
A Lightweight Taxonomy to Characterize Component-Based Systems

Holger M. Kienle and Hausi A. Müller
University of Victoria, Canada

hkienle@acm.org and hausi@cs.uvic.ca

Abstract

In this paper we propose a taxonomy to characterize
component-based systems. The criteria of our taxonomy
have been selected as a result of constructing a number
of component-based software engineering tools within the
Adoption-Centric Software Engineering project at the Uni-
versity of Victoria. We have applied the taxonomy in our
work to characterize the resulting tools and to define the de-
sign space of our project’s proposed tool-building method-
ology. Our taxonomy strives to capture the most important
properties of component-based systems, resulting in a tax-
onomy that is both course-grained and lightweight. We be-
lieve that it is useful for other researchers in a number of
ways, for instance, for component selection and to reason
about certain quality attributes of components.

1. Introduction

In this paper we propose a taxonomy to characterize
component-based systems. Such taxonomies are useful in
a number of ways. For example, they enable a structured
comparison of components that can be used as input for
component selection. Taxonomies can also identify char-
acteristics that impact the system’s requirements and de-
sign, as well as the development process. A taxonomy
can help to reason about quality attributes of certain types
of components and component-based systems. For exam-
ple, using the criteria defined in our taxonomy one might
look at testability of components and conclude that the fol-
low kinds of distribution forms are increasingly difficult to
test: white-box, glass-box, and black-box. Similarly, one
might conclude that the following types of systems are in-
creasingly difficult to maintain: single-component, homo-
geneous multiple-component, and heterogeneous multiple-
component.

The criteria of our taxonomy have been selected as a re-
sult of constructing a number of component-based systems.
These systems have been developed within the Adoption-
Centric Software Engineering (ACSE) project at the Uni-

versity of Victoria (www.acse.cs.uvic.ca) [40] [41].
ACSE explores tool-building approaches to make software
engineering tools more adoption-friendly. Its main assump-
tion is that new tools will be adopted more effectively, if
they are compatible with both existing users and existing
tools. Research tools are lacking in this respect because they
are often built from scratch with limited resources and ex-
pertise, resulting in idiosyncratic, stand-alone tools. ACSE
proposes to increase adoptability by leveraging off-the-shelf
(OTS) components and products that are popular with tar-
geted users.

Following the ACSE methodology, about seven soft-
ware engineering tools with diverse functionalities have
been built over a period of roughly five years (2001–2005).
Most of these tools are implemented via programmatic
customization of a single OTS product. Specifically, we
have implemented (graph) visualizers and editors using Mi-
crosoft PowerPoint, Excel, and Visio [67] [32] [30] as well
as Scalable Vector Graphics [33]; a metrics visualization
tool using Microsoft Visio [68]; reverse engineering envi-
ronments using Lotus Notes [35] and Adobe GoLive [24];
and a Web site fact extractor using IBM Websphere Appli-
cation Developer [31].

We have found our taxonomy to be effective in suc-
cinctly describing important properties of the components
that we have selected for tool-building, and the properties
of the resulting tools. Furthermore, the taxonomy can be
seen as characterizing the design space. The design space
for components and component-based systems is large, hav-
ing many dimensions. The taxonomy has the purpose to fo-
cus and structure this design space. The introduced criteria
(e.g., origin) are the chosen dimensions in the design space.
The criteria’s characteristics (e.g., internal vs. external ori-
gin) define the (discrete) values within the design space. In
our project, the taxonomy has been used to define the subset
of the design space that is covered by ACSE’s component-
based tool-building methodology [29].

Rather than striving for an all-inclusive taxonomy, our
taxonomy’s goal is to concentrate on the criteria that have
a significant impact on tool development. Even though the
taxonomy’s criteria have been selected based on our own

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

Attribute Possible values

user interface command-line interface, graphical interface
data interface textual I/O, specific file I/O, database I/O
program interface textual composition, functional composition, modular composition,

object-oriented composition, subsystem composition, object model
composition, specific platform composition, open platform composition

component platform hardware, operating system, programming system, li-
braries/frameworks, programming language

Table 1. Summary of Sametinger’s reusable software components taxonomy [47]

Category Attribute Possible values

source origin in-house, existing external, externally developed, spe-
cial version of commercial, independent commercial

cost and property acquisition, license, free
customization required modification minimal, parameterization, customization, internal re-

vision, extensive rework
possible modification none or minimal, parameterization, customization, pro-

gramming, source code
interface none, documentation, API, object-oriented interface,

contract with protocol
bundle packaging source code, static library, dynamic library, binary com-

ponent, stand-alone program
delivered non delivered, partly, totally
size small, medium, large, huge

role functionality horizontal, vertical
architectural level OS, middleware, support, core, user interface

Table 2. Morisio and Tarchiano’s OTS components characterization framework [39]

experiences with implementing component-based system in
one particular domain (i.e., construction of software engi-
neering tools), we believe that the taxonomy is applicable
in other domains as well.

1.1. Organization of the Paper

We first discuss the work conducted by other researchers
to characterize components in Section 2. We then discuss
our own taxonomy in Section 3. The taxonomy consists
of six top-level criteria. It draws inspiration from exist-
ing taxonomies and classifications, but also exhibits unique
features (e.g., homogeneous vs. heterogeneous multiple-
component systems). When discussing the taxonomy’s cri-
teria we also identify opportunities to further refine it. Sec-
tion 4 closes the paper with a discussion of our taxonomy.

