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Abstract

CBSE currently lacks a universally accepted terminol-
ogy. Existing component models adopt different component
definitions and composition operators. We believe that for
future research it would be crucial to clarify and unify the
CBSE terminology, and that the starting point for this en-
deavour should be a study of current component models. In
this paper, we take this first step and present and discuss a
taxonomy of these models. The purpose of this taxonomy
is to identify the similarities and differences between them
with respect to commonly accepted criteria, with a view to
clarification and/or potential unification.

1 Introduction

One problem that CBSE currently faces is the lack of
a universally accepted terminology. Even the most basic
entity, a software component, is defined in many different
ways [7]. For example, a widely adopted definition due to
Szyperski [34] is the following:

“A software component is a unit of composi-
tion with contractually specified interfaces and
explicit context dependencies only. A software
component can be deployed independently and is
subject to composition by third parties”

Another definition, due to Meyer [23], is:
“A component is a software element (modular
unit) satisfying the following conditions:
1. It can be used by other software elements, its
‘clients’.
2. It possesses an official usage description,
which is sufficient for a client author to use it.
3. It is not tied to any fixed set of clients.”

Plainly, these two definitions are not identical.
Another problem with most definitions (including the

two above) of software components is that they are not
based on a component model. A notable exception is the
following definition by Heineman and Council [18]:
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“A [component is a] software element that con-
forms to a component model and can be indepen-
dently deployed and composed without modifica-
tion according to a composition standard.”

The importance of the component model, as illustrated by
its role in this definition, is that it provides the underlying
semantic framework for not only defining what components
are, but also how they can be constructed, how they can be
composed or assembled, how they can be deployed and how
to reason about all these operations on components.
Component models, however, pose another problem for

CBSE, in that the standard component models like EJB
[14], COM [6] and CCM [27] adopt slightly different com-
ponent definitions from widely adopted ones like Szyper-
ski’s, and from each other.
For future research it would therefore be crucial to clar-

ify and hopefully unify the CBSE terminology and its defi-
nition. We believe that the starting point for this endeavour
should be a study of current component models. In this pa-
per, we take this first step and present and discuss a taxon-
omy of these models. The purpose of this taxonomy is to
identify the similarities and differences between them with
respect to commonly accepted criteria, with a view to clari-
fication and/or potential unification.

2 Software Component Models
First we present a reference framework for software

component models, which defines (and explains) terms of
reference that we will use throughout this paper. The defi-
nitions are general, and should therefore be universally ap-
plicable. Furthermore, by and large they follow (what we
perceive as) consensus views, and therefore should not be
contentious or controversial.
A software component model should define:
the syntax of components, i.e. how they are con-
structed and represented;
the semantics of components, i.e. what components
are meant to be;
the composition of components, i.e. how they are com-
posed or assembled.

In this paper we will consider mainly the following software
component models: JavaBeans [33], EJB, COM, CCM,



Koala [35], SOFA [29], KobrA [5], ADLs [11], UML2.0
[26], PECOS [24], Pin [19] and Fractal [8].

2.1 The Syntax of Software Components
The syntax of components defines what they are physi-

cally, i.e. the rules for constructing and representing them.
Ideally the syntax should be embodied in a language that
can be used for defining and constructing components.
In current component models, the language for compo-

nents tends to be a programming language. For example in
both JavaBeans and EJB, components are defined as Java
classes.

2.2 The Semantics of Software Components
A generally accepted view of a software component is

that it is a software unit consisting of (i) a name; (ii) an in-
terface; and (iii) code (Figure 1 (a)). The code implements

Name
Interface

Code
provided services
required services

(a) (b)
Figure 1. A software component.

