure defines how the data are manipulated in terms of precondition and postcondition:
{Pre}F {Post}. The design is to decompose the functions step by step into subfunctions by applying the decomposition
rule

{Pre}F1{Mid}, {Mid}F2{Post}
F + F1; F2

.

The problem with this approach is that it is difficult to determine a suitable Mid, among many possibilities. In the
object-oriented approach that we propose here, we use the expert pattern (Law 20) and high cohesion pattern (Law
22) to decompose a use case according to the system structure modelled by the class diagram. As in the functional
approach, the decomposition has to preserve the functional specification of the use case, i.e. the pre- and postcondition
relations. However, the decomposition is more pragmatic as its is supported by the known structure. In the structured
approach, the design of the system has to be constructed by decomposition too.

The research of formal support for UML modelling is currently very active [7,22,48]. However, there is a large body
of work in formalizing UML and providing tool support for UML focuses on models for a particular view (e.g. a class
models, statecharts, and sequence diagrams), and the translation of them into an existing formal formalism (e.g. Z,
VDM, B, and CSP). Very little work has been conducted as to how UML models can be refined consistently. In contrast,
we are concerned with combinations of different UML models, the most imprecise part of UML. Our methodology is
directed towards improved support for requirement analysis and transition from requirements to design models in RUP.
Our choice of a Java-like syntax for the specification language is a pragmatic solution to the problems of representing
name spaces and (the consequences of) inheritance in a notation such as CSP.

7.3. Limitation and future work

rCOS can be extended to deal with features of communication, interaction, real-time and resources. If we add variables
for traces, refusals and divergence into the alphabet, the different kinds of semantics of communicating processes can be
defined as designs [28]. By introducing clock variables in the alphabet [32,28,57,52], we can define real-time programs
as designs and further extend our approach to support other aspects of object-oriented programming. Alternatively, one
can also use temporal logic, such as [2], for the specification and verification of multi-threading Java-like programs.
However, we would like to deal with concurrency at a higher level [25,23,38].

In [11], Broy argued that the property of object identities is too low level and implementation oriented. The use of
references does cause side-effects, making the semantics more complex. A preliminary version of the model without
references can be found in [24]. This simplification is not significant. The complexity mainly affects reasoning about
low-level designs and implementations. With our approach, we can describe change of system state in terms of what
objects are created or deleted, what modifications are made to an object and what links between objects are formed
or broken. Low-level features such as method overriding and attribute hiding are only useful to program around the
requirement and design defects detected at the coding stage or even later when one tries to reuse a class with a similar

H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 – 142 141

template in a program that the class was not originally designed. These features cause problems in programming
verification and the smooth application of the notion of program refinements.

Future work includes the study of the completeness of the refinement calculus and the applications of the method to
more realistic case studies. We will also extend this work to deal with component systems [38,25,23]. Further challenges
for formal object-oriented methods include the formal treatment of patterns [21] in general. We are also interested in
studying the difference and relationship between our model and separation logic [49,14], that can be used for extending
the calculus to multi-thread programming.

Acknowledgements

We would like to thank the referees for their thorough reviews. The detailed and constructive comments have helped
us to bring the paper to the current form. We thank Shengchao Qin at National University of Singapore for his comments
and LaTex improvement on an earlier version of the paper. We also thank Dines Bjorner at Technical University of
Denmark, Anders Ravn from Aalborg University of Denmark and Uday Reddy from Birmingham University of the
UK for their helpful comments and discussions at and after the seminars on parts of the works that the third author
gave when he visited them. Our UNU-IIST fellows Xin Chen, Jing Liu, Xiaojian Liu, Quan Long, Leila Silva, Bhim
Upadhyaya, Jing Yang and Liang Zhao also read and gave useful comments on earlier versions of the article. The third
author would also like to thank the students at the University of Leicester and those participants of the UNU-IIST
training schools and courses who took his course on Software Engineering and System Development for their feedback
on the understanding of the use-case driven, incremental and iterative object-oriented development and the design
patterns.