2. Related Work

There are a number of taxonomies and frameworks to
characterize and classify components. In the following, we
give an overview.

In his book, Sametinger gives a brief survey of compo-
nent classifications [47]. The discussed classifications re-

flect the diverse notion of component. Some classifications
are targeted at white-box components such as Ada pack-
ages (Booch [5]), or are based on classifying programming-
language features (Wegner [64]). Other classifications use
broader dichotomies such as fine-grained vs. coarse-grained
(Kain [28]), specification vs. implementation (Kain), and
active vs. passive (Dusink and van Katwijk [16]).

Sametinger has developed his own taxonomy, distin-
guishing user interface, data interface, program interface,
and component platform (cf. Table 1). The user interface of
a component can be a command-line or graphical user in-
terface. The data interface characterizes a component’s in-
put/output (I/O), which is distinguished as textual I/O, spe-
cific file I/O, and database I/O. A component’s program in-
terface characterizes how functionality is reused. Lastly, a
component’s platform characterizes the environment that is
necessary for the component to operate.

For OTS components, Morisio and Torchiano provide a
comprehensive characterization framework based on eval-
uation of previous work (e.g., [9] [66] [11]) [39]. Table 2
provides a summary of the characterization framework.

Torchiano et al. present a list of OTS characterization at-
tributes based on the proposal from students made in a fifth
year course [55] [56]. Examples of attributes are product

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

customization mechanism

interoperability mechanism

packaging

no interoperability

interface interoperability

white−box

glass−box

external

internal

distribution form

origin

scripting

control
data

API

source modification

non−standalone

standalone

presentation

black−box

batch
interactive

single

multiple
number of components

component

CBS

non−programmatic

programmatic

homogeneous
heterogeneous

Figure 1. Complete taxonomy

maturity, market share, reliability, hardware requirements,
product support, documentation, modifiability, change fre-
quency, license type, and cost of use.

Sassi et al. propose another characterization framework
for OTS components in the context of an OTS-based de-
velopment environment [48]. The framework groups char-
acteristics into: general (e.g., cost, date of first release,
and change frequency), structural (e.g., name and num-
ber of services), behavioral (e.g., pre/post-conditions and
state-transition diagrams), architectural (e.g., component
type and architectural style), quality of service (e.g., non-
functional properties and possible modification), technical
(e.g., conformance to standards), and usage (e.g., similar
components and use cases).

3. Taxonomy

This section discusses our proposed taxonomy to char-
acterize components and component-based systems. The
taxonomy takes a broad view on what constitutes software
components, defining them as “building blocks from which
different software systems can be composed” [12]. Accord-
ing to this definition components can be, for instance, OTS
products, IDEs, domain-specific tools, application genera-
tors, compound documents, frameworks, and libraries.

Figure 1 presents an overview of the complete taxon-
omy. The taxonomy uses the following criteria: origin, dis-
tribution form, customization mechanisms, interoperabil-
ity mechanisms, packaging, and number of components.

As discussed in Section 4, the resulting taxonomy is both
small and lightweight. The taxonomy can be divided into
two main groups: criteria describing software components
(“component”), and criteria describing systems that are
built from these components (“CBS”).

3.1. Origin

A component’s origin or source can be classified as in-
ternal vs. external:

internal: The component is developed by the same engi-
neers that build and assemble the final system. In a
sense it is a “non-off-the-shelf component” [11] that
might be later put into a reuse repository and used for
other systems.

external: The component is obtained from an external
source (e.g., an in-house reuse repository or a commer-
cial component market), and not developed by the en-
gineers that build and assemble the complete system.
Such components are also called nondevelopmental
items (NDIs) [11] or off-the-shelf (OTS). NDIs can be
further classified by their sources: commercial ven-
dor (COTS),1 government-owned (GOTS), military-

1The commercial character of a component is not easy to define. For
example, Carney et al. ask: “Is something ‘commercial’ if its vendor
merely intends to sell it, but has sold none so far? How many sales are
needed to qualify something as legitimately commercial? What if the seller
does not particularly want to sell it, but is merely willing to sell it?” [10].

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

owned (MOTS) [60], or developed by research insti-
tutions (ROTS) [54] [1].

In contrast to this taxonomy, Carney and Long provide a
more fine-grained classification, distinguishing the follow-
ing types of component sources [11]: independent commer-
cial item, custom version of a commercial item, component
produced to order under a specific contract, existing com-
ponent obtained from external sources (e.g., a reuse reposi-
tory), and components produced in-house.

3.2. Distribution Form

A component can be made available to clients in various
forms. This classification focuses on the availability and
modifiability of the component’s source code:

black-box: Black-box distribution of code means that the
component’s source code is not available (i.e., closed
source). Instead, the component is made available in
some binary form. For example, most shrink-wrapped
software is available only as stand-alone executable.

Black-box components have certain disadvantages.
For example, since source code is not available, “most
forms of software analysis that would help you decide
if the software is going to perform safely, securely, and
reliably are not available” [61].

white-box: This form of distribution is also called open
source [49]. Thus, interested clients can inspect and
modify the component’s sources. In practice, how-
ever, clients treat white-box components as black-box
or glass-box for most development efforts [57].

glass-box: Glass-box (or gray-box) distribution means that
clients have access to (parts of) the sources but are not
allowed to modify them. This distribution form is of
interest if the client wants source code for inspection,
performance tuning, debugging, and white-box testing,
but is not interested in modification [26]. Glass-box
distribution is quite common in the embedded systems
market [37].2

Many discussions revolve around the question whether
components of commercial origin (i.e., COTS) mandate
black-box distribution or not. However, COTS and black-
box distribution are two independent properties as reflected
in this taxonomy: Origin vs. Distribution Form. Interest-
ingly, more recent definitions of COTS have widened its
meaning to include open source software.3

2For example, Microsoft has made available the sources of Windows
CE under its Shared Source Initiative.