the services provided, or operations performed, by the com-
ponent, and is not visible or accessible from outside. The
interface is the only point of access to the component, so it
should provide all the information that is necessary to use
the component. In particular, it should specify the services
required by the component in order to produce the services
it provides (Figure 1 (b)). Required services are typically
input values for parameters of the provides services. The
interface of a component thus specifies the dependencies
between its provided and required services.
In current component models, components tend to be

objects in the sense of object-oriented programming. The
methods of these objects are their provided services, and
the methods they call in other objects are their required ser-
vices. These objects are usually hosted in an environment,
e.g. a container, which handles access to, and interactions
between, components. As a result, the semantics of these
components is an enhanced version of that of the corre-
sponding objects; in particular they can interact with one
another via mechanisms provided by the environment.
For example, in JavaBeans and EJB, although syntacti-

cally they are both Java classes, Java beans and enterprise
Java beans are different semantically. Semantically a Java
bean is a Java class that is hosted by a container such as
BeanBox. Java beans interact with one another via adap-
tor classes generated by the container. Adaptor classes link
beans via events. An enterprise Java bean, on the other
hand, is a Java class that is hosted and managed by an
EJB container provided by a J2EE server [31], via two in-
terfaces, the home interface and the remote interface, for
the enterprise bean. Enterprise beans interact directly via
method delegation within the EJB container.

2.3 The Composition of Software Components

In CBSE, composition is a central issue, since compo-
nents are supposed to be used as building blocks from a
repository and assembled or plugged together into larger
blocks or systems. In order to define composition, we need
a composition language, e.g. [22]. The composition lan-
guage should have suitable semantics and syntax that are
compatible with those of components in the component
model. In most of the current component models, e.g. Jav-
aBeans, EJB, COM and CCM, there is no composition lan-
guage. ADLs of course have composition languages [4].
In order to reason about composition, we need a com-

position theory. Such a theory allows us to calculate and
thus predict the result of applying a composition operator to
components (see [13] for a discussion). Current component
models tend not to have composition theories, even those
with a composition language.
Composition can take place during different stages of the

life cycle of components [10]. We identify two main stages
in this cycle, the design phase and the deployment phase,
where composition takes place:

Design Phase.
In this phase, components are designed and con-
structed, and then may be deposited in a repository
if there is one. Components constructed in this phase
are stateless, since they are just templates (like classes)
that cannot execute. The only data that they can con-
tain at this stage are constants. Nevertheless, (unlike
classes) they can be composed into composite compo-
nents. If there is a component repository, then the con-
structed components, including composite ones, have
to be catalogued and stored in the repository in such
a way that they can be retrieved later, as and when
needed.

Deployment Phase.
In this stage, component instances are created by in-
stantiating (composite) components with initial data,
so that they have states and are ready for execution. If
there is a component repository, then components have
to be retrieved from the repository before instantiation.

2.3.1 Composition in the Design Phase
In the Design Phase, components can be composed into
composite components. Composite components are also
stateless. Composite components form sub-parts of a sys-
tem, and as such are useful for designing a system. There-
fore, composition in the design phase is concerned with the
design of systems and their sub-parts. If there is a com-
ponent repository, then composite components can also be
stored in the repository, and retrieved later, like any compo-
nents.



For example, in JavaBeans, the container provides a
repository for beans, e.g. ToolBox in the Beans Develop-
ment Kit (BDK) [32, 30], which are stored as JAR files.
However, no composition is possible in the design phase,
and therefore no composite beans can be formed.

2.3.2 Composition in the Deployment Phase
In the Deployment Phase, component instances can be com-
posed into a complete system that is executable. The system
and its constituent component instances are the end result of
system design (design phase) and implementation (deploy-
ment phase).
For example, in the deployment phase of JavaBeans,

bean instances are created from beans in the repository, and
these can be composed (linked) graphically using BeanBox.

3 Categories of Component Models

Clearly, we can classify existing software component
models according to component syntax, semantics or com-
position. In this section, we present these three categories.

3.1 Categories based on Component Syntax

Based on component syntax, current models fall into
three categories: (i) models in which components are de-
fined by object-oriented programming languages, (ii) those
in which an IDL (interface definition language) is used and
in which components can be defined in programming lan-
guages with mappings from the IDL; and (iii) those in

Component Syntax Models
Object−oriented Programming Languages
Programming Languages with IDL mappings COM, CCM, Fractal

JavaBeans, EJB

Architecture Description Languages ADLs, UML2.0, KobrA, Koala,
SOFA, PECOS, Pin

Figure 2. Categories based on syntax.
which components are defined by architecture description
languages (Figure 2).
Component models that belong to (i) are JavaBeans and

