
p ()
URL: http://www.elsevier.nl/locate/entcs/volume82.html 11 pages

A Fault Taxonomy for Component-based
Software

Leonardo Mariani 1

DISCO
Università degli Studi di Milano Bicocca

Milano, Italy

Abstract

Component technology is increasingly used to develop modular, configurable, and
reusable systems. The problem of design and implement component-based systems
is addressed by many models, methodologies, tools, and frameworks. On the con-
trary, analysis and test are not adequately supported yet. In general, a coherent
fault taxonomy is a key starting point for providing techniques and methods for as-
sessing the quality of software and in particular of component-based systems. This
paper proposes a fault taxonomy to be used to develop and evaluate testing and
analysis techniques for component-based software.

1 Introduction

Component technology is increasingly used to develop complex hardwqare
and software systems, for enhancing composition, reuse, modularity and con-
figurability. Component-based systems are developed by assembling existing
components, thus the focus is shifted from module implementation to unit
composition. Compoment-based technology boosts reuse because the design
concerns mainly with linking existing components, and the implementation is
relegated to the glue code. Component-based systems are modular because it
is possible to substitute, add, or remove components after system deployment
to obtain different configurations.

Customers demand for high quality systems that typically require a large
amount of time to be developed and must be released in stable versions. Com-
ponent technology can reduce time to market by increasing reuse of third-party

1 Email: mariani@disco.unimib.it
2 This work has been partially supported by the Italian Ministry of University and Research
within the COFIN 2001 project “Quack: a platform for the quality of new generation
integrated embedded systems”

c©2003 Published by Elsevier Science B. V.

55

Mariani

components, but the quality of the system becomes strongly dependent from
the quality of externally developed code and the architecture of the systems.
High quality components can be obtained by using a particular development
process, by assuring a complete documentation, by executing tests and by
analysing the final code. High quality components are necessary, but not suf-
ficient to assure the quality of the derived systems. Thus, we need specific
techniques for testing and analysis the final system, regardless of the quality
of the used components. Classical approaches to analysis and test are not di-
rectly applicable to component software due to the many differences between
classic and component-based systems.

To efficiently test any software system, it is important to know the possible
failures and their causes. This paper proposes a first taxonomy for component-
based systems that captures the many new types of faults that can arise in
this kind of systems.

2 Software Components

Components have been defined in many ways. A commonly accepted definition
has been given by Clemens Szyperski, who defines components as units of
composition [12] with the following characteristics:

• with contractually specified interfaces
• with explicit context dependencies
• independently deployable
• and subject to third party composition

In referring to this definition, we stress that the most important characteristics
of the component technology are:

• independent development
• and third party composition

Independent development means that the component is designed and imple-
mented without knowledge about the systems and the components with which
it will interact. The component developers will inevitably make same assump-
tions on both the environment and the type of interactions. Contractually
specified interfaces and explicit context dependencies define explicitly devel-
opers’ assumptions.

Third parties composition is a key feature strictly related to independent
development: in general, developers do not know neither the environment in
which the component will be used, nor the users of the components.

Component-based system development is supported by several technolo-
gies, e.g. EJB [7], CORBA [8] and .NET [3], but there are no unified frame-
works addressing the problem to assure quality for this technologies. Existing
testing techniques are not directly applicable, because in different systems,

56

Mariani

software components may be used in ways that differ from the original design
purpose; thus certification of the components may not be enough for a given
system. For example, if a component has been largely tested, but features
effectively used are lowly tested, the quality certification is misleading [11].

3 Fault Taxonomy

A component-based system is made up of interacting components that all
together present the expected behavior. The testing activity is performed on
single components (unit testing), sets of integrated components (integration
test), or the whole system (system testing). A single component is similar
to any other software product. It can presents traditional faults and can be
tested with traditional techniques. Some techniques address the testing of
single components aiming at gaining additional information for integration
testing, but this approach is strictly related to testing and not to the type of
faults. Other testing techniques address particular scenarios, e.g. regression
test [6]. In our analysis we will not take into consideration possible scenarios
except for some brief considerations relating them with errors.

