
Software Component Models
Kung-Kiu Lau and Zheng Wang

Abstract—Component-based development (CBD) is an important emerging topic in software engineering, promising long-sought-after

benefits like increased reuse, reduced time to market, and, hence, reduced software production cost. The cornerstone of a CBD
technology is its underlying software component model, which defines components and their composition mechanisms. Current

models use objects or architectural units as components. These are not ideal for component reuse or systematic composition. In this

paper, we survey and analyze current component models and classify them into a taxonomy based on commonly accepted desiderata
for CBD. For each category in the taxonomy, we describe its key characteristics and evaluate them with respect to these desiderata.

Index Terms—Software components, software component models, component life cycle, component syntax, component semantics,

component composition.

Ç

1 INTRODUCTION

IN software engineering, component-based development
(CBD) [1], [2], [3] is an important emerging topic. CBD

aims to compose systems from prebuilt software units or
components. A system is developed as a composite of
subparts rather than a monolithic entity. Such an approach
reduces production cost by composing a system from
existing components instead of building it from scratch. It
also enables software reuse since components can be reused
in many systems. Thus, CBD promises the benefits of
increased reuse, reduced production cost, and shorter time
to market, which have long been sought after by the
software industry. To realize these benefits, it is crucial to
have components that are easy to reuse and composition
mechanisms that can be applied systematically. For
systematic composition, composites, as well as their
composition, must be well defined.

The cornerstone of any CBD methodology is its under-
lying software component model [4], [5], which defines what
components are, how they can be constructed, how they can
be composed or assembled, and how they can be deployed,
as well as, ideally, how we can reason about all these
operations on components so that quality certification may
be tractable. Current component models can largely be
divided into two categories [4], [5]: 1) models where
components are objects, as in object-oriented programming,
and 2) models where components are architectural units, as
in software architectures [6], [7]. Exemplars of these
categories are Enterprise JavaBeans (EJB) [8], [9] and
architecture description languages (ADLs) [10], [11], re-
spectively. In general, current models are not ideal for
fulfilling CBD’s promise [4], [12] because they use compo-
nents that are not easy to reuse and/or composition
mechanisms that are not well defined and/or are hard to
apply systematically. In this paper, we will show why this is
so by analyzing these models.

Our analysis is based on an idealized component life
cycle [4], [5] such that, if components were constructed and
composed in the manner defined in the life cycle, then we
should be able to meet the success criteria for CBD. The
definition of the idealized component life cycle is based on
the widely accepted desiderata for CBD’s success [2], [3],
[13], [14]. These are given as follows: First, components
should be preexisting reusable software units which
developers can reuse to compose software for different
applications more quickly than writing all of the code from
scratch for each application. Second, components should be
produced and used by independent parties. That is,
component developers need not be the same people as
component customers, such as system developers. This is
important for ensuring that components are truly reusable
by third parties. Third, it should be possible to copy and
instantiate components so that their reuse can be max-
imized, both in terms of code reuse and in terms of the
components’ scope of deployment. Fourth, components
should be composable into composite components which,
in turn, can be composed with (composite) components into
even larger composites (or subsystems), and so on.
Composition means not only reuse but also a systematic
approach to system construction.

However, to achieve these desiderata, it would be crucial
to identify the key prerequisites for component models. We
believe that a good starting point for this endeavor is a
study of current component models. In this paper, we
present such a study. In the study, we survey the 13 major
current component models, analyze them, and classify them
into a taxonomy with four categories. For each category, we
describe the key characteristics of the models and evaluate
them with respect to the desiderata for CBD by the
idealized component life cycle. This paper thus distills
and presents a comprehensive knowledge and analysis of
current software component models.

This paper is organized as follows: In Section 2, we
define and explain the elements of software component
models in general and define the idealized component life
cycle. In Section 3, we survey and categorize the 13 current
major component models according to these elements. In
Section 4, we present a taxonomy based on the idealized
component life cycle.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007 709

. The authors are with the School of Computer Science, University of
Manchester, Manchester M13 9PL, UK.
E-mail: {kung-kiu, zw}@cs.man.ac.uk.

Manuscript received 4 Aug. 2006; revised 27 May 2007; accepted 26 June
2007; published online 12 July 2007.
Recommended for acceptance by R. Taylor.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0186-0806.
Digital Object Identifier no. 10.1109/TSE.2007.70726.

0098-5589/07/$25.00 ! 2007 IEEE Published by the IEEE Computer Society

2 SOFTWARE COMPONENT MODELS

In this section, we present a reference framework for
software component models.

Currently, there is no universally accepted terminology
for CBD [13]. In particular, there are no standard criteria for
what constitutes a software component and current major
component technologies do not all use the same kind of
components. However, at present, the more widely adopted
definitions of components tend to be given without soft-
ware component models.

For example, the widely accepted definition by Szyperski
et al. [3]: “A software component is a unit of compositionwith
contractually specified interfaces and explicit context depen-
dencies only. A software component can be deployed
independently and is subject to composition by third
parties,” is not given in the context of a component model,
and neither is the following definition by Meyer [14]:

“A component is a software element (modular unit)
satisfying the following conditions:

1. It can be used by other software elements, its
“clients.”

2. It possesses an official usage description, which is
sufficient for a client author to use it.

3. It is not tied to any fixed set of clients.”
At the same time, standard component models like EJB,

COM [15], and CCM (Corba Component Model) [16] adopt
slightly different component definitions from “standard”
ones like Szyperski et al.’s and from each other.

For uniformity, in this section, we present a reference
framework for component models which defines and
explains terms of reference that we will use throughout
this paper. The definitions are general and should therefore
be universally applicable. Furthermore, by and large, they
follow (what we perceive as) consensus views and therefore
should not be contentious or controversial.

A software component model is a definition of

. the semantics of components, that is, what compo-
nents are meant to be,

. the syntax of components, that is, how they are
defined, constructed, and represented, and

. the composition of components, that is, how they are
composed or assembled.

This is exemplified by Heineman and Councill’s defini-
tion of a component [2]:

A [component is a] software element that conforms to a
component model and can be independently deployed and
composed without modification according to a composition
standard.

In this paper, we will examine the elements of 13 soft-
ware component models: JavaBeans [17], EJB, COM, .NET
[18], CCM, Web Services [19], Koala [20], [21], KobrA [22],
SOFA [23], [24], Acme-like ADLs [10], UML 2.0 [25], [26],
PECOS [27], [28], and Fractal [29], [30], [31], [32]. By
necessity, we have to omit other models, but we believe that
the chosen set is representative of the main categories of
current models. An important criterion for inclusion is that
a model should have reached a mature stage of develop-
ment, with sufficient documentation available. Also, by
necessity, we have to focus on representative models of the
categories rather than all of the models.

2.1 The Semantics of Software Components
A generally accepted view of a software component is that
it is a software unit with provided services and required
services (Fig. 1). The provided services are operations
performed by the component. The required services are
the services needed by the component to produce the
provided services. The interface of a component consists of
the specifications of its provided and required services. It
should specify any dependencies between its provided and
required services. To specify these dependencies precisely,
it is necessary to match the required services to the
corresponding provided services.

Note that, in the literature, a component can often have
multiple interfaces, with each interface being a different set
of services. Here, we have used a single interface as a
collective entity for all such interfaces.

In current component models where components are
objects in the sense of object-oriented programming, the
methods of these objects are the provided services. Because
they cannot specify their required services, these objects are
usually hosted in an environment, for example, a container,
which handles access to and interactions between compo-
nents. As a result, the semantics of these components is an
enhanced version of that of the corresponding objects. In
particular, they can interact with one another via mechan-
isms provided by the environment.

For example, in JavaBeans and EJB, although, syntacti-
cally, they are both Java classes, JavaBeans and EJB are
different semantically. Semantically, a JavaBean is a Java
class that is hosted by a container such as BeanBox [33].
JavaBeans interact with one another via adapter classes
generated by the container. Adapter classes link beans via
events. An EJB, on the other hand, is a Java class that is
hosted and managed by an EJB container provided by a
Java 2 Enterprise Edition (J2EE) server [34] via two
interfaces, the home interface and the remote interface, for
the enterprise bean. Enterprise beans interact directly via
method delegation within the EJB container and, through
their remote and home interfaces, with remote clients, also
via method delegation.

In current component models where components are
architectural units, services are represented as ports. Ports on
different units can be linked by connectors and, in a linked
pair ofports of connectedunits, theport of oneunit represents
not only theprovided service of that unit but also the required
service of the other unit and vice versa. In some models, for
example, UML2.0 and CCM, ports for provided services are
distinguished from those for required services.