EJB, where components are implemented in Java.
Component models that belong to (ii) are COM, CCM

and Fractal. These models use IDLs to define generic in-
terfaces that can be implemented by components in specific
programming languages. COM uses the Microsoft IDL [6],
CCM uses the OMG IDL [27], whereas Fractal can use any
IDL.
Component models that belong to (iii) are ADLs,

UML2.0, KobrA, Koala, SOFA, PECOS and Pin. Obvi-
ously in all ADLs, components are defined in architec-
ture description languages. In UML2.0 and KobrA, the
UML notation is used as a kind of architecture descrip-
tion language, and components are defined by UML dia-
grams. In Koala and SOFA, components are defined in
ADL-like languages. In PECOS, components are defined

in a language called CoCo (Component Composition Lan-
guage) [17], whilst in Pin, components are defined in a
language called CCL (Construction and Composition Lan-
guage) [38]. CoCo and CCL are composition languages that
are essentially architecture description languages.
The main difference between these categories is that

components in (i) and (ii) are directly executable, in their
respective programming languages, whereas components in
(iii) are only specifications, which have to be implemented
somehow using suitable programming languages.

3.2 Categories based on Component Semantics

Based on semantics, component models can be grouped
into three categories: (i) component models in which com-
ponents are classes; (ii) models in which components are

Classes
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Architectural Units

JavaBeans, EJB
Models

COM, CCM, Fractal
ADLs, UML2.0, KobrA, Koala, SOFA, PECOS, Pin

Figure 3. Categories based on semantics.
objects; and (iii) those in which components are architec-
tural units (Figure 3).
Component models that belong to (i) are JavaBeans and

EJB, since semantically components in these models are
special Java classes, viz. classes hosted by containers.
Component models that belong to (ii) are COM, CCM

and Fractal, since semantically components in these models
are run-time entities that behave like objects. In COM, a
component is a piece of compiled code that provides some
services, that is hosted by a COM server. In CCM, a com-
ponent is a CORBA meta-type that is an extension and spe-
cialisation of a CORBA object, that is hosted by a CCM
container on a CCM platform such as OpenCCM [25]. In
Fractal, a component is an object-like run-time entity in lan-
guages with mappings from the chosen IDL.
Component models that belong to (iii) are ADLs,

UML2.0, KobrA, Koala, SOFA, PECOS and Pin. Semanti-
cally, components in these models are units of computation
and control (and data) connected together in an architecture.
In ADLs, a component is an architectural unit that repre-
sents a primary computational element and data store of a
system. In UML2.0, a component is a modular unit of a sys-
tem with well-defined interfaces that is replaceable within
its environment. In KobrA, components are UML compo-
nents. In Koala, SOFA and PECOS, a component is a unit
of design which has a specification and an implementation.
In Pin, a component is an architectural unit that specifies a
stimulus-response behaviour by a set of ports (pins).

3.3 Categories based on Composition

To define categories based on composition, we first con-
sider composition in an ideal life cycle. This will provide
a basis for comparing composition in existing component



models. An idealised version of the component life cycle
that we described in Section 2 is one where a repository is
available in the design phase, and component composition
is possible in both the design and the deployment phases.
It is depicted in Figure 4. We believe this view of the
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component instance
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composition operator
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Figure 4. The idealised component life cycle.
ideal component life cycle is the commonly accepted one
in CBSE, and not just our own subjective view: all existing
component models reflect this ideal life cycle to varying de-
grees, as we will show later.
In the design phase of the idealised life cycle, a builder

tool can be used to (i) construct new components, and then
deposit them in the repository, e.g. in Figure 4; (ii) re-
trieve components from the repository, compose them and
deposit them back in the repository, e.g. in Figure 4, and
are composed into a composite that is deposited in

the repository.
In the deployment phase of the idealised life cycle, in-

stances of components in the repository are created, and an
assembler tool can be used to compose them into a com-
plete system, e.g. in Figure 4, instances of and
are created and composed into a system. The system is then
executable in the run-time environment of the deployment
phase.
The idealised component life cycle provides a basis for

comparing and classifying composition in existing compo-
nent models. For instance, some component models do not
have composition in the design phase, whilst some mod-
els do; some have composition in the deployment, whilst
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Figure 5. Categories based on composition.
some do not. Thus many categories are possible. Figure 5
gives four categories that cover all major existing compo-
nent models.

