UORBA Component Model:
Discussion and Use with OpenCCM

Raphaél MARVIE, Philippe MERLE

Laboratoire d’Informatique Fondamentale de Lille
UPRESA CNRS 8022

Bat. M8 - UFR d’'[LE.E.A.

F-59655 Villeneuve d’Ascq (France)
{marvie,merle}@lifl.fr

Keywords: CORBA Component Model, Distributed Component Based Applications, Middleware,
OpenCCM

Edited by:

Received: Accepted:

Revised:

Distributed Object Computing (DOC) middleware has introduced the use of Interface
Definition Languages to improve the design, production, and execution of large scaled
critical distributed applications. Nowadays, software engineering is evolving to Dis-
tributed Component Computing (DCC) middleware in order to also address deployment
and administration of such applications. In this context, the Object Management Group
proposes the CORBA Component Model (CCM) as “the first industrial heterogeneous
model”. This model seems to be the proposal with the highest potential, compared
to Sun Microsystems’ Enterprise Java Beans and Microsoft’s Distributed Component
Model, to design, produce, deploy, and run distributed heterogeneous component based
applications. Nevertheless, no implementation covers it in its whole. This article aims
at discussing the CCM and to introduce OpenCCM—the first available open source im-
plementation of the CCM. In that, most of the CCM concepts are illustrated using an

example developed with OpenCCM.

1 Introduction

Large scaled critical distributed applications, such
as telecommunication ones, require the use of
technical models to ease their production and en-
vironments to improve their reliability. Nowa-
days, most complex distributed applications are
built upon Distributed Object Computing (DOC)
middleware like the Common Object Regquest
Broker Architecture (CORBA) [22] of the Ob-
ject Management Group (OMG), the Distributed
Component Object Model (DCOM) [9] of Mi-
crosoft, or the Java Remote Method Invocation
(RMI) [18, 30] of Sun Microsystems. This is be-
cause such middleware has demonstrated their
ability to rationalize and to improve the soft-
ware production process of distributed applica-
tions which includes design, production, and ex-

ecution steps. The major contribution is the

systematic use of Interface Definition Languages
(IDL) to define object contracts and to automate
the generation of code related to communications
(stubs and skeletons) [10]. In that, type checking
of remote invocations is performed at compilation
time to produce error proof applications. More-
over, an application is seen as a set of intercon-
nected distributed objects. Similarly, system ser-
vices like naming, trading, notification, security,
transaction, and persistence are also distributed
objects, thus offering a homogeneous vision of the
distributed system.

Unfortunately, such middleware includes sev-
eral drawbacks that reduce the correct support
of configurable and large scaled distributed ap-
plications. First of all, connections between ob-
jects are hidden deep inside their implementations
and cannot be easily configured by architects from
the outside. Then, it is hard to have a proper

nchronous
nnecllon

(o~ &

Asynchronous

—<(>‘ Connection

'

t

' .

[+ Container
1

! ' ____+ Server

]

t

1

'

: Container

Figure 1: CCM Based Distributed Application

a single host, the application server. DCOM based
applications could be made of heterogeneous com-
ponents but written for a single Operating Sys-
tem, MS Windows. CORBA component-based
applications are intended to be built using het-
erogeneous distributed components. Moreover,
components of a single application may be devel-
oped using various programming languages and
for several Operating Systems, and deployed in
several servers of a distributed system. Figure 1
depicts an overview of what might be a CORBA
component-based application.

This application is a possible instantiation of
the toy application vending machine that is used
to illustrate this article. This application instance
runs on four different hosts that are, remote from
another. A central site hosts two instances of
vending machine components, which is common
in most firm corridors, one for cold drinks and an-
other one for warm drinks. In order for those two
instances to run, an . executlon support 1§%§Tﬁ?eﬁ iy
Tt is provided by a container. A container is a
generic execution support that may host differ-
ent kinds of component types that share common
system requirements, like life cycle, persistence,
transaction, and security needs.

In order not to reduce execution site capabili-
ties to a fixed set of statically defined containers,
and in order not to have to instantiate all the po-
tential containers on a site, containers rely on con-
tainer servers. These servers are processes, in the
Unix meaning, that permit one to instantiate con-
tainers on demand and according to specific sys-

tem requirements of applications. Inside the main
container server, there are four containers that
allow the execution of six component instances:
Two vending machine instances, two power plug
instances, and two water supply instances.

Given that a container has just been defined as
a generic execution environment and in order not
to limit the behavior of component instantiation,
a component home is used. A home is an instance
manager that takes care of component instance
life cycle. A home is to component instances what
the new operator is to objects. Component homes
contain the code reifying component instantiation,
which brings flexibility. They are equivalent to
the ‘static’ part of an object’s class. Component
homes are designed according to the factory de-
sign pattern [8]. In addition of permitting the
use of the same container with different compo-
nent types, this approach also brings automation
in the deployment of applications.