3For instance, Torchiano and Morisio’s definition: “A COTS product
is a commercially available or open source piece of software that other
software projects can reuse and integrate into their own products” [57].

3.3. Customization Mechanisms

Whereas components might be reused as-is without any
modification, in practice some tailoring or customization
(either by the developers or users) takes place. In the con-
text of commercial OTS components, Carney et al. note that
“the ‘-OTS’ implies that the software item can be used with
little or no modification. But at least some modification, mi-
nor or otherwise, is needed for most classes of commercial
software”[10].

Support for customization can be divided into non-
programmatic and programmatic customization mecha-
nisms:

non-programmatic: Non-programmatic customization is
accomplished, for example, by giving command-line
switches, by editing parameters in startup and config-
uration files, or with direct manipulation at the GUI
level.

There are many examples of non-programmatic cus-
tomization. Unix filters and batch-processing tools
such as compilers are typically customized via
command-line switches. X11 applications can be cus-
tomized (e.g., fonts, colors, and labels) by chang-
ing resource specifications via dedicated tools such as
xrdb and editres. ActiveX controls have proper-
ties (typically with default values) that can be modified
at design-time or run-time [58, p. 339]. Lastly, GUI-
based applications such as Microsoft Office allow user
to customize GUI elements such as menus and buttons
interactively via check-boxes and drag-and-drop. Note
that non-programmatic customization enables, selects,
or rearranges predefined component functionality—it
does not add or create new functionality.

programmatic: Programmatic customization involves
some form of scripting or programming language
that allows the modification and extension of the
component’s behavior. For black-box components,
extensions are constrained by the functionality offered
by the programmatic customization mechanisms.

Programmatic customization of a component can be
accomplished via an application programming inter-
face (API) and/or a scripting language:

API: Most component APIs have to be programmed
in C or C++. In this case, the API is de-
scribed in one or more header files. An exam-
ple is the FrameMaker Developer’s Kit. APIs
can also take the form of object-oriented frame-
works (e.g., Eclipse) and libraries (e.g., IBM Vi-
sualAge). Components that support customiza-
tion via COM can be programmed in any COM-

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

aware language such as Visual Basic, C++, and
C#.
The API of a component can be quite large and
complex [60]; for instance, Boehm and Abts
claim that Windows 95 has roughly 25,000 entry
points [3], and Tallis and Balzer report that Mi-
crosoft Word has over 1,100 unique commands
[52]. Component APIs vary in the extent that
they permit clients to affect the component’s in-
ternal state [14, sec. 3.5]. At the one extreme an
API may be read-only and expose very limited
information about its internal state; at the other
extreme, there may be almost no restriction (e.g.,
allowing a “quit application” operation). The To-
gether Open API has a high-level read-only in-
terface as well as lower-level interfaces that al-
lows state modifications. The APIs for plug-ins
often place well-defined restrictions on the inter-
nal state that can be manipulated.

scripting: Components can also offer a scripting lan-
guage to simplify programmatic customization.
Sometimes, scripting is offered as an alternative
to a traditional API.
A prominent example of a scriptable component
is the Emacs text editor, which can be customized
by programming in Emacs Lisp [50] [6]. Sim-
ilarly, the AutoCAD system can be customized
with AutoLISP [20], and UML Studio (www.
pragsoft.com) has a dedicated LISP dialect
called PragScript [27]. Microsoft products typi-
cally support Visual Basic scripting. Adobe Go-
Live can be customized with HTML files con-
taining embedded JavaScript.

source code modification: In case of a white-box
component, its source code can be directly mod-
ified in order to achieve the required customiza-
tion. Typically, source code is only modified if a
customization cannot be realized via scripting or
API programming.

Morisio and Torchiano explicitly distinguish between re-
quired modification (i.e., necessary customization mech-
anisms to build a certain component-based system), and
possible modification (i.e., supported customization mech-
anisms by the component) [39]. This distinction can be of
importance. For example, whereas white-box components
offer source code modification, component-based systems
development rarely makes use of this option (because of fu-
ture maintenance problems).

Carney and Long provide a classification to which de-
gree a component’s code can or must be changed [11]. They
distinguish: (1) very little or no modification, (2) simple pa-
rameterization, (3) necessary tailoring or customization, (4)

internal revisions to accommodate special platform require-
ments, and (5) extensive functional recoding and rework-
ing. The first two modifications are non-programmatic.
The third involves programmatic customization via API or
scripting. The last two are modifications not anticipated by
the original component vendor and require modification of
the source code.

Another classification introduces three types [10]:
installation-dependent components (which require the user
to take some actions before the software can operate, for
instance, in the form of setting environment variables or
providing license information), tailoring-dependent prod-
ucts (which require a considerable amount of initialization
data such as the definition of schema information or busi-
ness rules), and modified products (which occurs “when a
customer asks a software vendor for (or, conceivably, makes
himself) some ad hoc, to-order alteration of a commercial
product”). With the last type, the component’s modifica-
tion is a change in functionality or behavior not originally
intended by its vendor.