In Category 1, in the design phase, there is a repository
but there is no composition: components are constructed in-
dividually by the builder and stored separately in the repos-
itory. The builder can only construct new components, and
cannot retrieve components from the repository. In the de-
ployment phase, components are retrieved from the reposi-
tory, and instantiated, and the assembler can be used to com-
pose the instances.
The sole member of this category is JavaBeans (see Fig-

ure 6). In the design phase, Java beans can be constructed in
a Java programming environment such as Java Development
Kit, and deposited in the ToolBox of the BDK, which is the
repository for Java beans. There is no bean composition in
the design phase. In the deployment phase, the assembler
is the BeanBox of the BDK, which can be used to compose
bean instances by the Java delegation event model.
Figure 6 shows a simple JavaBeans example. Message-

BeanA and MessageBeanB display the messages “Hello,
I’m Bean A” and “Hello, I’m Bean B” respectively when
notified of the ‘mousePressed’ event by another bean.

A

B

AssemblerBuilder Repository

A

B

ToolBox BeanBox

C
Bean A

Bean B

A = MessageBeanA (JAR file)
B = MessageBeanB (JAR file)
Bean A = MessageBeanA instance
Bean B = MessageBeanB instance
C = Adaptor object

Figure 6. Category 1: JavaBeans example.
In the design phase, JAR files for MessageBeanA and

MessageBeanB are constructed, containing for each bean
the bean implementation class, the event state object and
the event listener interface. These files are deposited into
the ToolBox of the BDK. No bean composition is possible
at this stage.
In the deployment phase, instances Bean A and Bean B

of MessageBeanA and MessageBeanB respectively are cre-
ated by dragging the beans from the ToolBox and dropping
them into the BeanBox. In the BeanBox, Beans A and B
can be composed via event handling: a source event in one
bean can be linked to a target method in the other. For in-
stance, Beans A and B can be linked in such a way that
when the mouse is pressed on Bean B, the message “Hello,
I’m Bean A” will be displayed by Bean A. The composition
mechanism provided by the BeanBox is an (automatically
generated and compiled) adaptor object that handles events
and passes method calls between the beans.
In Category 2 (Figure 5), in the design phase, there is

also a repository, but composition is possible. Like in Cate-
gory 1, the builder can only construct new components, and
cannot retrieve components from the repository. Moreover,
no composite component can be stored in the repository.
Therefore composition has to be performed by the builder
and then has to be stored ‘as is’ in the repository, i.e. as a set
of individual components together with the links between
them defined by the composition. As a result, this composi-



tion has to be retained even in the deployment phase, since
it is only possible to instantiate the individual components
(and not their composite). Consequently, composition is not
possible, and therefore there is no assembler, in the deploy-
ment phase. This category includes EJB, COM and CCM.
For example, in EJB, enterprise beans can be constructed

in a Java programming environment such as Eclipse [15].
The repository for enterprise beans is an EJB container
hosted and managed by a J2EE server. In the design phase,
enterprise beans are composed by method and event delega-
tion. In the deployment phase, no new composition is pos-
sible (see e.g. [9]), and so there is no assembler. The EJB
container provides the run-time environment for the bean
instances.
Figure 7 shows an EJB example. A book store wishes to

maintain a database of its book stock. Suppose books can
be purchased and have their details added to the database
by any shop assistant. Then the book store can use a set of
enterprise beans to implement a system that allows multiple
clients to access and update the database. Suppose this

A

Builder Repository
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B B
C C

EJB container

C

C = Method calls

A = BookBean (EJB JAR file)
B = BookStoreBean (EJB JAR file)

InsA

InsB

InsA = BookBean instance
InsB = BookStoreBean instance

Figure 7. Category 2: EJB example.
book store system can be implemented using an entity bean
BookBean that represents a table of books in a database,
and a session bean BookStoreBean that adds details of a set
of books into the table of books.
In the design phase, the EJB JAR files of BookBean and