References

[1] M. Abadi, R. Leino, A logic of object-oriented programs, in: M. Bidoit, M. Dauchet (Eds.), TAPSOFT ’97: Theory and Practice of Software
Development Seventh International Joint Conference, Springer, Berlin, 1997, pp. 682–696.

[2] E. Abraham-Mumm, F.S. de Boer, W.P. de Roever, M. Steffen, Verification for Java’s reentrant multithreading concept, Foundations of Software
Science and Computation Structures, Lecture Notes in Computer Science, Vol. 2303, Springer, Berlin, 2002, pp. 5–20.

[3] P. America, Designing an object-oriented programming language with behavioural subtyping. in: J.W. de Bakker, W.P. de Roever, G. Rozenberg
(Eds.), REX Workshop, Lecture Notes in Computer Science, Vol. 489, Springer, 1991, pp. 60–90.

[4] P. America, F. de Boer, Reasoning about dynamically evolving process structures, Formal Aspects Comput. 6 (3) (1994) 269–316.
[5] R. Back, A. Mikhajlova, J. von Wright, Class refinement as semantics of correct object substitutability, Formal Aspects Comput. 2 (2000)

18–40.
[6] R. Back, J. vonWright, Refinement Calculus, Springer, Berlin, 1998.
[7] R.J.R. Back, L. Petre, I.P. Paltor, Formalizing UML use cases in the refinement calculus, in: Proc. UML’99, Springer, Berlin, 1999.
[8] M.M. Bonsangue, J.N. Kok, K. Sere, An approach to object-orientation in action systems, in: J. Jeuring (Ed.), Mathematics of Program

Construction, Lecture Notes in Computer Science, Vol. 1422, Springer, Berlin, 1998, pp. 68–95.
[9] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modelling Language User Guide, Addison-Wesley, Berlin, MA, 1999.

[10] P. Borba, A. Sampaio, M. Cornélio, A refinment algebra for object-oriented programming, in: L. cardelli (Ed.), Proc. ECOOP03, Lecture Notes
in Computer Science, Vol. 2743, Springer, Berlin, 2003, pp. 457–482.

[11] M. Broy, Object-oriented programming and software development—a critical assessment, in: A. McIver, C. Morgan (Eds.), Programming
Methodology, Springer, Berlin, 2003.

[12] K. Bruce, J. Grabtre, G. Kanapathy, An operational semantics for TOOPLE: a statically-typed object-oriented programming language, in:
S. Brooks et al. (Ed.), Mathematical Foundations of Programming Semantics, Lecture Notes in Computer Science, Vol. 802, Springer, Berlin,
1994, pp. 603–626.

[13] A. Cavalcanti, D. Naumann, A weakest precondition semantics for an object-oriented language of refinement, Lecture Notes in Computer
Science, Vol. 1709, Springer, Berlin, 1999, pp. 1439–1460.

[14] Y. Chen, J. Sanders, Compositional reasoning for pointer structures, in: Eighth Internat. Conf. on Mathematics of Program Construction
(MPC’06), Lecture Notes in Computer Science, Vol. 4014, Springer, Berlin, 2006, pp. 115–139.

[15] D. Coleman, et al., Object-Oriented Development: the FUSION Method, Prentice-Hall, Englewood cliffs, NJ, 1994.
[16] S. Cook, J. Daniels, Designing Object Systems: Object-Oriented Modelling with Syntropy, Prentice-Hall, Englewood Cliffs, NJ, 1994.
[17] E. Dürr, E.M. Dusink, The role of V DM++ in the development of a real-time tracking and tracing system, in: J. Woodcock, P. Larsen (Eds.),

Proc. of FME’93, Lecture Notes in Computer Science, Vol. 670, Springer, Berlin, 1993.
[18] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of Existing Code, Addison-Wesley, Reading, MA,

1999.
[19] M. Fowler, Refectoring Improving the Design of Existing Code, Addison-Wesley, Reading, MA, 2000.
[20] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,

MA, 1994.