~»Thus, it is possible to choose execution sites
from a known set, and then to install an applica-
tion on these hosts from an administration site.
To do so, in addition of providing an execution
environment (the container server) a host has to
provide a facility to download code. It is then pos-
sible to upload a component implementation on a
remote host, as well as its associated home im-
plementation. Once containers are instantiated,
the implementation of components and their home
uploaded, home and component instantiated, con-
necting component instances together is the last
step to build the application.

o

Designer i I)-eveloper

DL/ CIDL. Funetional code

Default Properties

i Configurator | s 7T e,

£ Home

) :

Programming
Language Tools

wriapL (B
Compiter 4

TN

©

Stubs
Skeleton

Implementation T

)

Component
Descriptor

Packaging Tool
1oy i

Figure 2:

OMG IDL3 from now. These definitions are then
mapped (2) in the CORBA 2 OMG IDL, that we
will named OMG IDL2 from now, in order to al-
low the implementation (3) of these component
types by developers. The mapping step also pro-
duces (4) a component descriptor template, that
has to be finalized (5) by the developer. Once im-
plemented, a component type is packaged (6) into
an archive with its descriptor, a default configu-
ration, and one or several implementations (e.g.
in Java and C-++) in order to be spread out.
This package may be later on deployed as is (7)
or included (8) by an architect in component as-
semblies in order to build large applications. To
be diffusible, a component assembly is also pack-
aged (9), grouping into an archive the assembly
descriptor, the component packages or their loca-
tion, and a default configuration of each compo-
nent for this specific context. Assembly packages
are then spread out to be used as is as well as for
future composition. Finally, packages of compo-
nents and assemblies are deployed to instantiate
applications on execution sites (10).

2.4 OpenCCM Platform

The CCM is specified, however there are few im-
plementations. Moreover, very few using expe-
riences are reported in litterature. OpenCCM
was the first implementation publicly released. At
first, the objective of our work was not to imple-

J . Properties C ‘()m[mflcnl V“x
Properties
CoRrBA” S e
Componenl -
Package \ Component
Assembly
Package
A bling Took.) %
; ® - !
- L ‘ a%
Sof(plfg o Architect 7 1
Provider Descriptor e i Assem y i
. % Dycszfriﬂor‘ : \"31%
(10 S\
5
CORBA

Comy
Package

i Administrator

Global CCM Software Production Process

ment the whole specification of the CCM, but only
the parts that were required to support our re-
search experiments. We have focussed our efforts
on the abstract and deployment models. Our first
goals were to have the following parts:

— the interface repository for the OMG IDL3,
a first version is already available,

— an OMG IDL3 compiler to load OMG IDL3
files into the repository, maps it to OMG
IDL2, as well as to generate component ex-
tended skeletons for the Java language (and
C+-+ later on), a first version is already avail-
able.

— a CORBA component packaging tool (in
progress),

— a model and its associated framework to
define component based applications (in
progress: CODeX—Composite Oriented De-
ployment and eXecution),

— g flexible deployment machine that supports
the CCM deployment process, but that can
also extend this process to bet fit a larger set
of requirements, and

— the definition of adaptive containers that
would look like composites, allowing to com-
pose and deploy containers according to ap-
plication requirements (in progress).

Base . o
Reference VendingMachine Component

VendingMachi

PowesPlog

Reference
PowerSupply
Facer . Component
Clicnt 1 / Implementation
“lient Facet 7
O / / (WaterPlug
)
\ Receptacle
Provider Facet %/
O____ Event Source
/ ‘—‘—<Emp(yEv(
Repairman Facet %
Facet / /j NoChangeEvt
Reference
‘TemperatureFivt W Atribute

FEvent Sink

On/Off

Figure 4: The CCM Abstract Model, Applied to
the Vending Machine Example

a new meta-type which is a specialization of the
interface one. Thus, component type definitions
are very similar to interface definitions. Right now
the vending machine component type includes the
definitions of two attributes that will be config-
ured according to each instance expected behav-
ior. The two attributes are used to define which

kind of drinks are a,vail/a,’bklé"and if the machine is

running or not.

component VendingMachine {
attribute boolean on ;
attribute DrinkSeq drinks ;

+s

Figure 5: A CORBA Component Definition

Like interfaces, component types may be de-
fined using a relation of inheritance. This
inheritance - relationship .is simple: “4 1la” Java:
Component types could inherit from a single
component type and may support one or sev-
eral interfaces. Figure 6 depicts this approach:
The CardVendingMachine component type offers
the same attributes and ports as the standard
VendingMachine one, as well as the CardReader
operations. Then, it may also offer its own at-
tributes and ports.

3.1.3 OMG IDL2 Mapping

An OMG IDL3 component definition is mapped to
an OMG IDL2 interface definition. This interface
contains operations mapping component ports

interface CardReader { ... };
component CardVendingMachine :
VendingMachine supports CardReader {
/..

s

Figure 6: A CORBA Component Definition Using
Inheritance

and inherits from the Components: :CCMObject in-
terface. This latter provides the common opera-
tions to all component types. Figure 7 depicts
the mapping of previous component definitions.
It is to be noticed that, once mapped, component
inheritance is represented by CORBA 2 multiple
inheritance.

interface VendingMachine :
Components: :CCMObject {

attribute boolean on ;
attribute DrinkSeq drinks ;

};

interface CardVendingMachine :
VendingMachine, CardReader {
/...