BookStoreBean are constructed. For each enterprise bean,
the JAR file contains the enterprise bean implementation
class, the home and remote interfaces, and the deployment
descriptor. The EJB JAR files for BookBean and BookStore
Bean are deposited into an EJB container on a J2EE server.
The two beans are composed at this stage by method calls.
In the deployment phase, BookBean and BookStoreBean

are looked up by an application client program, and in-
stances of them are created in the EJB container. These
instances are composed within the EJB container in same
manner as the composition of BookBean and BookStore-
Bean in the container when the whole system was designed.
In COM, components are constructed in a programming

environment such as Microsoft Visual Studio .NET [37].
The repository of COM components is the COM server, and
composition is by method calls through interface pointers
in the design phase. In the deployment phase, there is no
assembler, and the COM server provides the run-time envi-
ronment.
In CCM, components are constructed in a programming

environment such as Open Production Tool Chain hosted
and managed by a CCM platform such as OpenCCM [25].

The repository of CORBA components is a CCM container
hosted and managed by an application server, and compo-
sition is also by direct method calls in the design phase. In
the deployment phase, the CCM container provides the run-
time environment.
Category 3 (Figure 5) is the same as Category 2 except

that in Category 3 the builder can retrieve (composite) com-
ponents from the repository, e.g. in Figure 5, is retrieved
from the repository; and the repository can store compos-
ite components, e.g. in Figure 5, is a composite. No
new composition is possible in the deployment phase, and
so there is no assembler. Koala, SOFA and KobrA belong
to this category.
For example, in Koala, components are definition

files that represent design units in the Koala language.
The repository for Koala components is the KoalaModel
Workspace, which is a file system. In the design phase,
Koala components are composed by method calls through
connectors. In the deployment phase, Koala components
are compiled into a programming language, e.g. C, and ex-
ecuted in the run-time environment of that language.
Figure 8 shows a Koala example of a Stopwatch device

Builder Repository

A
B = Display definition files
A = Countdown definition files

B
C

C = Method calls

A

InsAB = Stopwatch binary fileAB

B

WorkSpace

InsAB
AB = Stopwatch definition file

Figure 8. Category 3: Koala example.
being implemented by constructing a new Countdown com-
ponent and composing it with a Display component from
the repository.
In the design phase, the definition files for the Display

component are retrieved from the repository. (Definition
files contain the definitions of interfaces, components and
data.) Then the definition files for the Countdown compo-
nent are constructed. Using their definition files, Count-
down and Display are composed by method calls. This
yields a definition file for Stopwatch. The definition files for
Countdown and Stopwatch are deposited into the KoalaM-
odel WorkSpace.
In the deployment phase, the definition files of Stop-

watch, Countdown and Display are compiled by the Koala
compiler to C header files. Then the programmer has to
write C files and compile these with the header files to bi-
nary C code for Stopwatch.
In SOFA, components are constructed in the builder tool

SOFAnode. The repository of SOFA components is the
Template Repository. In the design phase, SOFA compo-
nent composition is by method calls through connectors. In
the deployment phase, SOFAnode provides the run-time en-
vironment for SOFA components.
In KobrA, components can be constructed in a visual

builder tool such as Visual UML [36]. The repository of



KobrA components is a file system that stores a set of UML
diagrams, and KobrA components composition is by direct
method calls in the design phase.
In Category 4 (Figure 5), there is no repository. In the

design phase, the builder has to construct a complete sys-
tem of components and their composition. Unlike the other
categories, where component instances are well-defined, in
Category 4 component instances and their composition are
not always defined, and their implementation is not always
specified (with the exception of Fractal). Therefore in the
deployment phase, the task of implementing the whole sys-
tem often remains. All ADLs belong to this category, as
well as ADL-like models, viz. UML2.0, PECOS, Pin and
Fractal.
In ADLs, components and connectors are constructed

in the design phase, possibly in a visual builder tool, e.g.
AcmeStudio [1]. The implementation of components and
connectors can be done in various programming languages,
and so the run-time environment in the deployment phase is
that for the chosen programming language.
Figure 9 shows an example in the Acme ADL [16]. Con-

sider a simple bank system which has just one ATM that
serves one bank consortium. The bank consortium has two
bank branches Bank1 and Bank2.