2.2 The Syntax of Software Components
Once the semantics of components has been fixed in a
component model, components can be defined and
constructed. The definition of components requires a
component definition language which may be distinct from
the implementation language, that is, programming lan-
guage, for components. Clearly, for a given definition
language, components can be implemented in different
programming languages. Therefore, we refer to the syntax
of components as the syntax of the component definition
language. In a component model, this language must be

710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 1. A software component.

specified, whereas the implementation language(s) may be
left open.

In current component models where components are
classes, the definition language for components coincides
with the implementation language. For example, in both
JavaBeans and EJB, a component (respectively, a bean and
an enterprise bean) is defined as a Java class. In current
models where components are objects, the definition
language is a programming language with interface defini-
tion language (IDL) mappings. For example, COM uses
Microsoft IDL [15] and CCM uses Object Management
Group (OMG) IDL [35].

On the other hand, in component models where
components are architectural units, the definition language
is an ADL or an ADL-like language. In models with pure
ADLs being definition languages, no implementation
language is specified. Examples are Acme [36] and
UML2.0. In models with ADL-like languages being defini-
tion languages, the implementation language is different
from the definition language. For example, in Koala, the
definition language is CDL and the implementation
language is C. In PECOS, the definition language is CoCo
and the implementation language is C++ or Java.

2.3 The Composition of Software Components
In CBD, composition is a central issue since components are
supposed to be used as building blocks from a repository
and assembled or plugged together into larger blocks or
systems. Typically, components are hosted by servers and,
so, composition takes place on the server side. Client
applications are built from server-side components, as
exemplified by Web service orchestration [37].

In order to define composition, we need a composition
language, for example, [38]. The composition language
should have suitable semantics and syntax that are compa-
tible with those of components in the component model. In
most of the current component models, there is no composi-
tion language. JavaBeans, EJB,COM, .NET, andCCMhaveno
composition languages. Web Services are composed by
orchestration, typically using a workflow language like
Business Process Execution Language (BPEL) [39]. Koala
uses connectors as glue code for composition. KobrA and
UML2.0 use the UML notation. ADLs are, of course, formal
composition languages [40] and PECOS has an ADL-like
composition language CoCo (which doubles as the CDL).

In order to reason about composition, we need a
composition theory (see the discussion in [41]). Such a
theory allows us to calculate and, thus, predict the result of
applying a composition operator to components. Current
component models tend not to have composition theories,
even those with a composition language.

Composition can take place during different stages of
the life cycle of components [42], namely, 1) the design
phase, during which components are designed, defined,
and constructed in the source code, and possibly compiled
into binaries, 2) the deployment phase, during which
binaries of components are deployed into the target
execution environment for the system under construction,
and 3) the runtime phase, during which component binaries
are instantiated with data and these instances are executed
in the running system.

This life cycle is distinct from but embedded in the system
construction process that we have assumed. By the deploy-
ment phase of the component life cycle, we assume that the
system has already been constructed in a component-based
manner, with placeholders for the selected components.

Of course, it is possible to consider a different system
construction process, in particular one where the system
can be dynamically constructed or reconfigured at runtime,
for example, [43]. We choose not to follow this process,
primarily because it demands binary-level composition for
component instances, for which it is hard to define
meaningful composition operators other than glue code.

Ideally, composition should be possible in both the
design and the deployment phases of the component life
cycle while the system is being constructed. Composition
means component reuse and, therefore, composition in both
phases will maximize reuse. It also means design flexibility
in the sense that the deployed components, in particular
composite components, can be designed, by composition, in
either phase.

Accordingly, we have defined an idealized component
life cycle [5], [12] and the kind of composition that is
possible and meaningful in both phases.

2.3.1 An Idealized Component Life Cycle
The idealized life cycle is depicted in Fig. 2. This is based on
the commonly accepted desiderata of CBD [2], [3], [13], [14],
as described in Section 1. That components should be
preexisting reusable software units necessitates the use of a
repository in the design phase. That components should be
produced and used by independent parties requires the use
of builder and assembler tools that can interact with a
repository in the design and deployment phases, respec-
tively. That it should be possible to copy and instantiate
components means that components should be distin-
guished from their instances and, therefore, we distinguish
the design and deployment phases from the runtime phase.
That it should be possible to compose components into
composite components, which, in turn, can be composed
with (composite) components into even larger composites
(or subsystems), and so on, requires that composites can be
deposited in and retrieved from a repository, just like any
components. All current component models attempt to
meet these criteria, with varying degrees of success, as we
will show later.

2.3.2 Composition in the Design Phase
In the design phase, components have to be constructed,
cataloged, and stored in a repository. The main requirement
for a repository is that it should provide storage and
management for depositing and retrieving the components.
A repository could be a registry or a directory, but it must

LAU AND WANG: SOFTWARE COMPONENT MODELS 711

Fig. 2. An idealized component life cycle.

store and catalog the deposited components with suitable
identities and provide a search facility for retrieving these
components.

In the idealized life cycle, components in the repository
are in source code or they may have been compiled into
binary. They can be retrieved and composed into a
composite that is, in turn, deposited into the repository. A
new composite has a unique identity which enables the
composite to be retrieved subsequently.

A builder tool (Fig. 2) can be used to 1) construct new
components and then deposit them in the repository, for
example, A in Fig. 2, and 2) retrieve components from the
repository, compose them, and deposit them back in the
repository. For example, in Fig. 2, B and C are composed
into a composite BC that is deposited in the repository.

For example, in JavaBeans, the container provides a
repository for beans, for example, ToolBox in the BDK
(Beans Development Kit) [33], [44], which are stored as JAR
files. However, no composition is possible in the design
phase and, therefore, no composite beans can be formed.

2.3.3 Composition in the Deployment Phase
In the deployment phase, components have to be retrieved
from the repository and compiled to binary code. These
binarycomponents canbecomposed intoasystemthatwill be
executable once thebinaries havebeen instantiatedwithdata.

An assembler tool (Fig. 2) can be used to retrieve
components from a repository and, if necessary, compile
them into binary code, then assemble them into a system.
For example, in Fig. 2, binaries of A, B, D, and BC are
created and composed into a system. In the runtime phase,
the system is executable in the runtime environment once
the binaries of A, B, D, and BC are instantiated with data.

The result of the deployment phase composition is a
whole system in binary code; thus, this is the end result of
system design and implementation and, therefore, systems
should not be stored in the repository.

For example, in JavaBeans, in the deployment phase,
bean instances are created from beans in the repository and
these can be composed (linked) graphically by using the
builder tool.

Finally, it is worth pointing out that, although they do not
figure explicitly in Fig. 2, containers play an important part in
the component life cycle. Indeed, they are considered to be
implementations of component models in that they provide
an execution environment for components and their

assemblies. With reference to Fig. 2, a container may be a
repository (in the design phase) and a runtime environ-
ment, for example, the EJB container. Alternatively, it may
be an assembler and a runtime environment, for example,
the BeanBox in JavaBeans.

3 CURRENT SOFTWARE COMPONENT MODELS

In this section, we survey existing software component
models. Rather than discussing them in some random
sequential order, we survey the models in meaningful
groups. Clearly, we can group the models according to
component semantics, syntax, or composition. However,
since composition is a key issue in CBD, we focus on
groupings based on composition. We present four such
categories that cover the 13 models and, for each category,
we explain a representative model in detail, with an
example, but only outline the other models (in the
Appendix) for completeness.

To define categories based on composition, we consider
composition in an ideal life cycle, as described in Section 2.3
(Fig. 2), that provides a basis for comparing and classifying
composition in existing component models. For instance,
some component models do not have composition in the
design phase,whereas somemodels do. Some have composi-
tion in the deployment, whereas some do not. Thus, many
categories are possible. Fig. 3 gives four categories that cover
all 13 major existing component models.

In Category 1, in the design phase, there is no repository.
Therefore, components are all constructed from scratch.
Composition is possible. In the deployment phase, no new
composition is possible: The composition of the component
instances (in the runtime phase) is the same as that of the
components in the design phase. All simple Acme-like
ADLs belong to this category, as do models such as
UML2.0, PECOS, and Fractal, which are based on Acme-
like ADLs. This category can be described as Design
without Repository.

In Category 2, in the design phase, new components can
be deposited in a repository but cannot be retrieved from it.
Composition is possible, that is, composites can be formed,
but composites cannot be retrieved from the repository
because they do not have identities of their own. In the
deployment phase, no new composition is possible: The
composition of the component instances (in the runtime
phase) is the same as that of the components in the design

712 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 3. Categories based on composition.

phase. This category includes EJB, COM, .NET, CCM, and
Web Services. It can be described as Design with Deposit-
only Repository.

In Category 3, in the design phase, new components can
be deposited in a repository but cannot be retrieved from it.
Composition is not possible in the design phase, that is, no
composites can be formed and, so, no composites can be
deposited in the repository. In the deployment phase,
components can be retrieved from the repository and their
binaries can be formed and composed. The sole member of
this category is JavaBeans. This category can be described as
Deployment with Repository.