IS

Figure 7: OMG IDL2 Mapping of CORBA Com-
ponent Type Definitions

Generated OMG IDL2 interfaces are used firstly
by developers as implementation contracts of com-
ponent types, and secondly by clients to ‘interact
with component instances at runtime. '

3.1.4 Components::CCMObject Interface

Components: :CCMObject is the base interface of
any component type which is implicitly inherited.
This interface inherits from the three interfaces
Components: :Navigation, Components: :Recep-
tacles, and Components::Events which are
presented in the following sections. Oper-
ations defined in this interface allow clients
to find back the home associated to a com-
ponent instance (get_ccm_home())) as well as
the primary key associated with the instance
(get_primary_key()), to validate the configu-
ration phasis (configuration_complete()) and
to begin the execution phasis (see Section 3.6)

interface ClientFacet { ... } ;
interface ProviderFacet { ... } ;
interface RepairmanFacet { ... } ;
component VendingMachine {
provides ClientFacet client ;
provides ProviderFacet provider ;
provides RepairmanFacet repairman ;

};

Figure 9: OMG IDL3 Facet Definition

for OMG IDL2 users, facets are accessible through
a naming convention.

interface VendingMachine :
Components: :CCMObject {

ClientFacet provide_client () ;
ProviderFacet provide_provider () ;
RepairmanFacet provide_repairman () ;

};

Figure 10: Mapping to OMG IDL2 of Facet Defi-
nitions

3.2.4 Using Facets

The implementation of operations related to the
component facets is part of the skeleton generated
from OMG IDL2. This implementation is split
in two levels: On one hand, there are the generic
operations of the Components: :Navigation inter-
face, and on the other hand there are the opera-
tions specific to the component type that come
from the OMG IDL3 to OMG IDL2 mapping.
Generic operations could always be used and are
useful for dynamic introspection. This use is flex-
ible and powerful, but controlled at runtime only.
Specific operations are more appropriate for static
use. This use is fixed but reliable as controlled at
compilation time. An interesting solution to im-
plement specific operations is to rely on generic
ones. This way, the name of the facet provided
by a specific operation is correct, and then the
generic operation will not be misused at runtime.
In that, a developer only has the functional part
of the facet implementation to write.

3.2.5 Components::Navigation Interface

In addition to offering several facets, a compo-
nent provides a mean to navigate between them.
Thus, a client can change its vision of the com-
ponent during its execution, for example, the
provider is thirsty. Navigation through facets is
centralized around the base reference of a com-
ponent. To permit navigation, a base interface is

- provided: Components::CCMObject inherits from

Components: :Navigation.

This latter provides generic operations avail-
able from and usable on any component type.
This interface is implicitly inherited by any com-
ponent type. Its main operations are introspec-
tion operations (describe_facets()) and facet
retrieval ones (provide_all_facets(), prov-
ide_named_facets(), and provide_facet()).
While looking for known facets, their names are
used (name of the facet definition in the provides
declaration of the component). Finally, an opera-
tion tests if two facets are part of the same com-
ponent (same_component ()).

module Components {
interface Navigation {
Object provide_facet
(in FeatureName name)
raises (InvalidName);
FacetDescriptions describe_facets () ;
Facets provide_all_facets () ;
Facets provide_named_facets
(in NameList names)
raises (InvalidName) ;
boolean same_component
(in Object ref) ;
I
I

Figure 11: Components: :Navigation Interface

In the CCM context, any software entity be-
comes a component. The only use of the
interface keyword is to define facets. Thus, it is
important to be able to find back the component
offering the facet for which one has a reference.
The CORBA::0bject interface now includes the
get_component () operation, to find which com-
ponent instance owns a given facet reference.

interface VendingMachine :
void connect_water (in WaterPlug cnx)

Components: : CCMObject {

raises (Components::AlreadyConnected, Components: : InvalidConnection) ;

WaterPlug disconnect_water ()
raises (Components::NoConnection) ;
WaterPlug get_connection_water () ;

struct powerConnection {
PowerPlug objref ;
Components: :Cookie ¢k ;

1;

typedef sequence<powerConnection> powerConnections;

Components: :Cookie connect_power (in PowerPlug cnx)
raises (Components::ExceededConnectionLimit, Components::InvalidConnection) ;
PowerPlug disconnect_power (in Components::Cookie ck)

raises (Components::InvalidConnection) ;
powerConnections get_connections_power () ;

Figure 13: Mapping to OMG IDL2 of Receptacle Definitions

mented by the component developer. In the con-
text of multiple receptacles, the developer has to
implement the management of the connected ref-
erences. Once the connection operation has been
performed, the receptacle keeps it until an explicit
disconnection request is received.

Dealing with simple receptacles, only one con-
nection may exist at a time, otherwise the
AlreadyConnected exception is raised. Dealing
with multiple receptacles, a limit may be set for
the number of connections, when this number
is reached, the ExceededConnectionLimit excep-
tion is raised while trying to establish a new con-
nection. In both cases, the component implemen-
tation may refuse to establish a connection for an
arbitrary reason, the InvalidConnection excep-
tion is then raised.

In the context of multiple receptacles, the
connect*() operations return a cookie for the
identification of the conmnection. This cookie is
generated by the receptacle implementation and
used by the client of the connection to act upon
it2. Cookies are required as CORBA references
could not be compared semantically.