142 H. Jifeng et al. / Theoretical Computer Science 365 (2006) 109 –142

[21] E. Gamma, et al., Design Patterns, Addison-Wesley, Reading, MA, 1995.
[22] D. Harel, B. Rumpe, Modeling languages: syntax, semantics and all that stuff—part I: the basic stuff, Technical Report MCS00-16,

The Weizmann Institute of Science, Israel, September 2000.
[23] J. He, X. Li, Z. Liu, Component-based software engineering, in: Proc. Second Internat. Colloq. on Theoretical Aspects of Computing (ICTAC05),

Lecture Notes in Computer Science, Vol. 3722, Springer, Berlin, 2005, pp. 70–95.
[24] J. He, Z. Liu, X. Li, Towards a refinement calculus for object-oriented systems (invited talk), in: Proc. ICCI02, Alberta, Canada, IEEE Computer

Society, Silverspring, MD, 2002.
[25] J. He, Z. Liu, X. Li, A theories of reactive contracts, Electronic Notes of Theoretical Computer Science, Vol. 160, 2006, pp. 173–195.
[26] J. He, Z. Liu, X. Li, S. Qin, A relational model of object oriented programs, in: Proc. of the Second ASIAN Symp. on Programming Languages

and Systems (APLAS04), Lecture Notes in Computer Science, Vol. 3302, Taiwan, March 2004, Springer, Berlin, pp. 415–436.
[27] C.A.R. Hoare, Laws for programming, Comm. ACM 30 (1987) 672–686.
[28] C.A.R. Hoare, J. He, Unifying Theories of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1998.
[29] I. Houston, Formal specification of the OMG core object model, Technical Report, IMB, UK, Hursely Park, 1994.
[30] M. Huisman, B. Jacobs, Java program verification via a Hoare logic with abrupt termination, in: T. Maibaum (Ed.), FASE 2000, Lecture Notes

in Computer Science, Vol. 1783, Springer, Berlin, 2000, pp. 284–303.
[31] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development Process, Addison-Wesley, Reading, MA, 1999.
[32] N. Jin, J. He, Resource models and pre-compiler specification for hardware/software, in: J.R. Cuellar, Z. Liu (Eds.), Proc. Second Internat.

Conf. on Software Engineering and Formal Methods SEFM04, Beijing, China, IEEE Computer Society, Sliverspring, MD, 2004, pp. 28–30.
[33] P. Kruchten, The Rational Unified Process—An Introduction, Second ed., Addison-Wesly, Reading, MA, 2000.
[34] K. Lano, H. Haughton, Object-oriented specification case studies, Prentice-Hall, New York, 1994.
[35] C. Larman, Applying UML and Patterns, Prentice-Hall International, Englewood Cliffs, NJ, 2001.
[36] K.R.M. Leino, Recursive object types in a logic of object-oriented programming, Lecture Notes in Computer Science, Vol. 1381, Springer,

Berlin, 1998.
[37] X. Li, Z. Liu, J. He, Q. Long, Generating prototypes from a UML model of requirements, in: Internat. Conf. on Distributed Computing and

Internet Technology (ICDIT2004), Lecture Notes in Computer Science, Vol. 3347, Bhubaneswar, India, Springer, Berlin, 2004.
[38] Z. Liu, J. He, X. Li, Contract-oriented development of component systems, in: Proc. of IFIP WCC-TCS2004, Toulouse, France, Kluwer