In Category 4, in the design phase, new components can
be deposited in a repository and components can be
retrieved from the repository. Composition is possible and
composites can be deposited in the repository. In the
deployment phase, no new composition is possible: The
composition of the component instances (in the runtime
phase) is the same as that of the components in the design
phase. Koala, SOFA, and KobrA belong to this category.
This category can be described as Design with Repository.

3.1 Category 1: Design without Repository
This category includes all simple Acme-like ADLs, UML2.0,
PECOS, and Fractal. Acme is the representative example in
this category since all the of other models are based on
Acme-like ADLs.

In Acme, as in any ADL [10], [11], a component is an
architectural unit (a box) that represents a primary computa-
tional element and data store of a system (Fig. 4). The
interface of a component is defined by a set of ports,
through which the component’s functionalities are exposed.
Each port identifies a point of interaction between the
component and its environment. A port can have different
roles, such as sink (receive) and source (send).

Components and their ports can have different types.
These types can be defined in a family of type definitions
which define the design vocabulary of a system. Both
functional and extrafunctional attributes of a component
canbe specifiedbyproperty typesdefined in that component.

Consider a simple bank system which has just one ATM
that serves one bank consortium with two bank branches,
Bank1 and Bank2. In Acme [36], the bank system can be
implemented using the ATM, BankConsortium, Bank1, and
Bank2 components, as shown in Fig. 5. Components ATM,
BankConsortium, Bank1, and Bank2 specify their ports and
Bank1 and Bank2 specify their bank identity properties.

In Acme, again, as in any ADL, components are
composed of connectors (lines) that mediate the commu-
nication and coordination activities among components
(boxes; see Fig. 6). A connector can connect two or more
components. Similarly to components, connector interfaces
are defined by sets of roles. Each role defines a participant
of the interaction represented by the connector. A connector
may have multiple interfaces by using different types of
roles. The types of connectors and their roles may be
defined as a family. Both connector and role attributes can
be specified by property types defined in that connector.

In Acme, there is no repository for components. In the
design phase, components and connectors have to be
constructed from scratch. The system architecture is then

created by connecting the components, possibly using a
visual builder tool, for example, AcmeStudio [45] for Acme.
For example, in Acme, the architecture for the bank system
is defined graphically in Fig. 7, where BC stands for
BankConsortium and B1 and B2 stand for Bank1 and
Bank2, respectively. The components are those specified in
Fig. 5 and the connectors are specified in Fig. 8. The
specification for the architecture is defined in Fig. 9. The
connections are defined by a set of attachments. Each
attachment represents an interaction between a port (of a
connector) and some role of a connector.

In ADLs, in general, after the design phase comes the
runtime phase, that is, there is no deployment phase
(Fig. 3). However, the implementation of components and
connectors is not always specified. Therefore, the imple-
mentation of the architecture is a separate activity from its
design and has to be done manually somehow in some
programming language. The implementation is then exe-
cuted in the runtime environment for the chosen program-
ming language.

In Acme, system specifications constructed in the design
phase can be compiled to a system in a programming
language directly, provided that the code for the compo-
nents and connectors is available in that language. For
example, in Acme, architectures can be specified in
ArchJava [46], [47] and can be compiled into Java, provided
that the Java code for the components and the connectors is
available [48]. The compiled system is then run on the Java
Virtual Machine.

The other models in this category, UML2.0, PECOS, and
Fractal, are outlined in Appendix A.1. In these models, the
builder is a programming environment which is often a
visual builder tool like AcmeStudio for the Acme ADL,
whereas the runtime environment is usually that for the
implementation language, for example, the Java Virtual
Machine for Fractal.

LAU AND WANG: SOFTWARE COMPONENT MODELS 713

Fig. 4. An Acme component.

Fig. 5. Examples of Acme components.

Fig. 6. Acme connectors.

Fig. 7. Architecture of bank system in Acme.

3.2 Category 2: Design with Deposit-Only
Repository

This category includes EJB, COM, .NET, CCM, and Web
Services. The representative example is EJB.

In EJB [49], [50], a component is an enterprise bean, which
is a Java class that is hosted and managed by an EJB
container provided by a J2EE server. An EJB container
manages the execution of enterprise beans and handles
security, transaction management, Java Naming and Direc-
tory Interface (JNDI) lookups, and remote connectivity.

The Java class for an enterprise bean defines the methods
of the bean. It must be accompanied by code for two
interfaces, the home interface and the remote interface, that the
EJB container uses to manage and run the bean. These
interfaces expose the capabilities of the bean and provide all
of the methods needed for client applications to access the
bean. The home interface represents the life-cycle methods
of the bean, such as create, destroy, and locate a bean instance,
whereas the remote interface represents the tasks per-
formed by the bean.

There are three different kinds of enterprise beans [49]:
entity beans, session beans, and message-driven beans. Entity
beans model business data: An entity bean represents a
persistent business object whose data is stored in a
database. Session beans model business processes: A
session bean represents a business process or an agent that
performs a service. Message-driven beans model message-
related business processes: A message-driven bean repre-
sents a business process that can only be triggered by
receiving messages from other beans.

As an example, consider a bookstore that wishes to
maintain a database of its book stock. Suppose books can be
purchased and have their details added to the database by
any shop assistant. Then, the bookstore can use a set of
enterprise beans to implement a system that allows multiple
clients to access and update the database.

An entity bean, like the one in Fig. 10, can represent the
table of books in a database. This entity bean consists of one
class and two interfaces: 1) BookBean is the Java class that
defines the methods of the entity bean, 2) BookHome is the
home interface of the entity bean, and 3) Book is the remote
interface of the entity bean. Each instance of this entity bean
represents a row of the table of books in a database.
Methods defined in the home interface BookHome are life-
cycle methods: “create” and “findByPrimaryKey.” Thus, the
home interface helps create an instance of this entity bean
and locate an instance of BookBean by its primary key
(isbn). Methods in BookBean correspond to methods
defined in both the home interface BookHome and the
remote interface Book.

A session bean, like the one in Fig. 11, can be used to add
details of a set of books into the table of books in the
database. This session bean consists of the class Book-
StoreBean, the home interface BookStoreHome, and the
remote interface BookStore (and its helper class Books). The
only method defined in the home interface BookStoreHome
of BookStoreBean is a life-cycle method: “create.” The only
method defined in the remote interface BookStore of
BookStoreBean is a task performed to add details of a set
of books into the database: “addBook.” As in an entity bean,
methods in a session bean correspond to methods in its
home and remote interfaces.

In general, enterprise beans are Java classes and
interfaces and bean composition is by delegation of method
calls. In the design phase, enterprise beans can be
constructed in a Java programming environment such as
Eclipse [51] and their JAR files containing the enterprise
bean implementation class, the home and remote interfaces,
and the deployment descriptor are deposited in an EJB
container on a J2EE server that is the repository of
enterprise beans.

TheEJBcontainer inFig. 12showsanexampleof thedesign
phase composition of two session beans, SessionBeanA and

714 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 8. Examples of Acme connectors.

Fig. 9. Example of component composition in Acme.

Fig. 10. Example of entity bean.

SessionBeanB, and one entity bean, EntityBean. Session-
BeanA takes client calls, and EntityBean writes to the
database.

In the design phase, although bean composition can
produce composite beans “on the fly” in the EJB container,
it is not possible to retrieve such a bean and reuse it as a
single bean for further composition. However, individual
beans in the container in the design phase are reusable in
the sense that every bean is accessible to clients in the
deployment phase, regardless of what other beans it is
linked to, and, whatever method a client calls, the correct
links will automatically be followed.

Thus, although it is a repository for enterprise beans that
supports the design phase composition, the EJB container
does not support the storage or retrieval of composite
components as identifiable units. The reason is that the
container is also the execution environment for beans.

In EJB, after the design phase comes the runtime phase.
Thus, no new composition is possible after the design phase
(for example, see [52]). In the runtime phase, bean instances
are created and executed in the EJB container.

Consider the bookstore example again. In the design
phase, an assembly of the session bean BookStoreBean and
the entity bean BookBean is deposited into the EJB
container. The composition is defined by BookStoreBean
calling the methods “create” and “set” defined in the home
interface BookHome and the remote interface Book of
BookBean (Fig. 13).

In the runtime phase, this system is looked up and
instantiated. In this instance of the system, the Book-
StoreClient calls the method “create” defined in the home
interface BookStoreHome of the BookStoreBean, which
returns an instance of BookStore, the remote interface of

the BookStoreBean. Then, the BookStoreClient calls the
“addBook” method defined in the remote interface Book-
Store of the BookStoreBean. Within this call, the Book-
StoreBean adds books by iteratively calling the method
“create” defined in the home interface BookHome of the
BookBean, which returns instances of the remote interface
Book of the BookBean. Then, the BookStoreBean calls the
“set” methods defined in the remote interface Book of the
BookBean to set BookName, Author, Publisher, and Price of
these books iteratively, resulting in rows of books inserted
into the table books.