Disconnection The disconnect*() operations
remove the relationship between a component in-

2The cookie has to be kept by the client, as it cannot
be retrieved a second time.

stance and the connected reference. In the context
of a simple receptacle, the operation returns the
reference that was connected to the receptacle, or
the NoConnection exception is raised. In the con-
text of a multiple receptacle, it is necessary to
specify the cookie of the connection to end. If the
cookie is not matching, the InvalidConnection

A - . . .
exception is raised.

3.3.5 Components: :Receptacles Interface

The Components::Receptacles interface pro-
vides generic operations to (dis)connect compo-
nent instances together (see Figure 14). Opera-
tions are applied on the port which name is given
as parameter. If operations are misused, like pro-
viding an unknown port name, exceptions are
raised. The get_connections() operation pro-
vides the list of facets connected to a given recep-
tacle.

3.3.6 Review

Receptacles are a means for composition purpose.
Receptacles make components a real evolution
compared to objects, as services used by the com-
ponent are explicitly described while services used
by objects are references deeply hidden in the ob-
ject implementation. Then, it is possible to know
which services / interfaces have to be provided to

The event sink may then receive events from var-
ious sources in the same time.

3.4.2 OMG IDL3 Definition

The definition of event sources is based upon
the use of the emits and publishes keywords.
Event sinks are defined using the consumes key-
word. Each port specifies the event type pro-
duced or consumed. The event type are val-
uetypes (Object by Value) inheriting from the
Components: :EventBase interface.

valuetype NoChangeEvt :

Components: :EventBase { ... } ;
valuetype EmptyEvt :

Components: :EventBase { ... } ;
valuetype TemperatureEvt :

Components: :EventBase { ... } ;
component VendingMachine {

emits NoChangeEvt change ;

publishes EmptyEvt empty ;
consumes TemperatureEvt temp ;

};

Figure 15: OMG IDL3 Definition of Two Event
Sources and an Event Sink

Figure 15 depicts the definition of the vending
machine event sources and sinks. The change
port emits events related to the lack of change.
Only one consumer may be connected at a time.
The empty port publishes events to clients and
providers to signal that there are no more drinks
available. Finally, the temp port is an event sink
for the machine to receive information regarding
the evolution of the temperature.

3.4.3 OMG IDL2 Mapping

Like receptacle mapping rule, the mapping
of events are quite complex as depicted in
Figure 16. Dealing with event sources, an
interface of event consumer (like NoChangeEvt
consumer) is defined for clients of this source®.
As stated before, events could only be pushed
to consumers. This is why consumers pro-
vide a single operation: push(). Then,

[dis]connection operations (connect_change()

®The mapping presented here is the correct one, that
may not be similar to the one depicted in the available
specification.

and disconnect_change()) as well as
[un]subscription ones (subscribe_empty()
and unsubscribe_empty()) are added to the
interface of the component. All the operations
generated during the mapping of the source
definition of Figure 15 are depicted in Figure 16.

interface NoChangeEvtConsumer :
Components: : EventConsumerBase {
void push (in NoChangeEvt evt) ;

s

interface EmptyEvtConsumer :
Components: :EventConsumerBase {
void push (in EmptyEvt evt) ;

s

interface VendingMachine :
Components: :CCMObject {

void connect_change

(in NoChangeEvtConsumer consumer)

raises(Components: :AlreadyConnected) ;
NoChangeEvtConsumer disconnect_change ()

raises(Components: :NoConnection) ;
Components: :Cookie subscribe_empty

(in EmptyEvtConsumer consumer)

raises

(Components: :ExceededConnectionLimit) ;
EmptyEvtConsumer unsubscribe_empty

(in Components: :Cookie ck)

raises(Components: :InvalidConnection) ;

};

Figure 16: OMG IDL Mapping of Event Sources
(Emitter and Publisher)

The mapping of an event sink, see Fig-
ure 17, is very similar to the one for an event
source. Nevertheless, the consumer interface
(TemperatureEvtConsumer) is no more intended
to be used by the client, but by the component
itself. The get_consumer_temp() operation per-
mits one to retrieve the event sink reference in
order to connect it to an event source of another
component instance.

3.4.4 Using Events

Two operations are generated by the OMG IDL3
compiler for an emitter definition. These oper-
ations permit one to connect and disconnect a
consumer. When disconnecting a consumer, its
reference is returned. The two operations gen-
erated for a publisher port are for subscription

" is not possible to discover asynchronous ports of-
fered by a component dynamically without using
the Interface Repository and then unfortunately
to sustain the complexity of this approach.

3.5 Component Home

The various concepts of the component abstract
model have been discussed and it is now possible
to define a whole component type. This section
presents the component managers that provide in-
stantiation of component types at runtime. The
main goal of this section is to describe the reifica-
tion of the instantiation mechanism, the equiva-
lent of the new operator in object oriented models.

3.5.1 Concept

Like component, home is a new meta-type defined
in the context of the CCM. A component home
is a manager for instances of a given component
type. It manages instance life cycle, using pri-
mary keys for indexing purpose. In that, it offers
component instance factory and finder operations
that use the defined primary key. Home interfaces
are defined using single inheritance from the base
type Components: :CCMHome. Classical attributes
and operations are also supported in such homes.

A component type is defined independently
from home types. But, home type definitions
have to specify the managed component type. In
the meantime, many home types may manage the
same component type, however not the same in-
stances. = At runtime, a component instance is
managed by a single home instance.