The focus of this paper is on integration faults that characterize the com-
ponent technology. We classify known faults according to their causes and
effects. Causes are related eiher to the technology or to a particular scenario,
e.g. system maintenance. Effects are the failures caused in the system.

We identify two main classes of faults: service-related and structure-related
faults. Service-related faults can be syntactic, semantic, or non-functional.
Structure-related faults, i.e., faults related to the structure of the system can
derive from faulting connectors, the infrastructure, or the topology.

4 Syntactic Faults

The syntax of interractions defines the structure of the requests. Necessary
condition to serve a request is that both the requesting and the serving com-
ponents agree on the syntactic form of interaction. Agreement on the syntax
is not enough to assert correctness of the interaction; components need to
agree on the semantic and the protocol as well. In general, compilers assure
the syntactic compatibility during the compilation phase, but if units are com-
piled separately and then combined at deployment-time or run-time this check
cannot be performed.

For the independent development hypothesis, there is no full knowledge
about components that will interact with the component under implementa-
tion. Often assumptions are made by constraining the interfaces implemented
by other components, but in the final system these assumptions can be vio-
lated. This could happen simply because developers may be too optimistic
with their assumptions, or because a system update changes the interface.

Syntactic interface faults take several forms and can be the cause of dif-

57

Mariani

Class c = Class.forName("Car");

InterfaceCar vehicle = (Car)c.newInstance();

System.out.println(vehicle.capacityValue());

Fig. 1. A sample code that can fail when a component tries to bind to another
component at start-up.

ferent failures depending on both the used component framework and binding
mechanism. Figure 1 shows a sample code that can fail when a component
tries to bind to another component at start-up. If the interface InterfaceCar
does not match the interface implemented in Car, the second assignment can-
not be executed. This type of syntax errors occurs frequently after updating
the system, e.g., by updating a component. In other component frameworks,
such as CORBA, the failure may be quite different, in fact the run-time bind-
ing mechanism works properly only if the searched and the retrieved interfaces
match.

5 Semantical Faults

A semantical fault consists of a violation of explicit or implicit assumptions
on the component behavior. The behavior can be specified with different
formalism, e.g., with natural language or some kind of logic.

Differently from syntactic faults that cause the interruption of the interac-
tion and, in absence of suitable exception handlers, the system crash, semantic
faults lead to more subtile consequences. Semantic faults do not necessarily
manifest with the impossibility of interacting, but may result in wrong results
that manifest much later with a failure of another component.

There are several causes of semantic faults, e.g., wrong implementation or
misbehaving execution flow. The compositional approach of the component-
based systems increases the probability of semantic fault. Single components
may have several dependencies that are stimulated to correctly perform their
tasks, but the component developers may not know the identity of the com-
ponents that will fulfill the request. In the same way, the component that will
be used to satisfy a dependency may not be aware of this fact until deploy-
ment. Correctness of the interaction depends from the syntactic and semantic
agreement of components.

We identify several possible semantical faults: misunderstood behavior
fault, misunderstood parameter fault, misunderstood event generation fault,
and misunderstood interaction protocol fault.

A misunderstood behavior fault is the case of a component that requests a
service of another component, expecting a service different from the prvided
one. A simple example is the case of a component A that requests for the
arrangement of an array to another component B offering data manipulation
services. A faulting behavior may be due to the fact that A assumes that

58

Mariani

multiple copies of the same elements are put close to each other, but the
component B deletes all multiple copies of an element. The final result of the
interaction will be different from expected.

A misunderstood parameter fault is the case of a component A that wrongly
interprets the arguments of a service. Referring back to the previous example,
the component B could offer a printing service that prints the content of an
array from the element of position 0 to the element of position n − 1, where
n is the parameter of the service. The component A may wrongly interpret
the parameter and use the service as if the elements to be printed range from
position 0 to position n. In this scenario a request for printing the whole
content of an array issued with argument n − 1 results in the component
printing elements ranging from 0 to n − 2 with unpredictable consequences.