The other models in this category, COM, .NET, CCM,
and Web Services, are outlined in Appendix A.2. In these
models, the builder is usually a programming environment,
like Eclipse for EJB, the deposit-only repository is either a
container, like the EJB container and the CCM container, or
a server, like the COM server, the Windows server for .NET,
and Web servers for Web Services.

3.3 Category 3: Deployment with Repository

This category contains only JavaBeans.
In JavaBeans [17], a component is a bean, which is just

any Java class that has methods, events, and properties. A bean
is intended to be constructed and manipulated in a visual
builder tool.

For example, consider a simple bean MessageBox, which
is a Java class that has a method for displaying a message,
mouse events such as “mousePressed,” and the message
that it displays is a property of the bean.

Properties are local to a component, so these do not
figure in the bean’s interface. Events can be source or target
events. Source events in one bean can trigger (target)
methods in another bean. More precisely, an event listener
(for a target event) in a bean, when notified by an external
source event (that is, a source event in another bean),
triggers a corresponding method in the bean. Thus, in a
bean, target events and methods are provided services in
the bean’s interface and external source events are the
required services, that is, required services are event sinks.

Individual JavaBeans are constructed in a Java program-
ming environment such as Java Development Kit and
deposited in the ToolBox of the BDK [33], [44], which is the
repository for JavaBeans. To execute or compose JavaBeans,
the beans have to be dragged into a container like BeanBox.
More precisely, for each bean, a JAR file containing the bean
implementation class, the event state object, and the event
listener interface are deposited in the ToolBox of BDK.
Binaries of a bean can be dragged from the ToolBox,
composed, instantiated, and executed in the BeanBox.

Although the ToolBox acts like a repository, it does not
support composition of beans. Thus, the only composition

LAU AND WANG: SOFTWARE COMPONENT MODELS 715

Fig. 11. Example of session bean.

Fig. 12. Composition of Enterprise JavaBeans.

Fig. 13. Example of EJB composition.

possible in JavaBeans is the composition of beans in the
deployment phase.

Deployment phase composition is handled by the Java
delegation event model, which specifies how a bean sends a
message to other beans without knowing the exact methods
that the other bean implements. To compose two chosen
JavaBean instances in BeanBox, one bean instance must act
as a source bean that can generate a source event and a
method must be chosen in the other (target) bean instance,
which will be triggered by the source event. Of course, the
target method of the target or listener bean must match the
event type of the source bean’s method. The communication
between the source and target beans is indirect, but this is
handled by BeanBox automatically: BeanBox generates,
compiles, and loads an event adapter class which routes
messages from the source bean to the target bean to connect
the source bean’s event to the target bean’s event handler
method (Fig. 14).

Consider the composition of two beans, MessageBoxA
and MessageBoxB. In the design phase, these two beans are
developed and deposited into the ToolBox of BeanBox. No
composition is possible at this stage. In the deployment
phase, suppose an instance of MessageBoxA (Bean A is
created with the property “Hello, I’m bean A”) and an
instance of MessageBoxB (Bean B is created with the
property “Hello, I’m bean B”) by dragging MessageBoxA
and MessageBoxB from the ToolBox. To compose beans A
and B, we choose bean B to be the event source and Bean A
to be the event target and we choose a source event
“mousePressed” in bean B. Next, bean B is linked to bean A
and a target event or method in bean A “showText” is
chosen which will be a listener for the source event that has
been selected in bean B. BeanBox effects this composition by
automatically generating and compiling an adapter class
that connects beans A and B (Fig. 15). More precisely,
BeanBox creates a class that calls the “showText” method in
bean A whenever the event “mousePressed” occurs in
bean B. It then associates the source and target beans with
this “adapter” object. Therefore, when bean B is selected,
and the mouse is pressed, bean A displays the message
“Hello, I’m bean A.”

3.4 Category 4: Design with Repository
This category includes Koala, SOFA, and KobrA. The
representative example is Koala.

In Koala [20], [21], a component is a unit of design which
has a specification and an implementation. Semantically,
Koala components are units of computation and control
(and data) connected in an architecture. Therefore, syntac-
tically, Koala components are defined in an ADL-like
language, namely, Koala, consisting of an IDL for defining
component interfaces, a CDL for defining components, and
a Data Definition Language (DDL) for specifying local data
in components. Koala component definitions are compiled
by the Koala compiler to their implementation in a
programming language, for example, C.

In Koala, a component can have multiple interfaces
implementing different functions and is represented in
Fig. 16. Each interface specifies the signature of the function
that it implements and is represented as a square containing
a triangle. The tip of the triangle represents the direction of
that function call.

For example, consider a Stopwatch device that is used to
count down from a specific number, for example, 100. The
Stopwatch device is comprised of a Countdown component
and a Display component (Fig. 17). The interfaces of the
Countdown and Display components are specified in Koala
IDL and their component definitions are in Koala CDL. The
ICount interface of the Countdown component specifies the
signature of the function “count” that the Countdown
component implements. The Countdown component defini-
tiondefines its provides interface ICount and its implementa-
tion “c_impl.” The ICount and ISignal interfaces of the
Display component specify the signatures of the functions
“count” and “display” that the Display component imple-
ments. TheDisplay component definition defines its requires
and provides interfaces and its implementation “d_impl.”

Koala components’ definition files are deposited in a
repository, namely, the KoalaModel WorkSpace, which is a
file system. In the design phase, Koala components are
composed by method calls through connectors. There are
three kinds of connectors: binding, glue code, and switch.

. Binding is used to connect the requires interface of a
component to a provides interface of the same type
of another component.

. Glue code serves as an adapter that connects the
requires interface of a component to a provides
interface of a different type of another component.

. Switch is special glue code that switches binding
between components.

Any combination of components is, again, a component;
that is, the combination of components is a composite
component. A composite component is represented as in
Fig. 18. Connector binding is represented as a line, glue
code is represented as a node, with “m” for modules, and a
switch connector is represented as a “switch” node.

In Koala, composite components can be deposited back
into the repository.

In the deployment phase, Koala components are com-
piled into binaries of a programming language, for
example, C. However, no new composition of component

716 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 14. Composition of JavaBeans. Fig. 15. Example of composition of JavaBeans.

Fig. 16. A Koala component.

binaries is possible. In the runtime phase, component
instances are executed in the runtime environment of the
chosen programming language.

Consider the Stopwatch device again. In the design phase,
the Stopwatch device (Fig. 19) is being implemented by
constructing anewCountdowncomponent and composing it
with aDisplay component from the repository. Thedefinition
files for the Display component are retrieved from the
repository (definition files contain the definitions of inter-
faces, components and data). Then, the definition files for the
Countdown component are constructed. Using their defini-
tion files, Countdown and Display are composed by method
calls. This yields a definition file for Stopwatch (Fig. 20). The
definition files for Countdown and Stopwatch are deposited
into the KoalaModel WorkSpace. In the deployment phase,
the definition files of Stopwatch Countdown andDisplay are
compiled by the Koala compiler to C header files. Then, the
programmer has to write C files and compile these with the
header files to binary C code for Stopwatch.

In general, the Koala component model is used to build a
product population for consumer electronics from reposi-
tories of preexisting components, that is, product lines.

The other models in this category, that is, SOFA and
KobrA, are outlined in Appendix A.3. In these models, the
builder is a programming environment, that is, SOFANode
for SOFA and the UML Visual Builder tool for KobrA, the
repository is a file system, for example, the Template
Repository for SOFA, and the runtime environment is that
of the implementation language.

4 A TAXONOMY

In this section, we propose a taxonomy for the 13 component
models described in the previous section (and in the
Appendix). Clearly, such a taxonomy could be based on
component semantics, syntax, or composition. We will base
the taxonomy on composition, following the categories
defined in the previous section, and we will argue why

these categories are more meaningful than those based on
component semantics or syntax.

4.1 Categories Based on Component Semantics
Based on semantics, current component models can be
grouped into three categories: 1) component models in
which components are classes, 2) models in which
components are objects, and 3) those in which components
are architectural units (Fig. 21).

Component models that belong to 1) are JavaBeans and
EJB since, semantically, components in these models are
special Java classes, that is, classes hosted by containers.