Primary keys are unique identifiers of compo-
nent instances that take part in management of
instance indexing. They are valuetypes inheriting
from Components::PrimaryKeyBase. Such keys
have to be a concrete type with at least one public
field and no private ones. A primary key type can-
not include references of CORBA interfaces nor
transitively if the valuetype contains structures or
unions.

3.5.2 OMG IDL3 Definition

The component home definition (see Figure 21)
declares a home type for the VendingMachine
component type using the VendingMachineKey
primary key type. In addition to the base opera-
tions implicitly defined, the VendingMachineHome

type includes two operations defined by the de-
signer. These two operations are based upon the
factory and finder design patterns [8]. The defi-
nitions are associated with two keywords, respec-
tively factory and finder. In that, these de-
sign patterns associate semantic rules to the op-
erations.

valuetype VendingMachineKey :
Components: :PrimaryKeyBase {
public long identifier ;
};
home VendingMachineHome
manages VendingMachine
primaryKey VendingMachineKey {
factory create_vending_machine
(in long id)
raises (Components::DuplicateKeyValue,
Components: : InvalidKey) ;
finder search_vending_machine
(in long id)
raises (Components::UnknownKeyValue,
Components: : InvalidKey) ;

};

Figure 21: Component Home Definition Using a
Primary Key

3.5.3 OMG IDL2 Mapping

The mapping of home definitions is struc-
tured in three parts. The explicit inter-
face groups operations declared by the
designer (create_vending_machine and
search_vending_machine that are applica-
tion operations to be used in order not to use
the generated and technical ones). The implicit
interface groups generic operations of component
homes for this home type. The final interface
of the home type inherits from the two previous
ones as depicted in Figure 22.

. 3.5.4 Using Homes

Once home definitions are compiled, various oper-
ations are generated for the component type man-
aged by the home. In the context of a keyless
home, the only generated operations is create.
While in the context of a home with a primary
key, the operations create, find, and destroy
are generated. Finally, operations of the explicit

module Components {
interface CCMHome {
CORBA: : IRObject get_component_def () ;
CORBA: :IRObject get_home_def () ;
void remove_component
(in CCMObject comp) ;
3

interface KeylessCCMHome {
CCMObject create_component () ;

};
};

Figure 23: Components::CCMHome and Compon-
ents: :KeylessCCMHome Interfaces

functional one, client use of the instance. It is im-
portant to have distinct interfaces for each phase.
Nevertheless, this distinction is not clearly stated
in the CCM specification. Thus, it is up to the de-
signer to make this separation of concern. He has
to explicitly implement the configuration phase of
an instance or to provide means to realize it. In
the context of the CCM, a component configura-
tion mainly relies on the setting of its attributes.

3.6.2 Configuration Objects

A configuration object encapsulates the config-
uration of some or all of the component at-
tributes and that is to be used to configure any
instance of the component type it is related to.
A configuration object may use any operation of
the component available at configuration time.
Such an object inherits from the base interface
Components: :Configurator, depicted in Figure
24. It provides the configure() operation that
takes as parameter the component instance to be
configured.

The Components: :StandardConfigurator in-
terface defines a standard configuration object. It
provides the set_configuration() operation to
initialize the value of the attributes to be config-
ured. The attribute values are given as a sequence
of couples (attribute name, value) which are de-
fined as a Components::ConfigValue valuetype.
The configure() operation of the configuration
object mainly applies values contained in the se-
quence to the corresponding attributes. This part
of the interface is used at deployment time to ini-
tialize the configuration objects.

module Components {
interface Configurator {
void configure (in CCMObject comp)
raises (WrongComponentType) ;

}s

valuetype ConfigValue {
public FeatureName name ;
public any value ;

s

typedef sequence<ConfigValue>
ConfigValues ;

interface StandardConfigurator :
Configurator {

void set_configuration
(in ConfigValues desc) ;
};
s

Figure 24: Components: :Configurator and Com-
ponents: : StandardConfigurator OMG IDL In-
terfaces

3.6.3 Factory Based Configuration

Factory operations contained in component homes
may also participate to the configuration process
of component instances. In that, a factory opera-
tion may:

— be implemented for a specific conﬁguration,

— apply a configuration object to all the com-
ponent instances it creates, and

—~ explicitly invoke configuration_comple-
te() to finish the configuration phase of an
instance.

The implementation of a component home
may support the Components::HomeCon-
figuration interface, that inherits from
Components: :CCMHome (see Figure 25). This
interface is mainly intended to be used by
agents in order to deploy a component instance
in a container. This interface lets the user
specify a configuration object and a sequence
of Components::ConfigValue objects. A user
of Components::HomeConfiguration may also
remove the possibility of future use of automatic
configuration by the component home.

be seen as a limit. From an application point of
view, the abstract model is flat (only one level).
Thus, it is not possible to define composites (com-
ponent aggregations) which would be themselves
components with distributed facets and thus us-
able in the same way. Allowing de-localized port
would allow the design of composites.

4 Implementing Components

4.1 Programming Model

The programming model offers component
providers a mean to produce the implementation
of component types. The main goal is to describe
non-functional aspects in order to automatically
generate this part of the implementation and to
only write the functional part of the component.
In order for these two parts to be integrated
nicely, the CCM provides a framework, the Com-
ponent Implementation Framework (CIF) which
describes how functional and non-functional part
should interact together.