A misunderstood event generation fault is the opposite situation of a mis-
understood behavior fault: the component reacting to an event recognizes the
event, but makes wrong assumptions on its meaning. For example, a com-
ponent receiving an event WindowMoved may recognize the event, but not all
the causes of the event. Generally, an event has an associated description, so
there must be on agreement on the way to interpreter this description, if this
agreement is not reached the event can be misinterpreted.

The last type of semantic fault is the misunderstood interaction protocol
fault. Each component can be stimulated by many request sequences, but not
all sequences are correct and not all sequences produce the expected behav-
ior. To interact correctly, two components must agree on the used interaction
protocol. In particular, a misunderstood interaction protocol fault consists
on a correct flow of requests that produce a behavior different from the ex-
pected one. An example of this situation is the case of two components A and
B, where component B provides services that enable the HTML presentation of
XML documents by a XSL stylesheet. The component works by first defining
a default XSL document and then by loading XML documents. The XML doc-
ument is immediately transformed with the XSL stylesheet and then stored
waiting for a getHTML(). When we need to change the presentation style, a
new XSL document is set up. The component B is configured by the definition
of a XSL document and behaves as a factory of HTML pages. If A assumes that
the choice of a new style affects the loaded documents, it could use this flow
of invocations:
loadDocument()→setXSL()→getHTML()

In the case the old XSL style is compatible with the loaded document, the
HTML output is different from the desired one. The right sequence is
setXSL()→loadDocument()→getHTML()

Faults related to the semantic of an interaction have been addressed in several
ways: design by contracts [9,4], formal specifications [10], and state machines
(in the case of protocols) [2].

59

Mariani

6 Non-Functional Faults

Like many systems, also component-based system must satisfy both functional
and non-functional requirements. Often non-functional requirements propa-
gates among components. This is the case, for example, of a component A that
must produce a result within x seconds and needs a datum from a component
B to complete the computation. Often, we do not have explicit information
about non-functional properties of a component, because they are difficult to
be formalized. Thus, guaranteeing non-functional properties in component-
based systems is particularly hard. Scenario where components negotiate the
quality of the service before interacting, further complicate this framework.

The main kinds of non-functional requirements concern interfaces (e.g.
user-friendless and usability), performances (e.g. time and memory), quality
of service (e.g., reliability), process (e.g. standard for the production of high
quality components), and costs (e.g. bound on the costs). Here, we focus on
performances and quality of service. In both cases the property of the system
is affected by the performance and the quality of service of its components. In
the case of performance, the dependencies are straightforward. In the case of
quality of service, the situation can be very complex: a low-quality component
may result in the impossibility of guaranteeing a required quality of service for
the whole system. The interactions among components can be more subtile
in the case of a machine that hosts more than one component, for example
because two running components influences each other (simply because they
share the CPU), or even the component framework can affect a single compo-
nent, for example in the case the component framework broadcasts an event
while a component is performing a computation the CPU could not serve the
component efficiently.

7 Faulty Connectors

Components are linked by connectors, which can be faulty. A faulty connector
may include a mismatching protocol fault or an incompatible data model [5].
Mismatching protocol faults derive from the absence of agreement on the used
protocol. This case must not be confused with the component level protocol,
in fact connector protocols are used to exchange messages in a single inter-
action, e.g. callback, while component protocol defines admissible sequence
of invocation that can be issued to a components. Incompatible data model
fauls are due to connectors that cannot transmit the desiderata data.

Examples of faulty connectors are provided by Garlan et al. in [5]. The
mismatching protocol case is examplified by the impossibility to directly con-
nect two components that make conflictual hypothesis about the protocol of
the connector: callback versus client-server. The data model case is illustrated
by the attempt to let interact the Softbench Broadcast Message Server and
Mach RPC. The former expects ASCII stream while the latter expects C-based

60

Mariani

data structures, interaction is possible only by implementing glue code.