3.4. Interoperability Mechanisms

Wegner states that “interoperability is the ability of two
or more software components to cooperate despite differ-
ences in language, interface, and execution platform” [65].
Interoperability among components can be achieved, for in-
stance, by passing control, sending messages, or sharing
data. Note that Customization Mechanisms addresses func-
tionality that is added to the component itself, whereas in-
teroperability refers to the use of the component’s function-
ality by other components (i.e., its clients).

The following classification of component interoperabil-
ity is based on research in integration of software engineer-
ing environments [8] [53] [63]:

no interoperability: In this case, the component does not
support any explicit, programmable interoperability
mechanism. In this case, the only form of interop-
erability that the component provides is via its user
interface. This can be the case with legacy terminal-
based business applications. Even though the user in-
terface is meant to be used interactively by end users,
such components can be made interoperable via ad-
hoc wrapping techniques. For example, batch applica-
tions and textual user interfaces can be wrapped with
pseudo ttys (on Unix) or dedicated (screen scraper)
tools [47] [59] such as Expect (http://expect.
nist.gov). There are also approaches that intercept
and synthesize GUI events [23] [2].

interface interoperability: Interface interoperability
means that the components offers some kind of
programmable interface to enable interoperability

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

with other components. The following interface types
can be distinguished:

data: Data interfaces provide a simple API to ac-
cess component-specific data. Sametinger dis-
tinguishes between textual, specific file (i.e., bi-
nary), and database input/output [47, sec. 9.1].
Examples of data formats that are supported by
components are Word documents (textual or bi-
nary) and SVG files (XML-based).

Unix’s pipe-and-filter architecture uses textual
input/output to achieve data interoperability. An-
other example of data interoperability is provided
by early IDEs such as PCTE and Centaur that
employed a central data repository. The reposi-
tory connects the various tools that are part of the
IDE by allowing them to store their intermediate
results for use by other tools [45] [44].

control: Control interoperability involves an interface
that allows a component to pass a message to an-
other component. This functionality is provided
by wiring standards such as CORBA and COM
(as well as other message-oriented and object-
oriented middleware). For instance, the Common
Desktop Environment (CDE) offers a message
brokering system called ToolTalk [34]. Succi et
al. use JavaSpaces tuple spaces to exchange mes-
sages between tools [51].

There are many examples of IDEs that are pri-
marily based on control interoperability such as
HP’s Softbench, Sun’s ToolTalk, and Reiss’ Field
and Desert environments [7] [46]. With these
IDEs, a message server allows tools to register
their interest in certain events that other tools
might send to the server [25] [44]. Tools can
report events to the server which are then dis-
tributed to the registered tools.

presentation: Presentation interoperability refers to
a seamless interoperation at the user-interface
level. Components are tightly integrated and
have a common look-and-feel. An Example of
components that support presentation interoper-
ability are compound documents such as OLE
and OpenDoc. In order to achieve such tight in-
tegration some kind of wiring standard is neces-
sary. IDEs such as Eclipse, IBM VisualAge, and
Microsoft Visual Studio have extensible architec-
tures that makes it possible to add components
(i.e., plug-ins) seamlessly.

The three interoperability types introduced above are
usually inclusive. Presentation interoperability typi-
cally has to support control and data interoperability in

order to achieve seamless integration of components.
Components with control interoperability also support
some kind of data interoperability.

Egyed et al. classify components as reactive or proactive
[18]. Reactive components react to user input (and other
outside stimuli). Input can be data (e.g., obtained by reading
from a file), or control messages (e.g., a mouse click event).
A reactive component is passive in the sense it does not ini-
tiate interactions with other components; instead, it waits
for service requests [17]. In contrast, a proactive component
notifies other components of changes in its state. Compo-
nents often have both reactive and proactive characteristics.
However, OTS products and IDEs often have deficiencies in
their realization of proactiveness, lacking, for instance, so-
phisticated event notification; this is the case with Microsoft
Office [22] and Rational Rose [17].

3.5. Packaging

Components can be packaged in different ways. Packag-
ing is the form in which the component is used, not the form
it is distributed in [39]. For example, a white-box compo-
nent is distributed with source code, but can be packaged
via compilation into a stand-alone executable or a library.
The packaging of a component is characterized as follows:

standalone component: Such a component is a standalone
program, application, or tool that can be directly exe-
cuted. The component is standalone in the sense that it
can be used without prior integration or customization.
Examples of this type of component are OTS products,
IDEs, and domain-specific tools. Standalone compo-
nents can range from huge (e.g., Microsoft Office) to
small (e.g., Unix’s echo).

The taxonomy further distinguishes standalone com-
ponents whether they are interactive or batch systems
[15]:

interactive: Interactive (or conversational) compo-
nents have a graphical or textual user interface so
that a human can participate in the computation.
In fact, often the human drives the computation,
the system reacting to the user’s input. Microsoft
Office is an example of an interactive component.

batch: Batch components make a complete program
run without human intervention. Input is spec-
ified before program start (e.g., in the form of
input files or streams). The behavior of the
system is typically specified with command-
line arguments and configuration files (i.e., non-
programmatic customization). Unix filters are
examples of batch components.

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

non-standalone component: A non-standalone compo-
nent has to be integrated and/or customized before
it can be executed. A typical example are link-
able components such as object modules or (class) li-
braries, which must be linked statically or dynamically
with other components to obtain an executable [66].
Other examples of this component type are compo-
nents from application generators (e.g., a scanner gen-
erated by lex), OTS components (e.g., ActiveX con-
trols), compound documents, (object-oriented) frame-
works, classes, and functions.