In order to generate component skeletons,
which are extended compared to CORBA 2 ones,
the CIF relies upon the Component Implemen-
tation Definition Language (CIDL). Component
skeletons automate the management of compo-
nent basic behaviors like port management, nav-
igation between facets, and component life cy-
cle. In addition to the CIDL, the CIF relies on
the framework defined for the Portable Object
Adapter (POA) hiding most of its complexity in
the same time.

4.1.1 CIDL and Executors

The Component Implementation Definition Lan-
guage is intended to describe the implementation
structure of a component as well as to describe
its persistent state. In that, a component is con-
sidered as a set of behavioral elements provided
by ezecutors. Two kinds of executors are defined:
Component executors, which implement compo-
nent types, and home executors, which implement
component homes. A component implementation
is composed of an aggregation of elements with
specific behavior and relationship. CIDL is used
to define this aggregation which is named a com-
position. composition is a CIDL meta type corre-
sponding to an implementation definition.

composition entity VendingMachineImpl {
home executor VendingMachineHomeImpl {
implements VendingMachineHome ;
manages VendingMachinelImpl ;
5
s

Figure 26: Simple CIDL Definition

A composition, as depicted in Figure 26, spec-
ifies a home type (defined in OMG IDL3), and
implicitly a component type (as a home type is
dedicated to a component type). Then, an ex-
ecutor definition is associated to the home type.
This definition specifies the relationship between
the home executor and the other elements of the
composition. Finally, the composition specifies a
component executor definition. This kind of ex-
ecutor may be segmented, i.e. its implementa-
tion will be split in several classes, implementing
facets, with distinct persistence state. The ab-
stract state of a component may also be defined
in the context of persistent requirements. The re-
lationship between home type, component type,
and executors are described in Figure 27.

implement (

Component Home Home Executor -]

manages
Y

implement
Component (- - o - Sm e Component Executor

manages

— explicitely defined in composition
[T defined in IDL3
(O written by the developer

- -» implicitely defined in composition
-~ explicitely defined in IDL3

Figure 27: Relationship Between Home, Compo-
nent Type, and Executors

Four kinds of components are defined. They are
depicted in Table 1.

Service components are stateless and without
identity. Their life cycle is related to the process-
ing time required by the invocation of an opera-
tion. Factory is the instantiation design pattern
used by the client. This kind of component im-
plementations may be created on demand and be
managed as a pool of component instances.

4.2 Implementing Components Using
OpenCCM

At the moment, the OpenCCM platform do not
take into account the CIDL descriptions. The
compilation process is only based upon the OMG
IDL3 definitions.

4.2.1 OpenCCM Compilation Process

The compilation process of a given language is
traditionally made of a lexical and syntactic parser
that builds an abstract syntactic tree upon which
semantic checking is performed. Then, this tree is
parsed to generate code or for direct interpretation
/ execution.

In our context, the OMG IDL3 is defined us-
ing about 250 syntactical rules. The abstract
tree has to model more than 20 syntactic con-
structions, mainly module, interface, value-
type, component, home, as well as type, operation,
attribute, and port definitions. The new import
statement? implies to have access to the abstract
tree composed of previous definitions. Semantic
checks are numerous and mostly recursive. Fi-
nally, generation from the OMG IDL3 includes
the mapping to OMG IDL2 as well as extended
skeletons for programming languages such as Java,
C-++, and IDLscript [21].

OMG IDL3 Compiler

OMG
L3
File
OMG OMG IDL3
IDL3 Generator
File
OMG IDL2
OMG / Generator
1DL2
File -
anguage 1 {a!c_r on |
L Skeleton CIDL
/ Generator
IR3 Visitor Pattern
iLanguage

Skeletons

Figure 29: OpenCCM Compilation Process

In order to manage this complexity, the
OpenCCM compilation process is made of a set of

4OMG IDL3 import nicely replaces the include state-
ment.

components depicted in Figure 29. This process
is based on the use of an OMG IDL3 repository
fed by a compiler of OMG IDL3 files and visited
by a set of generators to produce OMG IDL2 and
extended skeletons. This architecture allows us
to isolate problems which ease the support and
evolution of the OpenCCM platform: The com-
piler only focuses on the lexical and syntactic as-
pects (implemented with JavaCC [17]), the repos-
itory stores abstract trees and performs semantic
checks, and each generator only includes the map-
ping rules of its target language. Generators are
build based on a similar approach: The Visitor
[8] design pattern is used to visit the OMG IDL3
repository. Generators also share a framework to
produce output files. This eases the definition of
new generators without modifying the whole ar-
chitecture of the compilation process.

delegate

n
VendingMachineImpl

implements

inherits

R
el
provided by the ORB used

.1 generated by the IDL2
compiler used

provided by OpenCCM

generated by the OpenCCM
IDL3 compiler

written by the developer

Figure 30: Architecture of OpenCCM Extended
Skeletons

the Vending Machine Component. As mentioned
above, it is implemented directly in the body of
the executor class. The initialization of the vari-
ables is not presented here but has to be done.
The constructor of the class is a good place to
do so as these variables do no rely upon the en-
vironment (like other components of system ser-
vices). This part of the executor is the really im-
portant part: The only one that should be written
by the component developer, containing the busi-
ness logic of the component.