Component models that belong to 2) are COM, .NET,
CCM, Web Services, and Fractal since, semantically,
components in these models are runtime entities that behave
like objects. In COM, a component is a piece of compiled
code that provides some services which is hosted by a COM
server. In .NET, a component is an executable DLL that is
hosted by a Common Language Runtime (CLR). In CCM, a
component is a Corba metatype that is an extension and
specialization of a Corba object which is hosted by a CCM
container on a CCM platform such as OpenCCM. In Web
Services, a component is a piece of binary code that provides
some services which is hosted by a Web server. In Fractal, a
component is an object-like runtime entity in languages with
mappings from the chosen IDL.

Component models that belong to 3) are Acme-like
ADLs, UML2.0, KobrA, Koala, SOFA, and PECOS. Seman-
tically, components in these models are units of computa-
tion and control (and data) connected in an architecture. In
ADLs, a component is an architectural unit that represents a
primary computational element and data store of a system.
In UML2.0, a component is a modular unit of a system with
well-defined interfaces which is replaceable within its
environment. In KobrA, components are UML components.
In Koala, SOFA, and PECOS, a component is a unit of
design which has a specification and an implementation.

LAU AND WANG: SOFTWARE COMPONENT MODELS 717

Fig. 17. Example of Koala components.

Fig. 18. Component composition in Koala.

Fig. 19. A stopwatch device.

Fig. 20. Example of component composition in Koala.

4.2 Categories Based on Component Syntax
Based on component syntax, current models fall into three
categories: 1) models in which components are defined by
object-orientedprogramming languages, 2) those inwhich an
IDL is used and in which components can be defined in
programming languages with mappings from the IDL, and
3) those in which components are defined by ADLs (Fig. 22).

Component models that belong to 1) are JavaBeans and
EJB, where components are implemented in Java.

Component models that belong to 2) are COM, .NET,
CCM, Web Services, and Fractal. These models use IDLs to
define generic interfaces that can be implemented by
components in specific programming languages. COM
and .NET use the Microsoft IDL [15], CCM uses the OMG
IDL [35], and Web Services use Web Service Description
Language (WSDL), whereas Fractal can use any IDL.

Component models that belong to 3) are Acme-like
ADLs, UML2.0, KobrA, Koala, SOFA, and PECOS.
Obviously, in all ADLs, components are defined in ADLs.
In UML2.0 and KobrA, the UML notation is used as a
kind of ADL and components are defined by UML
diagrams. In Koala and SOFA, components are defined
in ADL-like languages. In PECOS, components are
defined in CoCo, which is essentially an ADL, too.

The main difference between these categories is that
components in 1) and 2) are directly executable in their
respective programming languages, whereas components
in 3) are only specifications which have to be implemented
by somehow using suitable programming languages.

4.3 A Taxonomy Based on Composition
We have seen three groupings of categories based on
component semantics, syntax, andcomposition.Thequestion
iswhether it is possible ormeaningful to combine them into a
single taxonomy. Looking at the categories based on
semantics (Fig. 21) and those based on syntax (Fig. 22), it is
obvious that they can be merged straightforwardly into two
groups:

. Object based: JavaBeans, EJB, COM, .NET, CCM,
Web Services, and Fractal.

. Architecture based: Acme-like ADLs, UML2.0,
KobrA, Koala, SOFA, and PECOS.

However, comparing these two groups with the cate-
gories based on composition in the component life cycle
(Fig. 3), it is clear that there is no meaningful way of
merging the former with the latter. Of the object-based
group of the former, EJB, COM, .NET, CCM, and Web
Services belong to different categories from JavaBeans and
from Fractal in the latter. Of the architecture-based group of
the former, KobrA, Koala, and SOFA belong to different
categories from Acme-like ADLs, UML2.0, and PECOS in
the latter. Conversely, the categories based on composition
are not simply divided between object-based models and
architecture-based models. For example, in these categories,
Fractal, which is object-based, belongs to the same category
as the architecture-based models Acme-like ADLs, UML2.0,
and PECOS.

In view of this, we believe that the only meaningful
taxonomy is one based on composition in the idealized
component life cycle. Composition is the central issue in
CBD after all. Moreover, in the idealized life cycle,
composition takes place in both the design and deployment
phases. By contrast, object-based models and architecture-
based models tend to be heavily biased toward one phase or
the other. In object-based models like COM, .NET, CCM,
and Fractal, components are objects that are executable
binaries and are therefore more of deployment phase
entities than design phase entities. On the other hand, in
architecture-based models such as UML2.0, components are
expressly design entities by definition, with or without
binary components in the deployment phase.

Thus, we propose the taxonomy of software component
models shown in Fig. 23 based on component composition
in the idealized component life cycle, as discussed in
Section 3. The categories are the same as those in Fig. 3, but
Fig. 23 shows more details about their characteristics.

In Fig. 23, the first four columns of characteristics are
design phase characteristics, whereas the last one refers to
the deployment phase characteristics. In the design phase,
“Deposit-N” stands for “new components can be depos-
ited in a repository,” “Retrieve” stands for “components
can be retrieved from the repository,” “Compose” stands
for “composition is possible,” and “Deposit-C” stands for
“composite components can be deposited in the

718 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 21. Categories based on semantics.

Fig. 22. Categories based on syntax.

repository.” In the deployment phase, “Compose” stands
for “composition is possible.”

In the Design without Repository category, in the design
phase, there is no repository for components. Therefore,
neither new components can be deposited nor can existing
components be retrieved from a repository. Consequently,
components are all constructed from scratch. However,
composition is possible. In the deployment phase, since no
repository is available, no new composition is possible.

In the Design with Deposit-only Repository category, in
the design phase, new components can be deposited in a
repository but cannot be retrieved from it. Composition is
possible, that is, composites can be formed, but composites
cannot be deposited in (and, hence, retrieved) from the
repository. In the deployment phase, no new composition is
possible.

In the Deployment with Repository category, in the
design phase, new components can be deposited in a
repository but cannot be retrieved from it. Composition is
not possible in the design phase, that is, no composites can
be formed, and, so, no composites can be deposited in the
repository. In the deployment phase, components can be
retrieved from the repository and their instances can be
formed and composed.

In the Design with Repository category, in the design
phase, new components can be deposited in a repository
and components can be retrieved from the repository.
Composition is possible and composites can be deposited in
the repository. In the deployment phase, no new composi-
tion is possible: The composition of the component
instances is the same as in that of the components in the
design phase.

5 DISCUSSION

The basis for the taxonomy in Fig. 23 is the idealized
component life cycle, which is based on the commonly
accepted desiderata of CBD, as discussed in Section 2.3. It is
interesting to note that models in the Design with
Repository category meet the requirements of the idealized
life cycle better than the other categories. This is not
surprising since Koala and KobrA use product line
engineering, which has proved to be the most successful
approach for software reuse in practice [53]. The main
reason for its success is precisely its use of repositories of
families of preexisting components, that is, product lines.

At the other end of the scale, models in the Design
without Repository do not “perform” so well, mainly
because they are based on Acme-like ADLs and are

therefore focused on designing (systems and) components
from scratch rather than reusing existing components.

Models in the other two categories are “middle of the
road.” They also use repositories, but they behave differ-
ently from those in the Design with Repository category in
that the former store binary compiled code, whereas the
latter store units of design in the repository, which are more
generic and, hence, more reusable.

The taxonomy also reveals that no existing model has
composition in both the design and the deployment phases.
No model can retrieve composites for further composition
in the deployment phase, not even those in the Design with
Repository category. That is, the ideal category would be
Design and Deployment with Repository, but this does
currently not exist. Thus, there is room for improvement
and better component models are possible. Indeed, the
taxonomy that we have presented in this paper has been
used by other researchers to evaluate and improve their
component models, for example, [54].

Apart fromadding composition and repository to both the
designanddeploymentphases, there are twoother important
issues: 1) how components that are easy to reuse can be
designed and 2) how composition mechanisms that will
enable systematic composition can be designed. On both
points, current componentmodels donot performwell.All of
the models (where components are either objects or archi-
tectural units) use message passing as the composition
mechanism: Objects communicate by directmessage passing,
whereas architectural units use indirect message passing.
Message passing relies on and induces close coupling
between components. This hampers component reuse, in
particular the reuse of composite components.

Current models also do not have well-defined composi-
tion theories that support systematic composition. Objects
do not have a composition theory: The “composition” of
two objects by direct message passing is not supported by a
composition theory and the result is not a single object but
just the two objects calling each other’s methods. Archi-
tectural units compose via their ports and have a simple
composition theory. However, this theory does not support
systematic composition. In particular, it is usually defined
at the level of ports and used for type checking connected
ports [47] rather than at the level of whole components, in
particular composite components.