The packaging of a component is of importance for inter-
operability and reuse. For example, Unix provides sorting
functionality both with the sort filter (which is a stan-
dalone component), and the qsort C library call (which
is a non-standalone component). RCS, a tool for ver-
sion control, is implemented as a set of Unix filters (rcs,
co, ci, etc.), but now also offers a C/C++ and Java API
(www.aicas.com/rce_en.html).

Dusink and van Katwijk distinguish between active and
passive components [16] [47, sec. 9.2.3]. Active compo-
nents run on their own and use operating system services
as a means of interoperation (e.g., shared memory or mes-
sage passing). Passive components are functions, classes,
and modules, which are included in a software system by
linking or directly including their source code. There seems
to be a correspondence between Dusink and van Katwijk’s
active and passive components, and this taxonomy’s stan-
dalone and non-standalone components, respectively.

3.6. Number of Components

In contrast to the previous criteria, which describe com-
ponents, this criterion characterizes a component-based sys-
tem. A component-based system can be distinguished by
the number of components that constitute the system:

single: These systems use a single component on which
they heavily depend. Single-component systems of-
ten rely on a powerful standalone component (e.g., Mi-
crosoft Office) or IDE (e.g., Eclipse).

Carney distinguishes single-component systems into
turnkey systems and intermediate systems [9].
Turnkey systems use a single OTS component such
as Microsoft Office or Mozilla, on which they heavily
depend and which is used out-of-the-box without pro-
grammatic customization. Intermediate systems are
also built on a single OTS component, but also “have
a number of [programmatically] customized elements
specific to the given application.” In this taxonomy
customization is addressed by a separate criterion.

multiple: These systems are (primarily) composed of mul-
tiple components, possibly from different vendors and
having different characteristics.

Often multiple-component systems have two to four
core components which realize a significant amount of
the system’s functionality. But there are also systems
that are composed of more components. For example,
Morisio et al. mention a system comprising 13 OTS
components [38], and NASA’s Hubble Space Tele-
scope command and control system uses even more
than 30 COTS/GOTS components [43].

Multi-component systems can be further distinguished
as being composed of homogeneous or heterogeneous
components:

homogeneous: A system is homogeneous if its com-
ponents adhere to the same wiring standard. For
example, all Microsoft Office products support
COM and OLE, and all Eclipse plug-ins use the
same extensibility mechanism to integrate into
the platform. If a component-based software-
engineering tool uses popular standards such as
JavaBeans or COM, it can incorporate off-the-
shelf components that have been developed in-
dependently by third parties.

heterogeneous: A system is heterogeneous if it mixes
components based on different wiring standards,
interoperability standards, or architectures. Such
systems are often composed of OTS products
from different independent vendors (e.g., Ra-
tional Rose and Matlab/Stateflow [17]), possi-
bly also integrating proprietary, system-specific
components [19]. For instance, Garlan et al. de-
scribe the building of a software design environ-
ment, Aesop, consisting of the following com-
ponents: (1) a GUI framework (InterViews), (2)
an event-based tool-integration mechanism (HP
Softbench), (3) an RPC mechanism, and (4) an
object-oriented database [21]. Staringer provides
another multi-component tool-building experi-
ence, integrating (1) a GUI builder (NeXTStep
Interface Builder), (2) a spreadsheet application
(Lotus Improv), (3) Mathematica, and (4) a rela-
tional database (Sybase).

Multi-component systems can have a significant
amount of glue code, whose purpose is it to bind
the (often heterogeneous) components together—in
Carney’s words, “sometimes cleanly and sometimes
crudely” [9]. Glue code realizes functionality such
as transferring of control flow to a component; bridg-
ing of incompatibilities between components; and han-
dling of errors and exceptions [59]. Whereas com-

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

ponents use typed high-level programming languages
[42], glue code is often written with a scripting lan-
guage such as Perl, Tcl, Visual Basic, or Unix shells.
For example, ActiveX components are often written in
C++, but glued together with Visual Basic [36].

For multiple-component systems an important consid-
eration is which component holds the main thread of
control or else implements the control loop [21]. The
component that implements the control loop is the sys-
tem’s “driver” and in charge of delegating control to
other components. Components are often difficult to
make interoperate if more than one components in the
system assumes that it is the driver. A standalone
component has its own thread of control by definition.
Some non-standalone components such as libraries are
passive in the sense that they do not have their own
control thread—control is passed to them with an ex-
plicit invocation from the client. However, other non-
standalone components such as GUI frameworks have
their own control loop.

Similar to our classification, Wallnau distinguishes OTS-
based systems into OTS-intensive systems (which integrate
many OTS products) and OTS-solution systems (which
consist of one substantial OTS product customized to pro-
vide a “turnkey” solution) [62].

Boehm et al. classify component-based system accord-
ing to the dominating development activity. Based on their
experiences, they identify four major project types [4]: (1)
assessment intensive projects (which focus on finding a fea-
sible set of components having capabilities that require little
or no programmatic customization); (2) tailoring intensive
projects (whose main efforts lie in programmatically cus-
tomizing one or only a few components to realize most of
the system’s capabilities); (3) glue-code intensive projects
(which require a significant amount of glue code design
and implementation involving multiple components); and
(4) non-OTS intensive projects (in which most of the sys-
tem’s capabilities are provided by traditional custom devel-
opment).