Figure 33 presents the implementation of the
configuration_complete operation that is called
to switch the component instance from its configu-
ration phasis to its execution one. This operation
also has to be implemented by the developer as
it is related to the functional logic of the compo-
nent. Here, the operation checks if both power
and water receptacles have been properly config-
ured. If not, the operation raises an exception
to signal that the configuration has not been per-
formed correctly.

Figure 34 depicts the implementation of the
heat probe component type. The configuration
phase is simple, it just checks if the probe works
properly. As this component only produces events
and does not use others, there are no connection
to check before the validation of the configuration
phase. A thread is created as the heat probe is an
active component.

Finally, Figure 35 illustrates the implementa-
tion of the vending machine home as defined
in Figure 21. The static declaration of the
class contains the code related to the registra-
tion of valuetype factories. In this example,
the factories are related to valuetypes used as
primary keys and events consumed / produced
by the vending machine component type. This
choice of a static declarations is OpenCCM de-
pendant. The create_home operations is the
entry point (see Section 6.1.3) that will be
used to instantiate a vending machine home.
The operation create_component_executor re-
ally creates an executor for the component
type, its instance at the Inaguage level. The
create_vending_machine only creates a CORBA
reference for the component (without imply-
ing the creation of the language instance).
This means that one million of component
may exists in a server, without consuming

public class VendingMachineImpl ... {

protected boolean open ;
protected double cash ;
protected double price ;
protected Vector drinks ;

public void openFrontDoor () {
this.open = true ;

}

public void closeFrontDoor () {
this.open = false ;

}

public double getCash ()
throws DoorNotOpen {

if (! this.open) {

throws new DoorNotOpen () ;
+
double tmp = this.cash ;
this.cash = 0.0 ;
return tmp ;

public
void addDrink (Drink([] s, double p)
throws DoorNotOpen {

if (! this.open) {
throws new DoorNotOpen () ;

}

for (int i=0 ; i<s.length ; i++)
this.drinks.addElement (s[i]) ;

this.price = p ;

by
/* other facets’ operations */

/* OpenCCM specific methods */
+

Figure 32: Provider Facet Implementation of the
Vending Machine Component

public class VendingMachineHomelmpl
extends VendingMachineHomeCCM {

public VendingMachineHomeImpl () {}

static {
DrinkDefaultFactory.register () ;
VendingMachineKeyDefaultFactory.
register () ;
NoChangeEvtDefaultFactory.
register () ;
EmptyEvtDefaultFactory.register () ;
TemperatureEvtDefaultFactory.
register () ;

public static
VendingMachineHomePOA create_home () {
return new VendingMachineHomeImpl () ;

¥

public VendingMachineOperations
create_component_executor () {
return new VendingMachineImpl () ;

}

public VendingMachine
create_vending_machine (int id) {
try {
return super.create
(new VendingMachineKeyImpl(id)) ;
} catch (Exception e) {
return null ;
}
b

public VendingMachine
gsearch_vending_machine (int id) {

try {

return super.find_by_primary_key
(new VendingMachineKeyImpl(id)) ;
} catch (Exception e) {
return null ;

b

b
b

Figure 35: VendingMachineHome Implementation

<softpkg>
<pkgtype>
<title>
<author>
<description>
<licence>
<idl1l>
<propertyfile>
<implementation>
</softpkg>

Figure 36: Main Elements of a Software Package
Descriptor

5.2 Component Package Descriptor

The component package descriptor specifies com-
ponent characteristics defined in the design and
development phases. It is partly generated by
the OMG IDL3 compiler and partly modified by
a packaging tool (for elements such as persistence,
threading, and so on). This descriptor includes as
outlined in Figure 37 the various features of the
component: Its ports and their interfaces.

<corbacomponent>
<repository>
<componentkind>
<eventpolicy>
<threading>
<componentfeatures>

<port>

<interface>

</corbacomponent>

Figure 37: Main Elements of a Component Pack-
age Descriptor

5.2.1 Functionality Description

This descriptor is usable through a design tool
to present information regarding the component
type. It describes the component structure: In-
herited interfaces, supported interfaces, ports, and
so on. The various interfaces of the component are
described and referenced by their Repository Id.
This descriptor allows a tool to connect compo-
nent together at deployment time to build whole
or part of an application.

reuseness of software entities in easing the use and
integration of existing components.

6.1.1 Overview

The deployment process is performed through a
tool provided by a CCM platform. This tool de-
ploys components and assemblies on target hosts.
This deployment application is a client that uses
services offered by objects, existing on execution
sites, to install, instantiate, and configure com-
ponents and connections. The five basic steps of
deployment are:

1. defining and choosing execution sites,

2. installing implementations where required,
3. instantiating servers and containers,

4. instantiating homes and components, and
5. connecting and configuring components.

These operations are implemented in several ob-
jects defined® in the CCM specification.

6.1.2 Deployment Process

The deployment process presented in the specifi-
cation is made of thirteen points (defined at two
levels). These points are depicted in Figure 40
and discussed.