8 Faults on the Infrastructure

The component execution and deployment is supported by the component
infrastructure, if any, and by the overall underlying system. Obviously each
component makes some assumptions about the nature, the available services
and the structure of the system, but for the independent development hy-
pothesis, it is not possible to predict the assumptions made by the other
components. When a component-based system is developed, these assump-
tions may generate conflicts. Two components that unconsciously interact
via the infrastructure are a potential source of failures. Problems of this type
may have critical consequences, but manifest very rarely, and are thus difficult
to diagnostic and remove. For example, two components may be in conflict
because they use two different versions of the same dynamic library or they
could interact through services of the operating system, e.g., the registry, or
by accessing the same file, or by using the same service, or by sharing the
disk. These interactions are difficult to be located and usually non mentioned
in the set of dependencies, and even worse, they rarely manifest with a fail-
ure. Assumptions on the infrastructure are not only due to the adoption of a
particular component, but are also consequence of the connectors and of any
other feature used in the system.

9 Faults on the Topology

At deployment time, the component assembler defines the topology of a com-
ponent-based system by linking components together. Hence, the component
developer does not know how the component under development will be used.
This scenario implies that any problem related to the topology of the system
must be faced exclusively by the component assembler. On the other hand,
the developer may facilitate the work of the assembler by following a design-
for-testability approach [1] that consists on the adoption of a methodology
facilitating the testing phase.

The topology of a system directly influences the execution control flow,
in fact each link connecting two components describes a dependence and so
it is a path that the control flow can traverse. The topology of a system
can be defined at development time (static binding), at system start up by
configuration files (dynamic binding), or at run-time (run-time binding) [12].
In the case of run-time bindings, the links defined during development and
start-up of the system are used for moving references within the system. So if
a component A is linked with a component B at design time and the component
B is linked with the component C at system start-up, it is possible to use these
two links to let a reference travel from A to C. When this operation has been
accomplished A and C will be directly connected. Once established, run-time

61

Mariani

references can be used to create further run-time bindings.

In this complex scenario several topology-dependent faults are possible:
callbacks, re-entrance and inter-component recursion [12]. Callback fault is
the case of a component A that suspends its execution and invokes a method
of a component B that reacts invoking a method of A. During this second in-
vocation, A is accessed in a critical status (its execution has been suspended)
and its status can be inconsistent. The callback is a special case of re-entrance
where an execution flow starts from a component A, traverses several compo-
nents, and finally come back to A, which is in a critical status, as in the callback
case.

An example of a re-entrance problem is the case shown in Figure 2 of
a server managing the login of the users in a chat. The client requests to
the server to login in the chat (1). The Chan Server lets the client enter
the chat without voice (the client is logged in, but cannot send messages)
and then checks the permissions (1.1). The Permission Manager component
asks the Data Manager component for the credential of the client (1.1.1).
If the client does not have permissions, the Permission Manager asks the
Chan Server to send a message describing the error to the client (1.1.2); the
chechPermission() concludes with a failure, and the user is kicked off from
the channel. So far all works well. Let us now assume to update the Chan

Server and change the login policy: now the user is not logged in without
voice, but it is paused until the verification of the permissions is completed.
This update causes the system to fail because the sendMSG cannot be per-
formed because there is no valid receiver in the chat.

Fig. 2. An example of faults due to re-entrance

62

Mariani

10 Other Faults

Component-based systems can present faults related to multi-threading. Tra-
ditional techniques address these faults using global knowledge about the sys-
tem. In component-based systems we cannot use such approaches any more,
but we need to make use of local knowledge only.

Components are heterogenous units and we integrate components devel-
oped with different programming languages. In some cases, this integration
can lead to subtile faults. For example, C++ arrays begin with index 0, while
Visual Basic arrays begin with index 1, so components developed with these
two languages may fail if they use an index of an element as the argument of
a service.