4. Conclusions

This paper has introduced a taxonomy to characterize
component-based systems. The taxonomy has six top-level
criteria: origin, distribution form, customization mecha-
nisms, interoperability mechanisms, packaging, and num-
ber of components.

While, our taxonomy has been influenced by and reflects
previous work on taxonomies, it specifically satisfies two
properties:

small and course-grained: We have selected a relatively
small number of criteria to characterize a component.

Furthermore, each criterion is rather course-grained,
having at most three alternatives.

We have identified criteria with potential for a more
fine-grained characterization, but these have been de-
liberately excluded from the taxonomy. Other tax-
onomies typically have a broader goal such as to aid
in a comprehensive evaluation of any kind of compo-
nent in any application domain.

lightweight: It typically is a straightforward task to assign
the taxonomy’s criteria to a particular component or
component-based system.

In other words, this taxonomy uses orientation level
criteria, which “paint an overall picture of the com-
ponent” and whose “values can be often gleaned from
developer documentation” [13]. Hence, classifying a
component with our taxonomy is a lightweight activ-
ity.

To obtain a small and lightweight taxonomy, we have omit-
ted a number of interesting characterizations that do not
have a strong direct impact on the construction of software
engineering tools itself. Examples of such criteria are mar-
ket share and execution platform. Such component char-
acteristics can have an impact on the functional or non-
functional requirements of component-based systems. For
example, an OTS product’s market share and execution plat-
form can have an impact on the adoptability of the resulting
component-based system.

Whereas this taxonomy has been created primarily for
the purpose to characterize components for the component-
based building of software engineering tools, we believe
that its properties make it also applicable for other classi-
fication purposes that go beyond its original context. Also,
researchers can use our taxonomy as a starting point to ex-
pand and/or contract it so as to better suit their needs.

References

[1] C. Abts. COTS-based systems (CBS) functional density—a
heuristic for better CBS design. In J. Dean and A. Gravel,
editors, 1st International Conference on COTS-Based Soft-
ware Systems (ICCBSS’02), volume 2255 of Lecture Notes
in Computer Science, pages 1–9. Springer-Verlag, 2002.

[2] K. Bao and E. Horowitz. A new approach to software tool
interoperability. 11th ACM Symposium on Applied Comput-
ing (SAC’96), pages 500–509, Feb. 1996.

[3] B. Boehm and C. Abts. COTS integration: Plug and pray?
IEEE Computer, 32(1):135–138, Jan. 1999.

[4] B. W. Boehm, D. Port, Y. Yang, , and J. Bhuta. Not all CBS
are created equally: COTS-intensive project types. In H. Er-
dogmus and T. Weng, editors, 2nd International Confer-
ence on COTS-Based Software Systems (ICCBSS’03), vol-
ume 2580 of Lecture Notes in Computer Science, pages 36–
50. Springer-Verlag, 2003.

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

[5] G. Booch. Software Components with Ada: Structures,
Tools, and Subsystems. Benjamin/Cummings Publishing
Company, 1987.

[6] N. S. Borenstein and J. Gosling. Unix emacs: A
retrospective—lessons for flexible system design. 1st ACM
SIGGRAPH Symposium on User Interface Software, pages
95–101, Oct. 1988.

[7] A. W. Brown. Control integration through message-passing
in a software development environment. Software Engineer-
ing Journal, 8(3):121–131, May 1993.

[8] A. W. Brown and M. H. Penedo. An annotated bib-
liography on integration in software engineering envi-
ronments. Special Report CMU/SEI-92-SR-8, Soft-
ware Engineering Institute, Carnegie Mellon Univer-
sity, May 1992. http://www.sei.cmu.edu/pub/
documents/92.reports/pdf/sr08.92.pdf.

[9] D. Carney. Assembling large systems from COTS compo-
nents: Opportunities, cautions, and complexities. In SEI
Monographs on the Use of Commercial Software in Gov-
ernment Systems. Software Engineering Institute, Carnegie
Mellon University, June 1997.

[10] D. Carney, S. A. Hissam, and D. Plakosh. Complex COTS-
based software systems: practical steps for their mainte-
nance. Journal of Software Maintenance: Research and
Practice, 12(6):357–376, Nov./Dec. 2000.

[11] D. Carney and F. Long. What do you mean by COTS? Fi-
nally, a useful answer. IEEE Software, 17(2):83–86, Mar./
Apr. 2000.

[12] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[13] L. Davis, R. F. Gamble, and J. Payton. The impact of com-
ponent architecture on interoperability. Journal of Systems
and Software, 61(1):31–45, Mar. 2002.

[14] R. DeLine. A catalog of techniques for resolving packag-
ing mismatch. 5th ACM Symposium on Software Reusability
(SSR’99), pages 44–53, May 1999.

[15] R. DeLine, G. Zelesnik, and M. Shaw. Lessons on
converting batch systems to support interaction. 19th
ACM/IEEE International Conference on Software Engineer-
ing (ICSE’97), pages 195–204, May 1997.

[16] E. M. Dusink and J. van Katwijk. Reflections on reusable
software and software components. ACM Ada-Europe In-
ternational Conference, pages 113–126, 1987.

[17] A. Egyed and R. Balzer. Unfriendly COTS integration—
instrumentation and interfaces for improved plugability.
16th International Conference of Automated Software En-
gineering (ASE’01), pages 223–231, Nov. 2001.

[18] A. Egyed, S. Johann, and R. Balzer. Data and state syn-
chronicity problems while integrating COTS software into
systems. 4th International Workshop on Adoption-Centric
Software Engineering (ACSE’04), pages 69–74, May 2004.