We believe that to overcome these problems, compo-
nents should have the key properties of encapsulation and
compositionality and we have formulated such a component
model [55], [56]. Our model improves reuse and defines
composition hierarchically. Components encapsulate their

LAU AND WANG: SOFTWARE COMPONENT MODELS 719

Fig. 23. A taxonomy based on composition.

own data, control, and computation and their composition
results in composites that preserve encapsulation. Encap-
sulation makes reuse easier because it removes coupling
between components. Composition that preserves encapsu-
lation leads to composite components being self-similar to
their subcomponents. Consequently, composition is hier-
archical in our model.

Objects and architectural units are both lacking in
encapsulation and compositionality. Objects encapsulate
data but not control or computation. They are not
compositional. Architectural units are compositional and
can encapsulate data, but they do not encapsulate control or
computation.

Encapsulation has the potential to counter complexity. In
our model, encapsulation occurs at every level of composi-
tion and it encapsulates every composite into just an
interface. This interface is all we need to know about the
composite in order to use it for further composition. This
means that we can encapsulate much larger composites at
each step and, by so doing, we are able to subsequently
compose much larger composites without regard to their
size or complexity.

Finally, we have not included our model in this survey
because it has not yet reached amature stage of development.

6 CONCLUSION

In this paper, we have presented a survey of software
component models. As far as possible, we have tried to use
a unified terminology in the context of an idealized scenario
for CBD. We have deliberately avoided adopting terminol-
ogy from any one component model. For example, we use
the term “builder” in the design phase and the term
“assembler” in the deployment phase to refer to composi-
tion tools in these phases rather than “builder tools” that are
specific to any component models because the latter do not
follow a unified terminology.

We have proposed a taxonomy by generalizing from
software component models that we have examined and
compared. The taxonomy clearly reveals the characteristics
of categories of existing component models with regard to
the desiderata of CBD. Thus, it shows what desirable
features a component model should have in order to
achieve these desiderata.

The ideal model does not yet exist. Such a model would
allow composition in both the design and deployment
phases, together with the use of a repository. It would also
use components that are easier to reuse, as well as
composition operators that better enable systematic compo-
sition than are afforded by current models. We believe that
the ideal model should have the key characteristics of
encapsulation and compositionality.

APPENDIX A
This appendix contains the outlines of component models
that are not covered in detail in the main text.

A.1 Category 1: Design without Repository

A.1.1 UML2.0
In UML2.0 [25], [26], a component is a modular unit of a
system with well-defined interfaces that is replaceable
within its environment. A component defines its behavior
by one or more requires and provides interfaces (ports)
which implement its required and provided services. Every
required service is represented by a socket and every

provided service by a lollipop (Fig. 24). Components can be
constructed in a visual builder tool such as Visual UML.

In the design phase, UML2.0 components are composed
of UML connectors (Fig. 25). There are two kinds of
connectors:

. An assembly connector (lollipop in socket) is used to
connect the required interface of a component to the
provided interface of another component.

. A delegation connector (arrow) is used to forward
requested and provided services from inside the
environment of a composite component to outside
the component.

Like ADLs, there is no deployment phase and imple-
mentations of the components and connectors in the system
constructed in the design phase have to be constructed
manually somehow. Some tools can perform code genera-
tion from UML2.0 specifications. Either way, the imple-
mented system is executed in the runtime environment for
the chosen programming language.

A.1.2 PECOS
In PECOS [27], [28], a component is a unit of design which
has a specification and an implementation. The inputs and
outputs of a component are represented as ports (Fig. 26).
Components are composed by linking their ports with
connectors.

Every component in PECOS has a name, a number of
property bundles, a set of ports, and behavior. Ports are for
data exchange, which is the only form of interaction
between components with their environment (and, hence,
other components). A port is specified with a unique name
within a component, the type of the data passed over the
port, the range of values that can be passed on this port, and
the direction of the port, that is, in, out, and inout. A port can
only be connected to another port having the same type and
complementary direction.

The behavior of a component is a function or an algorithm
that takes data available on the component ports or some
internal data and produces data on the component ports.

In PECOS, there is no component repository. In the design
phase, each system or component is specified in the CoCo
language [27] in a top-down manner, that is, in terms of
compositions of subcomponents. Like ADLs, CoCo specifies
only the properties and ports of a component and its
connectors but not its behavior. The behavior of a component
has to be filled in (implemented) by the programmer. Since

720 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 24. A UML component.

Fig. 25. Component composition in UML.

Fig. 26. A PECOS component.

CoCo does not specify the behavior of components, the CoCo
specification of the entire system is a syntactic specification of
the composition of the subcomponents. This composition is
the composition in the design phase. The (sub)components
have no implementation at this stage.

Components are composed of connectors that link their
ports. A connector describes a data-sharing relationship
between ports. It is described by its name, its type, and a list
of ports that it connects. A connector may only connect two
ports if the in port and the out port have compatible data
types. Ports of components can only be connected if they
belong to the same parent component, that is, connectors
may not cross component boundaries.

PECOS is used for specifying and developing embedded
systems of field devices represented as software compo-
nents. A complete system typically represents a device
running in a control loop. It must have a schedule that
specifies the order in which its behavior and the behavior of
its subcomponents are run. Therefore, to realize an
executable system from its CoCo specification, the behavior
of subcomponents has to be implemented by the program-
mer and a schedule must then be provided for the system
and any subsystem that contains subcomponents.

A.1.3 Fractal
In Fractal [30], [31], [32], a component is a runtime entity
that behaves like an object. IDLs (for example, OMG IDL)
are used to define generic interfaces that can be implemen-
ted by components in specific programming languages. The
current Fractal API is extended and modified from Java API
with JavaBeans-like introspection facilities.

A Fractal component is comprised of a content and a
controller (Fig. 27). The content of a component contains its
interfaces and implementation. The interfaces of a compo-
nent are theonlyaccesspoints for other components to invoke
operations defined by the component. The controller of a
component defines the control behavior associated with this
component. In particular, it intercepts incoming and out-
going operation invocations and operation returns targeting
or originating in the component’s content that it controls.

A Fractal component can implement multiple interfaces.
A parametric component allows attributes to be set by its
clients (via its AttributeController interface).

In the design phase, components are constructed in a
programming environment with Fractal APIs and are
composed by method calls through connectors (Fig. 28).
The Java Virtual Machine serves as the runtime environ-
ment for Fractal components.

A.2 Category 2: Design with Deposit-Only Repository

A.2.1 COM
In Microsoft’s COM [15], a component is a unit of compiled
code (binary object) on a COM server. The language for the
source code of a component can be any programming
language that is supported by Microsoft IDL [15], for
example, C, C++, and Ada. Services in a component are
invoked via pointers to the functions that implement them.
For each service provided by a component, there is an
interface [57]. A COM component can implement multiple
interfaces (Fig. 29). COM interfaces are specified in
Microsoft IDL and every component must implement an
IUnknown interface.

COM components are constructed in a programming
environment such as Microsoft Visual Studio .NET, which
provides a builder for COM components. The COM server
is the repository and there is no assembler.

In the design phase, COM components are composed by
method calls through interface pointers (Fig. 30). After the
design phase comes the runtime phase, with the COM
server providing the runtime environment.

A.2.2 .NET Component Model
InMicrosoft’s .NET [18], a component is an assembly that is a
binary unit supported by CLR [58]. CLR is the runtime
environment of .NET that loads, executes, andmanages .NET
types in the Intermediate Language (IL) into which all .NET
languages are compiled. Types of all .NET languages are
implemented within the Common Language Specification
(CLS), which is a subset of the language features that are
adopted by CLR to realize cross-language interoperability.
Thus, a .NET component is implemented in any .NET
language, including C#, VB, C++, that is constrained by CLS
(only features included in CLS can be used) and compiled to
IL code, whatever the implementation language is.

A .NET component is made up of metadata and IL code
(Fig. 31). The metadata of a .NET component contains the
following information:

. Description of assembly: Assembly identity, including
name, version, and so forth, the files, types, and
other resources that make up the assembly, any
other assemblies that this assembly depends on, and
the set of permissions that are required to run.

. Description of types: Name, visibility, base class,
interfaces implemented, and members, including
methods, fields, properties, events, and nested types.

LAU AND WANG: SOFTWARE COMPONENT MODELS 721

Fig. 27. A Fractal component.

Fig. 28. Component composition in Fractal.

Fig. 29. A COM component.

Fig. 30. Component composition in COM.

. Attributes: Garbage collection; security attributes;
version binding, and so forth.

The IL code of a .NET component is the output of a
number of compilers of .NET languages (the IL code is
actually the CPU-independent instruction set) that is used
as the input to a just-in-time compiler in CLR (the IL code is
converted to native CPU-specific code by the CLR). There-
fore, the metadata is the interface of a .NET component.

.NET components are constructed in Microsoft Visual
Studio .NET, which therefore provides a builder for these
components. The CLR is the repository and runtime
environment of .NET components.