B = BankConsortium component B’ = Implementation of B
A = ATM component A’ = Implementation of A

B1 = Bank component 1
B2 = Bank component 2

B1’ = Implementation of B1
B2’ = Implementaion of B2

C = Connector C’ = Connector implementation

Builder Repository

B B2B1 C

A A’

B’ B2’B1’C’
C’

C’
C

C

Figure 9. Category 4: ADL example.
In the design phase, the architecture for the whole sys-

tem is designed. This is done by using components and
connectors: components are units of computation (and stor-
age), whereas connectors define the interactions between
the units. So, in this example, specifications of ATM,
BankConsortium, Bank1 and Bank2 are constructed within
a builder tool. The specifications contain ADL definitions
for each component and connector in the system.
In the deployment phase, implementations of the com-

ponents and connectors in the system are constructed from
scratch, or alternatively mapped from specifications in
Acme to implementations in ArchJava [2] that can be com-
piled to instances of the components [3]. Then instances of
ATM, BankConsortium, Bank1 and Bank2 are composed
within the assembler in the same manner as their composi-
tion in the design phase. If ArchJava components are used,
then the run-time environment is the Java Virtual Machine.
In UML2.0, components can be constructed in a vi-

sual builder tool such as Visual UML. In the design phase,
UML components are composed by UML connectors: del-
egation connectors and assembly connectors. Like some

ADLs, UML2.0 only specifies components and connectors,
but does not provide support for their implementation in the
deployment phase.
In PECOS, components are constructed in a program-

ming environment such as Eclipse. In the design phase,
components are composed by linking their ports with con-
nectors. Components and connectors are specified in CoCo.
Implementation of PECOS components is usually done in
Java or C++, and so the run-time environment in the de-
ployment phase is that for Java or C++.
In Pin, components and connectors are specified in CCL

and their implementations are usually generated by the CCL
processor. In the design phase, components are composed
by connectors that link source pins of one component to the
sink pins of another. In the deployment phase, components
are executed in the Pin run-time environment.
In Fractal, components are constructed in a program-

ming environment with Fractal APIs. Fractal components
are composed by method calls through connectors. In the
deployment phase, the Java Virtual Machine serves as the
run-time environment for Fractal components.

4 A Taxonomy of Component Models

The three groupings of categories in the previous section
are based on syntax, semantics and composition. The ques-
tion is whether it is possible or meaningful to combine them
into a single taxonomy. Looking at the categories based on
syntax (Figure 2) and those based on semantics (Figure 3),
it is obvious that they can be merged straightforwardly into
two groups:
object-based: JavaBeans, EJB, COM, CCM and Fractal;
architecture-based: ADLs, UML2.0, KobrA, Koala,

SOFA, PECOS and Pin.
However, comparing these two groups with the cate-

gories based on composition in the component life cycle
(Figure 5), it is clear that there is no meaningful way of
merging the former with the latter. Of the object-based
group of the former, EJB, COM and CCM belong to differ-
ent categories from JavaBeans and from Fractal in the lat-
ter. Of the architecture-based group of the former, KobrA,
Koala and SOFA belong to different categories from ADLs,
UML2.0, PECOS and Pin in the latter. Conversely, the cat-
egories based on composition are not simply divided be-
tween object-based models and architecture-based models.
For example, in these categories, Fractal, which is object-
based, belongs to the same category as the architecture-
based models ADLs, UML2.0, PECOS and Pin.
In view of this, we believe the only meaningful taxon-

omy is one based on composition in the component life
cycle. Composition is the central issue in CBSE after all.
Moreover, in the ideal life cycle, composition takes place
in both the design and deployment phases. By contrast,
object-based models and architecture-based models tend to



be heavily biased towards one phase or the other. In object-
based models like COM, CCM and Fractal, where compo-
nents are objects that are executable binaries and are there-
fore more deployment phase entities than design phase en-
tities. On the other hand, in architecture-based models like
ADLs and UML2.0, components are expressly design enti-
ties by definition, with or without well-defined instances in
the deployment phase.
So we propose the taxonomy of software component

models shown in Figure 10, based on component compo-
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JavaBeans
EJB, COM, CCM