Components are usually persistent, so serialization mechanisms, such as
the Java serialization, are often involved. In this case, objects are stored
into streams and then later restored. This procedure can introduce other
kinds of faults, in fact static variables are not serialized (they need to be
addressed singularly), code in the constructor is not executed during object
restoration (but sometime at least some of the constructor’s instructions need
to be repeated during restoration), with an object are serialized all referred
objects too (unwanted large stream may be created), and a token mechanism
prevents from serializing two times the same object (but we must explicitly
address changes on an object state). Currently, no existing testing technique
effectively addresses these faults.

We already discussed re-entrance and control-flow faults. Such properties
may lead to the generation of inconsistent events. This is a common problem
of event-based system, but it becomes harder in component-based systems,
since it must be addressed starting from local and incomplete information.
For example, a component broadcasting messages can establish several links
at run-time, i.e. by callbacks. If the component notifies the addition of files in
a directory, the inconsistency is obtained simply considering the case that the
first component that reacts to the “new file” event reacts deleting the file. The
second component that receives the “new file” event will receive an inconsistent
event. The same inconsistency happens in the case a component concurrently
deletes the new file, while the broadcasting component is generating events.

Table 1 summarizes the taxonomy presented in this paper.

11 Conclusions

Component-based software systems are increasingly used in different applica-
tion domains, and are supported by several development methodologies and
tools, but there are still few approaches addressing analysis and test. The
first step towards the development of effectives test and analysis method is
the identification and classification of common faults.

This paper proposes a fault taxonomy related to the component technology

63

Mariani

Main Category Sub-Categories

Syntactic • Interface Violation

Semantic

• Misunderstood on the Behavior

• Misunderstood on Parameters

• Misunderstood on Events

• Misunderstood on the Interaction Protocol

Non-Functional
• Performances

• Quality of Service

Connectors
• Disagreement on the Protocol

• Quality of Service

Infrastructure
• Underlying Services

• Underlying System

Topology

• Callback

• Re-entrance

• Recursion

Other

• Multi-thread

• Heterogeneous Languages

• Persistence

• Inconsistent Events

Table 1
A summary of the error taxonomy presented in this paper

with a brief explanation of causes and consequences of faults and provides some
examples. We plan to review the existing testing techniques according to the
taxonomy proposed in this paper to identify open problems.

References

[1] Binder, R. V., Design for testability in object-oriented systems, Communications
of the ACM 37 (1994), pp. 87–101.

64

Mariani

[2] Buy, U., C. Ghezzi, A. Orso, M. Pezze and M. Valsasna, A framework for
testing object-oriented components, in: Proceedings of the First International
ICSE Workshop Testing Distributed Component-Based Systems, Los Angeles,
California, 1999.

[3] ECMA, Common language infrastructure (CLI) partition I: Concepts and
architecture, Final draft, Published by ECMA TC39/TG3 (2002).

[4] Edwards, S. H., A framework for practical, automated black-box testing
of component-based software, Journal of Software Testing, Verification and
Reliability 11 (2001).

[5] Garlan, D., R. Allen and J. Ockerbloom, Architectural mismatch or why it
is hard to build systems out of existing parts, in: Proceedings of the 17th
International Conference on Software Engineering, Seattle, WA, 1995.

[6] Harrold, M. J., Testing evolving software, Journal of Systems and Software 47
(1999), pp. 173–181.

[7] Matena, V. and M. Hapner, Enterprise JavabeansTM specification, Technical
report, Public Draft version 1.1, Sun Microsystems (1999).

[8] Merle, P., Corba 3.0 new components chapters, TC Document ptc/2001-11-03,
Object Management Group (2001).

[9] Meyer, B., Applying ”design by contract”, IEEE Computer 25 (1992), pp. 40–52.

[10] Necula, G., Proof-carrying code, in: Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, Paris, France, 1997.

[11] Rosenblum, D., Challenges in exploiting architectural models for software
testing, in: Proceedings of the International Workshop on the Role of Software
Architecture in Testing and Analysis (ROSATEA), 1998.

[12] Szyperski, C., “Component Software: Beyond Object-Oriented Programming,”
ACM Press and Addison-Wesley, New York, NY, 1998.

65