In the design phase, .NET components are composed by
method calls through references via metadata (Fig. 32).
After the design phase comes the runtime phase, with the
CLR providing the runtime environment.

A.2.3 CCM
In CCM [35], [59], a component is a metatype in Corba [60],
which is an extension and specialization of a Corba object,
hosted by a CCM container on a CCM platform such as
OpenCCM [61]. Component types are specific named
collections of features that can be described in OMG IDL 3.
Component interfaces (Fig. 33) are made up of ports.

CCM supports four kinds of ports:

. Facets are distinct named interfaces that are provided
by the component for client interaction. They are the
provided operation interfaces of the component.

. Receptacles are named connection points that de-
scribe the component’s ability to use a reference
supplied by some external agent. They are the
required operation interfaces of the component.

. Event Sources are named connection points that emit
events of a specified type to one or more interested
event consumers or to an event channel. They
publish or emit events.

. Event Sinks are named connection points into which
events of a specified type may be pushed. They
consume events.

Corba components have homes that are component
factories that manage a component instance’s life cycle,
including creation, destruction, and retrieval. Each compo-
nent instance must be managed by one home instance.

Corba components are constructed in a programming
environment such as Open Production Tool Chain and
deposited into a CCM container hosted and managed by a
CCM platform such as OpenCCM. The programming envir-
onment is thebuilderand theCCMcontainer is the repository.

In the design phase, Corba components are assembled by
method and event delegations in such a way that facets
match receptacles and event sources match event sinks. In
the runtime phase, the CCM container provides the runtime
environment for Corba component instances.

A.2.4 Web Services
Web Services [62] are fundamental elements of distributed
applications in Service-Oriented Computing [19]. A Web
service (Fig. 34) is a piece of binary code designed to support
interoperable machine-to-machine interactions for resource
sharing over a network. It has an interface described in a
machine processable format, specifically in the WSDL [63].
Web services interact with one another via SOAP messages
[62], typically conveyed by using HTTP with an XML
serialization in conjunction with other Web-related stan-
dards. The manner in which a Web Service handles SOAP
messages is prescribed by itsWSDL interface. WSDL defines
the message formats, data types, transport protocols, and
transport serialization formats that should be used between
services.

Services can be implemented in any programming
language and deployed on server machines that are publicly
available. Interfaces of services are published in a Universal
Description, Discovery, and Integration (UDDI) [62].

In the design phase, Web services are composed by
delegation of method calls through SOAP messages
(Fig. 35). For a service to be composed with another service,
it first locates the server machine for this service by
physically specifying its address in the code so that the
two services could send and receive SOAP messages in the
design phase.

Services are deployed in the design phase, so there is no
separate deployment phase. In the runtime phase, the
server of each service provides the runtime environment for
the service.

Note that by service composition we mean server-side
composition and not what is called Web service orchestra-
tion on the client side. The latter is used by the Web services
community to create client-side applications by defining
their workflows in the BPEL [39].

A.3 Category 4: Design with Repository

A.3.1 SOFA
In SOFA [23], [24], a component is a unit of design that has a
specification and an implementation. It is specified by its
frame and architecture. The frame defines provides and
requires interfaces (Fig. 36) and properties of the compo-
nent which can be implemented by more than one
architecture. The architecture describes the structure of
the component. SOFA components are defined in an ADL-
like language, that is, SOFA CDL, which is used to define
interfaces, frames, and architectures of SOFA components.
SOFA components definitions are compiled by the SOFA

722 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

Fig. 31. A .NET component.

Fig. 32. Component composition in .NET.

Fig. 33. A Corba component.

Fig. 34. A Web service.

Fig. 35. Web service composition.

CDL compiler to their implementations in a programming
language, for example, Java.

SOFA components are constructed in the SOFANode
and deposited into the Template Repository. The SOFA-
Node is the builder for SOFA components and the Template
Repository is the repository of SOFA components. There is
no assembler.

In the design phase, SOFA components are composed by
method calls through connectors. In the deployment phase,
the SOFANode provides the runtime environment for
SOFA components.

A.3.2 KobrA
In KobrA [22], a component is a UML stereotype. Every
KobrA component has a specification and an implementa-
tion. The specification describes what a component does
and, thus, it is the interface of the component, and the
implementation describes how it does it.

KobrA components can be constructed in a visual
builder tool such as Visual UML and deposited into a file
system. The visual builder tool is the builder for KobrA
components and the file system is the repository of KobrA
components. There is no assembler.

In the design phase, KobrA components are composed by
direct method calls. In the deployment phase, component
implementations can be refined from their specifications. No
new composition of component instances is possible.

ACKNOWLEDGMENTS

The authors wish to thank Ivica Crnkovic, David Garlan,
Dirk Muthig, Oscar Nierstrasz, Bastiaan Schonhage, and
Kurt Wallnau for information and helpful discussions. They
are also grateful to the reviewers and the editor for
illuminating feedback and constructive comments, which
enabled them to make considerable improvements to the
paper. Z. Wang would like to thank Universities UK for the
Overseas Research Students (ORS) Award and the School of
Computer Science, University of Manchester, for the
Departmental Studentship. Parts of the material in this
paper were presented as tutorials at the 21st IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE 2006) and the 28th International Conference on
Software Engineering (ICSE 2006) [4], as well as in a
conference proceeding [12].

REFERENCES

[1] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J.
Robert, R. Seacord, and K. Wallnau, “Volume II: Technical
Concepts of Component-Based Software Engineering,” second
ed., Technical Report CMU/SEI-2000-TR-008, Software Eng. Inst.,
Carnegie Mellon Univ., 2000.

[2] Component-Based Software Engineering: Putting the Pieces Together,
G. Heineman and W. Councill, eds. Addison-Wesley, 2001.

[3] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond
Object-Oriented Programming, second ed. Addison-Wesley, 2002.

[4] K.-K. Lau, “Software Component Models,” Proc. 28th Int’l Conf.
Software Eng. (ICSE ’06), pp. 1081-1082, 2006.

[5] K.-K. Lau and Z. Wang, A Survey of Software Component Models,
second ed., School of Computer Science, Univ. of Manchester,
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf,
May 2006.

[6] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, second ed. Addison-Wesley, 2003.

[8] L. DeMichiel, L. Yalçinalp, and S. Krishnan, Enterprise JavaBeans
Specification Version 2.0, 2001.

[9] R. Monson-Haefel, Enterprise JavaBeans, fourth ed. O’Reilly &
Assoc., 2004.

[10] P. Clements, “A Survey of Architecture Description Languages,”
Proc. Eighth Int’l Workshop Software Specification and Design (IWSSD
’96), pp. 16-25, 1996.

[11] N. Medvidovic and R.N. Taylor, “A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages,” IEEE Trans. Software Eng., vol. 26, no. 1, pp. 70-93, Jan.
2000.

[12] K.-K. Lau and Z. Wang, “A Taxonomy of Software Component
Models,” Proc. 31st Euromicro Conf. Software Eng. and Advanced
Applications (SEAA ’05), pp. 88-95, 2005.

[13] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plasil, G.
Pomberger, W. Pree, M. Stal, and C. Szyperski, “What Char-
acterizes a Software Component?” Software—Concepts and Tools,
vol. 19, no. 1, pp. 49-56, 1998.

[14] B. Meyer, “The Grand Challenge of Trusted Components,” Proc.
25th Int’l Conf. Software Eng. (ICSE ’03), pp. 660-667, 2003.

[15] D. Box, Essential COM. Addison-Wesley, 1998.
[16] CORBA Component Model, V3.0, OMG, http://www.omg.org/

technology/documents/formal/components.htm, 2002.
[17] JavaBeans Specification. Sun Microsystems, http://java.sun.com/

products/javabeans/docs/spec.html, 1997.
[18] A. Wigley, M. Sutton, R. MacLeod, R. Burbidge, and S. Wheel-

wright, Microsoft .NET Compact Framework (Core Reference). Micro-
soft Press, Jan. 2003.

[19] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services:
Concepts, Architectures and Applications. Springer-Verlag, 2004.

[20] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
“The Koala Component Model for Consumer Electronics Soft-
ware,” Computer, vol. 33, no. 3, pp. 78-85, Mar. 2000.

[21] R. van Ommering, “The Koala Component Model,” Building
Reliable Component-Based Software Systems, I. Crnkovic and
M. Larsson, eds., pp. 223-236, Artech House, 2002.

[22] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel, Component-Based
Product Line Engineering with UML. Addison-Wesley, 2001.

[23] F. Plá!sil, D. Balek, and R. Janecek, “SOFA/DCUP: Architecture for
Component Trading and Dynamic Updating,” Proc. Fourth Int’l
Conf. Configurable Distributed Systems (ICCDS ’98), pp. 43-52, 1998.