Models

DR In design phase new components can be deposited in a repository
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Composition is possible in deployment phase

RR
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ADLs, UML2.0, PECOS, Pin, Fractal 
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Koala, SOFA, KobrA

Figure 10. A taxonomybased on composition.
sition in the ideal component life cycle, as discussed in the
last section.
In Category 1, in the design phase, new components can

be deposited in a repository, but cannot be retrieved from
it. Composition is not possible in the design phase, i.e. no
composites can be formed, and so no composites can be
deposited in the repository. In the deployment phase, com-
ponents can be retrieved from the repository, and their in-
stances formed and composed.
In Category 2, in the design phase, new components can

be deposited in a repository, but cannot be retrieved from
it. Composition is possible, i.e. composites can be formed,
but composites cannot be deposited in (and hence retrieved)
from the repository. In the deployment phase, no new com-
position is possible; the composition of the component in-
stances is the same as in that of the components in the de-
sign phase.
In Category 3, in the design phase, new components can

be deposited in a repository, and components can be re-
trieved from the repository. Composition is possible, and
composites can be deposited in the repository. In the de-
ployment phase, no new composition is possible; the com-
position of the component instances is the same as in that of
the components in the design phase.
In Category 4, in the design phase, there is no repository.

Therefore components are all constructed from scratch.
Composition is possible. In the deployment phase, no new
composition is possible; the composition of the component
instances is the same as in that of the components in the
design phase.

5 Discussion

The basis for the taxonomy in Figure 10 is the ideal com-
ponent life cycle, discussed in Section 3.3. This can be
justified by the commonly accepted desiderata of CBSE:

(i) components are pre-existing reusable software units –
this necessitates the use of a repository; (ii) components
can be produced and used by independent parties – this
requires builder and assembler tools that can interact with
a repository; (iii) components can be copied and instanti-
ated – this means components should be distinguished from
their instances, and hence the distinction between the de-
sign phase and the deployment phase; (iv) components can
be composed into composite components which in turn can
be composed with (composite) components into even larger
composites (or subsystems), and so on – this requires that
composites can be deposited in and retrieved from a reposi-
tory, just like any components. All the models in the taxon-
omy reflect these criteria, to greater or lesser degrees.
Given this, it is interesting to note that models in Cat-

egory 3 meet the requirements of the ideal life cycle better
than the other categories. This is not surprising, since Koala
and KobrA use product line engineering, which has proved
to be the most successful approach for software reuse in
practice [12]. The main reason for its success is precisely its
use of repositories of families of pre-existing components,
i.e. product lines.
At the other end of the scale, models in Category 4 do

not ‘perform’ so well mainly because they are ADL-based
and are therefore focused on designing (systems and) com-
ponents from scratch, rather than reusing existing compo-
nents.
Models in Categories 1 and 2 are ‘middle of the road’.

They also use repositories, but they behave differently from
those in Category 3 in that the former store binary compiled
code whereas the latter store units of design in the reposi-
tory, which are more generic and hence more reusable.
Finally, the taxonomy reveals that no existing model has

composition in both the design and the deployment phase.
No model can retrieve composites for further composition
in the deployment phase, not even those in Category 3. So
there is room for improvement, and better component mod-
els are possible.

6 Conclusion

We have presented a taxonomy that uses a unifying ter-
minology for software component models. We believe this
is an important first step for this endeavour. We have delib-
erately avoided adopting terminology from any one model.
For example, we use the term ‘builder’ in the design phase
and the term ‘assembler’ in the deployment phase to refer to
composition tools in these phases, rather than ‘builder tools’
specific to some models because the latter do not follow a
unified terminology.
The taxonomy also reveals clearly the strengths and

weaknesses of existing models. In addition to what we
discussed in the previous section, no existing component
model supports predictable assembly [28], which is the cor-



nerstone of CBSE. To address this, new component models
have to be developed. The on-going model Pin is one such,
and we ourselves are working on another [20].
Finally, details of the examples in Section 3.3 of compo-

sition in various component models can be found in [21].
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