[19] A. Egyed, H. A. Müller, and D. E. Perry. Integrating COTS
into the development process. IEEE Software, 22(4):16–18,
July/Aug. 2005.

[20] M. Gantt and B. A. Nardi. Gardeners and gurus: Patterns of
cooperation among CAD users. ACM SIGCHI Conference
on Human Factors in Computing Systems (CHI’92), pages
107–117, May 1992.

[21] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why it’s hard to build systems out of existing parts.
17th ACM/IEEE International Conference on Software En-
gineering (ICSE’95), pages 179–185, Apr. 1995.

[22] N. M. Goldman and R. M. Balzer. The ISI visual design
editor generator. IEEE Symposium on Visual Languages
(VL’99), pages 20–27, Sept. 1999.

[23] M. Grechanik, D. Batory, and D. E. Perry. Integrat-
ing and reusing GUI-driven application. 7th Interna-
tional Conference on Software Reuse (ICSR-7), pages 1–16,
Apr. 2002. http://www.cs.utexas.edu/users/
gmark/Publications.html.

[24] G. Gui, H. M. Kienle, and H. A. Müller. REGoLive: Build-
ing a web site comprehension tool by extending GoLive.
7th IEEE International Symposium on Web Site Evolution
(WSE’05), pages 46–53, Sept. 2005.

[25] W. Harrison, H. Ossher, and P. Tarr. Software engineering
tools and environments: A roadmap. Conference on The
Future of Software Engineering, pages 263–277, June 2000.

[26] S. A. Hissam and D. Carney. Isolating faults in complex
COTS-based systems. Journal of Software Maintenance:
Research and Practice, 11(3):183–199, May/June 1999.

[27] J. H. Jahnke, J. P. Wadsack, and A. Zündorf. A history
concept for design recovery tools. 6th IEEE European
Conference on Software Maintenance and Reengineering
(CSMR’02), pages 37–46, Mar. 2002.

[28] J. B. Kain. Enabling an application or system to be the sum
of its parts. Object Magazin, 6:64–69, Apr. 1996.

[29] H. M. Kienle. Building Reverse Engineering Tools with Soft-
ware Components. PhD thesis, Department of Computer
Science, University of Victoria, 2006. To appear.

[30] H. M. Kienle and J. H. Jahnke. A visual language in
Visio: First experiences. 3rd International Workshop on
Adoption-Centric Software Engineering (ACSE’03), pages
90–93, May 2003.

[31] H. M. Kienle and H. A. Müller. A WSAD-based fact extrac-
tor for J2EE web projects. Technical Report, University of
Victoria, June 2006.

[32] H. M. Kienle, A. Weber, J. Jahnke, and H. A. Müller. Tack-
ling the adoption problem of domain-specific visual lan-
guages. 2nd Domain-Specific Modeling Languages Work-
shop at OOPSLA 2002, pages 77–88, Oct. 2002.

[33] H. M. Kienle, A. Weber, and H. A. Müller. Leveraging SVG
in the Rigi reverse engineering tool. SVG Open / Carto.net
Developers Conference, July 2002.

[34] G. Kraft. CDE plug-and-play. Linux Journal,
May 1998. http://www.linuxjournal.com/
article/2362.

[35] J. Ma, H. M. Kienle, P. Kaminski, A. Weber, and M. Litoiu.
Customizing Lotus Notes to build software engineering
tools. Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON’03), pages 276–287,
Oct. 2003.

[36] P. M. Maurer. Converting command-line applications into
binary components. Software—Practice and Experience,
35(8):787–797, July 2005.

[37] A. Möller, M. Akerholm, J. Fredriksson, and M. Nolin.
Evaluation of component technologies with respect to in-
dustrial requirements. 30th IEEE EUROMICRO Conference
(EUROMICRO’04), pages 56–63, Aug. 2004.

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

[38] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E.
Kraft, and S. E. Condon. COTS-based software develop-
ment: Processes and open issues. Journal of Systems and
Software, 61(3):189–199, Apr. 2002.

[39] M. Morisio and M. Torchiano. Definition and classification
of COTS: a proposal. In J. Dean and A. Gravel, editors, 1st
International Conference on COTS-Based Software Systems
(ICCBSS’02), volume 2255 of Lecture Notes in Computer
Science, pages 165–175. Springer-Verlag, 2002.

[40] H. A. Müller, M. Storey, A. Weber, W. Kastelic,
H. Kienle, Q. Zhu, J. Ma, F. Yang, D. Zwiers,
K. Wong, and J. Pipitone. Adoption-centric soft-
ware engineering. CASCON 2002 Technology Exhibition
Handout, 2002. http://www.acse.cs.uvic.ca/
downloads/info/flyer_screen.pdf.

[41] H. A. Müller, A. Weber, and K. Wong. Leveraging cogni-
tive support and modern platforms for adoption-centric re-
verse engineering (ACRE). 3rd International Workshop on
Adoption-Centric Software Engineering (ACSE’03), pages
30–35, May 2003.

[42] J. K. Ousterhout. Scripting: Higher-level programming for
the 21st century. IEEE Computer, 31(3):23–70, Mar. 1998.

[43] T. Pfarr and J. E. Reis. The integration of COTS/GOTS
within NASA’s HST command and control system. In
J. Dean and A. Gravel, editors, 1st International Confer-
ence on COTS-Based Software Systems (ICCBSS’02), vol-
ume 2255 of Lecture Notes in Computer Science, pages 209–
221. Springer-Verlag, 2002.