[24] F. Plá!sil, M. Besta, and S. Visnovsky, “Bounding Component
Behavior via Protocols,” Proc. Technology of Object-Oriented
Languages and Systems (TOOLS 31), pp. 387-398, 1999.

[25] UML 2.0 Superstructure Specification, OMG, http://www.omg.org/
cgi-bin/doc?ptc/2003-08-02, 2007.

[26] J. Cheesman and J. Daniels, UML Components: A Simple Process for
Specifying Component-Based Software. Addison-Wesley, 2000.

[27] T. Genssler, A. Christoph, B. Schulz, M. Winter, C. Stich, C.
Zeidler, P. Müller, A. Stelter, O. Nierstrasz, S. Ducasse, G.
Arévalo, R. Wuyts, P. Liang, B. Schönhage, and R. van den Born,
PECOS in a Nutshell, http://www.pecos-project.org/, Sept. 2002.

[28] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P.
Müller, C. Zeidler, T. Genssler, and R. van den Born, “A
Component Model for Field Devices,” Proc. First Int’l IFIP/ACM
Working Conf. Component Deployment (CD ’02), pp. 200-209, 2002.

[29] “The Fractal Project Web Page,” http://fractal.objectweb.org/,
2007.

[30] E. Bruneton, T. Coupaye, and J. Stefani, “Recursive and Dynamic
Software Composition with Sharing,” Proc. Seventh Int’l Workshop
Component-Oriented Programming (WCOP ’02), 2002.

[31] E. Bruneton, T. Coupaye, and J. Stefani, “The Fractal Component
Model,” ObjectWeb Consortium, Technical Report Specification
V2, 2003.

[32] E. Bruneton, T. Coupaye, and M. Leclercq, “An Open Component
Model and Its Support in Java,” Proc. Seventh Int’l Symp.
Component-Based Software Eng. (CBSE ’04), pp. 7-22, 2004.

LAU AND WANG: SOFTWARE COMPONENT MODELS 723

Fig. 36. A SOFA component.

[33] JavaBeans Architecture: BDK Download. Sun Microsystems, http://
java.sun.com/products/javabeans/software/bdk_download.
html, 2003.

[34] Java 2 Platform, Enterprise Edition Sun Microsystems, http://
java.sun.com/j2ee/, 2007.

[35] Common Object Request Broker Architecture: Core Specification,
Version 3.0.3, http://www.omg.org/technology/documents/
corba_spec_catalog.htm, Mar. 2004.

[36] D. Garlan, R. Monroe, and D. Wile, “Acme: Architectural
Description of Component-Based Systems,” Foundations of Compo-
nent-Based Systems, G. Leavens and M. Sitaraman, eds., pp. 47-68,
Cambridge Univ. Press, 2000.

[37] C. Peltz, “Web Services Orchestration and Choreography,”
Computer, vol. 36, no. 10, pp. 46-52, Oct. 2003.

[38] M. Lumpe, F. Achermann, and O. Nierstrasz, “A Formal
Language for Composition,” Foundations of Component Based
Systems, G. Leavens and M. Sitaraman, eds., pp. 69-90, Cambridge
Univ. Press, 2000.

[39] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S.
Weeragwarana, Business Process Execution Language for Web
Services (BPEL4WS) Version 1.1. IBM, http://www-106.ibm.com/
developerworks/library/ws-bpel/, 2004.

[40] R. Allen and D. Garlan, “A Formal Basis for Architectural
Connection,” ACM Trans. Software Eng. and Methodology, vol. 6,
no. 3, pp. 213-249, 1997.

[41] I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau Proc. Sixth
Workshop Component-Based Software Eng.: Automated Reason-
ing and Prediction (CBSE ’04). ACM SIGSOFT Software Eng. Notes,
vol. 29, no. 3, pp. 1-7, May 2004.

[42] B. Christiansson, L. Jakobsson, and I. Crnkovic, “CBD Process,”
Building Reliable Component-Based Software Systems, I. Crnkovic and
M. Larsson, eds., pp. 89-113, Artech House, 2002.

[43] B. Warboys, B. Snowdon, R. Greenwood, W. Seet, I. Robertson, R.
Morrison, D. Balasubramaniam, G. Kirby, and K. Mickan, “An
Active Architecture Approach to COTS Integration,” IEEE Soft-
ware, special issue on incorporating COTS into the development
process, vol. 22, no. 4, pp. 20-27, July/Aug. 2005.

[44] The Bean Builder, Sun Microsystems, https://bean-builder.dev.
java.net/, 2007.

[45] AcmeStudio 2.1 User Manual, Carnegie Mellon Univ., http://www-
2.cs.cmu.edu/~acme/Manual/AcmeStudio-2.1.htm, 1998.

[46] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting
Software Architecture to Implementation,” Proc. 24th Int’l Conf.
Software Eng. (ICSE ’02), pp. 187-197, 2002.

[47] J. Aldrich, C. Chambers, and D. Notkin, “Architectural Reasoning
in ArchJava,” Proc. 16th European Conf. Object-Oriented Program-
ming (ECOOP ’02), pp. 334-367, 2002.

[48] J. Aldrich, D. Garlan, B. Schmerl, and T. Tseng, “Modeling and
Implementing Software Architecture with Acme and ArchJava,”
Proc. Companion 19th Ann. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’04),
pp. 156-157, 2004.

[49] L. DeMichiel and M. Keith, Enterprise JavaBeans, Version 3.0. Sun
Microsystems, 2006.

[50] R. Monson-Haefel, Enterprise JavaBeans 3.0, fifth ed. O’Reilly &
Associates, 2006.

[51] “Eclipse Web Page,” http://www.eclipse.org/, 2007.
[52] Y. Choi, O. Kwon, and G. Shin, “An Approach to Composition of

EJB Components Using C2 Style,” Proc. 28th Euromicro Conf.
(Euromicro ’02), pp. 40-46, 2002.

[53] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison Wesley, 2001.

[54] P. Hn!etynka and F. Plá!sil, “Dynamic Reconfiguration and Access
to Services in Hierarchical Component Models,” Proc. Ninth Int’l
Symp. Component-Based Software Eng. (CBSE ’06), I. Gorton et al.,
eds., pp. 352-359, 2006.

[55] K.-K. Lau, P. Velasco Elizondo, and Z. Wang, “Exogenous
Connectors for Software Components,” Proc. Eighth Int’l Symp.
Component-Based Software Eng. (CBSE ’05), I. Gorton et al., eds.,
pp. 90-106, 2005.

[56] K.-K. Lau, M. Ornaghi, and Z. Wang, “A Software Component
Model and its Preliminary Formalisation,” Proc. Fourth Int’l Symp.
Formal Methods for Components and Objects (FMCO ’06), F. de Boer
et al., eds., pp. 1-21, 2006.

[57] A. Major, COM IDL and Interface Design. John Wiley & Sons, Feb.
1999.

[58] M. Barnett and W. Schulte, “Runtime Verification of .Net
Contracts,” Systems and Software, vol. 65, no. 2003, pp. 199-208,
2003.

[59] BEA Systems et al., “CORBA Components,” Object Management
Group, Technical Report orbos/99-02-05, 1999.

[60] R. Natan, CORBA: A Guide to Common Object Request Broker
Architecture. McGraw-Hill, 1995.

[61] OpenCCM User’s Guide, ObjectWeb—Open Source Middleware,
http://openccm.objectweb.org/doc/0.8.1/user_guide.html, 2007.

[62] E. Newcomer,Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley, 2002.

[63] Ariba, Microsoft, and IBM, Web Services Description Language
(WSDL) Version 1.1., http://www.w3.org/TR/2001/NOTE-wsdl-
20010315, 2001.

Kung-Kiu Lau received the BSc and PhD
degrees from the University of Leeds, United
Kingdom. He is currently a senior lecturer in the
School of Computer Science at the University of
Manchester, United Kingdom. He is the series
editor of a book series on component-based
software development published by World
Scientific. He is an area editor (for logic and
software engineering) of the Journal of Applied
Logic. He has served on the program commit-

tees of numerous international conferences, including ASE, CBSE, and
SC. He has also delivered invited talks and tutorials at many
international meetings, including an invited keynote talk at FMCO
2005 and tutorials on software component models at ASE 2005 and
ICSE 2006. His main research interest is component-based software
development.

Zheng Wang received the BSc degree from the
University of Manchester, United Kingdom,
where he is currently working toward the PhD
degree in the School of Computer Science. He
participated in and completed the project Eur-
opean Network of Excellence in Computational
Logic (CologNet), where he maintained the Web
site of Component-Based Software Develop-
ment. He coorganized the 2004 and 2005
Workshop on Predictable Software Component

Assembly. His research interests are component-based software
engineering and software verification.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

724 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 10, OCTOBER 2007