Academic Publishers, Dordrecht, 2004, pp. 349–366.
[39] Z. Liu, J. He, X. Li, rCOS: refinement of component and object systems, in: Proc. Third Internat. Symp. on Formal Methods for Components

and Objects (FMCO04), Lecture Notes in Computer Science, Vol. 3657, Springer, Berlin, 2005, pp. 222–250.
[40] Z. Liu, J. He, X. Li, Y. Chen, A relational model for formal requirements analysis in UML, in: J.S. Dong, J. Woodcock (Eds.), Formal Methods

and Software Engineering, ICFEM03, Lecture Notes in Computer Science, Vol. 2885, Springer, Berlin, 2003, pp. 641–664.
[41] Z. Liu, J. He, X. Li, J. Liu, Unifying views of UML, Electronic Notes Theoret. Comput. Sci. (ENTCS) 101 (2004) 95–127.
[42] B. Meyer, From structured programming to object-oriented design: the road to Eiffel, Structured Programming 10 (1) (1989) 19–39.
[43] A. Mikhajlova, E. Sekerinski, Class refinement and interface refinement in object-orient programs, in: Proc of FME’97, Lecture Notes in

Computer Science, Springer, Berlin, 1997.
[44] C.C. Morgan, Programming from Specifications, Second ed., Prentice-Hall, Englewood Cliffs, NJ, 1994.
[45] D. Naumann, Predicate transformer semantics of an Oberon-like language, in: E.-R. Olerog (Ed.), Proc. of PROCOMET’94, North-Holland,

Amsterdam, 1994.
[46] C. Pierik, F.S. de Boer. A syntax-directed hoare logic for object-oriented programming concepts, Technical Report UU-CS-2003-010, Institute

of Information and Computing Science, Utrecht University, 2003.
[47] A. Poetzsch-Heffter, P. Muller, A programming logic for sequential Java, in: S.D. Swierstra (Ed.), Proc. Programming Languages and Systems

(ESOP’99), Lecture Notes in Computer Science, Vol. 1576, Springer, Berlin, 1999, pp. 162–176.
[48] G. Reggio, et al., Towards a rigorous semantics of UML supporting its multiview approach, in: H. Hussmann (Ed.), Proc. FASE 2001, Lecture

Notes in Computer Science, Vol. 2029, Springer, Berlin, 2001.
[49] J. Reynolds, Separation logic: a logic for a shared mutable data structure, in: Proc. of IEEE Symp. Logic in Computer Science (LICS’02), IEEE

Computer Society, Sliverspring, MD, 2002.
[50] D.B. Roberts, Practical Analysis for Refactoring, Ph.D. Thesis, University of Illinois, Urbana Champain, 1999.
[51] E. Sekerinski, A type-theoretical basis for an object-oriented refinement calculus, in: Proc. of Formal Methods and Object Technology, Springer,

Berlin, 1996.
[52] A. Sherif, J. He, A. Cavalcanti, A. Sampaio, A framework for specification and validation of real-time systems using Circus actions, in: Proc.

First Internat. Colloq. on Theoretical Aspects of Computing (ICTAC04), Lecture Notes in Computer Science, Vol. 3407, Springer, Berlin, 2005,
pp. 478–494.

[53] G. Smith, The Object-Z Specification Language, Kluwer Academic Publishers, Dordrecht, 2000.
[54] L.A. Tokuda, Evolving Object-Oriented Designs with Refactoring, Ph.D. Thesis, University of Texas Austin, 1999.
[55] D. von Oheimb, Hoare logic for Java in Isabelle/HOL, Concurrency Comput: Practice Experience 13 (13) (2001) 1173–1214.
[56] D. Walker, "-calculus semantics of object-oriented programming languages, in: Proc. TACAS’91, Lecture Notes in Computer Science,

Vol. 526, Springer, Berlin, 1991, pp. 532–547.
[57] J.C.P. Woodcock, A.L.C. Cavalcanti, A semantics of Circus, in: ZB 2002, Lecture Notes in Computer Science, Vol. 2272, Springer, Berlin,

2002.
[58] J. Yang, Q. Long, Z. Liu, X. Li, A predicative semantic model for integrating UML models, in: Proc. First Internat. Colloq. on Theoretical

Aspects of Computing (ICTAC04), Lecture Notes in Computer Science, Vol. 3407, Springer, Berlin, 2005, pp. 170–186.