[44] S. P. Reiss. Connecting tools using message passing in the
Field environment. IEEE Software, 7(4):57–66, July 1990.

[45] S. P. Reiss. Simplifying data integration: The design
of the desert software development environment. 18th
ACM/IEEE International Conference on Software Engineer-
ing (ICSE’96), pages 398–407, May 1996.

[46] S. P. Reiss. Constraining software evolution. 18th
IEEE International Conference on Software Maintenance
(ICSM’02), pages 162–171, Oct. 2002.

[47] J. Sametinger. Software Engineering with Reusable Compo-
nents. Springer-Verlag, 1997.

[48] S. B. Sassi, L. L. Jilani, and H. H. B. Ghezala. COTS char-
acterization model in a COTS-based development environ-
ment. 10th IEEE Asia-Pacific Software Engineering Con-
ference (APSEC’03), pages 352–361, 2003.

[49] D. Spinellis and C. Szyperski. How is open source affecting
software development? IEEE Software, 21(1):28–33, Jan./
Feb. 2004.

[50] R. M. Stallman. Emacs: The extensible, customizable self-
documenting display editor. ACM SIGPLAN SIGOA Sympo-
sium on Text Manipulation, pages 147–156, June 1981.

[51] G. Succi, W. Pedrycz, E. Liu, and J. Yip. Package-oriented
software engineering: A generic architecture. IT Pro,
3(2):29–36, Mar./Apr. 2001.

[52] M. Tallis and R. Balzer. Document integrity through medi-
ated interfaces. DARPA Information Survivability Confer-
ence & Exposition II (DISCEX’01), pages 263–270, June
2001.

[53] I. Thomas and B. A. Nejmeh. Definitions of tool integration
for environments. IEEE Software, 9(2):29–35, Mar. 1992.

[54] S. Tilley, S. Huang, and T. Payne. On the challenges of
adopting ROTS software. 3rd International Workshop on
Adoption-Centric Software Engineering (ACSE’03), pages
3–6, May 2003.

[55] M. Torchiano and L. Jaccheri. Assessment of reusable
COTS attributes. In H. Erdogmus and T. Weng, editors, 2nd
International Conference on COTS-Based Software Systems
(ICCBSS’03), volume 2580 of Lecture Notes in Computer
Science, pages 219–228. Springer-Verlag, 2003.

[56] M. Torchiano, L. Jaccheri, C. Sorensen, and A. I. Wang.
COTS products characterization. 14th ACM/IEEE Interna-
tional Conference on Software Engineering and Knowledge
Engineering (SEKE’02), pages 335–338, July 2002.

[57] M. Torchiano and M. Morisio. Overlooked aspects of
COTS-based development. IEEE Software, 21(2):88–93,
Mar./Apr. 2004.

[58] R. van Ommering and J. Bosch. Widening the scope of
software product lines—from variation to composition. In
G. Chastek, editor, SPLC2, volume 2379 of Lecture Notes in
Computer Science, pages 328–347. Springer-Verlag, 2002.

[59] M. R. Vidger and J. Dean. An architectural approach to
building systems from COTS software components. Con-
ference of the Centre for Advanced Studies on Collaborative
Research (CASCON’97), pages 131–143, Nov. 1997.

[60] M. R. Vigder, W. M. Gentleman, and J. Dean. COTS
software integration: State of the art. Technical Re-
port NRC 39198, National Research Council Canada,
Jan. 1996. http://iit-iti.nrc-cnrc.gc.ca/
publications/nrc-39198_e.html.

[61] J. M. Voas. The challenges of using COTS software in
component-based development. IEEE Computer, 31(6):44–
45, June 1998.

[62] K. C. Wallnau. A basis for COTS software evalu-
ation: Foundations for the design of COTS-intensive
systems. SEI Interactive, Software Engineering Insti-
tute, 1998. http://www.sei.cmu.edu/cbs/cbs_
slides/ease98/index.htm.

[63] A. I. Wasserman. Tool integration in software engineering
environments. In F. Long, editor, Software Engineering En-
vironments: International Workshop on Environments, vol-
ume 467 of Lecture Notes in Computer Science, pages 137–
149. Springer-Verlag, 1990.

[64] P. Wegner. Capital-intensive software technology. In T. J.
Biggerstaff and A. J. Perlis, editors, Software Reusability,
volume I: Concepts and Models. ACM Press, 1989.

[65] P. Wegner. Interoperability. ACM Computing Surveys,
28(1):285–287, Mar. 1996.

[66] D. Yakimovich, J. M. Bieman, and V. R. Basili. Software ar-
chitecture classification for estimating the cost of COTS in-
tegration. 21st ACM/IEEE International Conference on Soft-
ware Engineering (ICSE’99), pages 296–302, May 1999.

[67] F. Yang. Using Excel and PowerPoint to build a reverse
engineering tool. Master’s thesis, Department of Computer
Science, University of Victoria, 2003.

[68] Q. Zhu, Y. Chen, P. Kaminski, A. Weber, H. Kienle, and
H. A. Müller. Leveraging Visio for adoption-centric reverse
engineering tools. 10th IEEE Working Conference on Re-
verse Engineering (WCRE’03), pages 270–274, Nov. 2003.

Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS'07)
0-7695-2785-X/07 $20.00 © 2007

Authorized licensed use limited to: University of Nantes. Downloaded on July 15, 2009 at 04:41 from IEEE Xplore. Restrictions apply.