AssemblyFactory f== =" "-"-----om o

ServerActivator

\
ComponentServer
\

Container

Assembly

- - instantiate

* uscs

DeploymentApplication

h |
(CCMHome

" i “’i CCMObject

Componentlnstallation

Figure 40: Deployment Process Architecture

1. The deployment application, that uses As-
semblyFactory and Componentinstallation ob-
jects, interacts with the user to know the tar-
get hosts of the deployment. Once these sites

5In fact outlined, these objects are under specified.

are known, it generates a specialized assem-
bly descriptor from the application descrip-
tor and the information provided by the user.
This descriptor is then used by the Assembly
instance related to this deployment.

. Component implementations are installed as

archives on required sites. To do so, the de-
ployment tool uses Componentlnstallation in-
stances available on these sites (a single one
per site).

. An assembly factory is used to create an As-

sembly instance on a single site for the entire
application. At creation time, the specialized
assembly descriptor URL is provided to the
Assembly instance.

. The assembly descriptor is used as a “recipe”

to deploy the application. Based on this de-
scriptor, the Assembly instance creates com-
ponent homes and component instances on
their execution sites.

To create a component instance, the Assem-
bly object has to create a container server,
then a container, then a component home in-
side the container, and finally the component
instance.

(a) First, the ServerActivator instance avail-
able on the execution host is used to cre-
ate a container server.

(b) Then, the container server is used to in-
stantiate a container according to the
component properties. During this,
the container configuration is provided:
Container identifier and its properties.

(c) The container interface provides an op-
eration to install a home. Once in-
stalled, the home implementation is
loaded using the Componentinstallation
object to know which library to use, 7.e.
the library implementing the component
type.

(d) The Assembly object then uses the home
instance to create a component instance.
This operation returns the base refer-
ence of the component instance as a
Components: :CCMObject.

(e) If necessary, a configuration object is ap-
plied on the newly created instance.

the vending machine (component instance refer-
enced by vm) receptacle power. Then, the tem-
perature event sink temp of the vending machine
is subscribed to the heat probe (component in-
stance referenced by hp) source event temp. These
operations have to be done for all the connections
existing in the application. Component instances
are also configured through the setting of their
attributes.

facet / receptacle connection
ref = ps.provide_plug ()
ckl = vm.connect_power (ref)

event subscription
ref = vm.get_consumer_temp ()
ck2 = hp.subscribe_temp (ref)

Figure 43: Connecting Component Instances

Finally, when all instances are configured, the
configuration_complete operation is invoked to
start the execution of the application. Figure 44
depicts this final step of the deployment process.
It is important to notice that the order of the
invocations is important. The vending machine
instance should not be running while power and
water supplies are not. The order has to be de-
fined regarding component dependencies: Begin-
ning with the instances not depending on others
and finishing by instances that are the most de-
pendent of others. This point is unfortunately
not outlined in the specification, and right now
the only way to defined it is through ordering the
definitions of instances of an assembly in the as-
sembly descriptor. But this seems a fairly poor
choice.

starting power supply component
ps.configuration_complete ()

starting water supply component
ws.configuration_complete ()

starting heat probe component
hp.configuration_complete ()

starting vending machine component
vm.configuration_complete ()

Figure 44: End of the Configuration Phasis

7 Executing Componehts

7.1 Execution Model
7.1.1 Overview

A container server is an execution environment
for CORBA component instances. It provides low
level resources such as memory and CPU as well
as high level one such as common object services.
To provide a generic environment that provides
various kinds of contexts to component instances,
a server hosts one or several containers that will
be know to component instances.

7.1.2 Container Characterization

Component instances, whatever their types, are
managed by a container. A component instance
cannot not live without being supported by a con-
tainer. Moreover, a container kind could only host
a single component kind for which it has been de-
signed. Two categories of containers have defined:
Transient ones and persistent ones.

A container provides a standard set of services
to component instances it hosts. Components and
homes are deployed in containers through the use
of specific tools. Such tool are used to generate
useful extensions for the container to host them.
A programming API intending to ease application
development is specified in the context of the con-
tainer framework (see Section 4.1).

7.1.3 Container Server Architecture

A container server is a process (in the Unix mean-
ing) that hosts an arbitrary number of contain-
ers and components. A manager is responsible
for the creation and destruction of containers. It
is a container factory accessible at deployment
time, according to the component requirements.
Each container type is related to an implementa-
tion which implies a predefined way of interacting
with the POA and the ORB. Each container type
includes a specialized POA (regarding for exam-
ple policies). Container and POA creation, policy
configuration, CORBA services binding and so on
are defined based on the deployment descriptor.

7.1.4 Portable Object Adapter

A POA is used to create references to be exported
to clients. It is also used to manage instance acti-

Then, the CCM provides a set of means to de-
scribe instead of to program. These description
means are targeting provided services definition,
like already available in object oriented models,
as well as technical and non-functional require-
ments which is an improvement. Once the vari-
ous aspects specified, information is generated to
be used later on to introspect components.

Finally, in the context of the CCM it is possible
to focus on the functional aspects of software com-
ponents. The system complexity is hidden beyond
simplified interfaces provided by both containers
and generated part of a component. The later is
possible thanks to the previously mentioned de-
scription means that allow one to describe non-
functional aspects instead of programming them,
and to generate the non-functional part of the
component.

8.2 Drawbacks

The main drawback of the specification right now
is its youth. In that, we are too close for a proper
view and there are not much experiment on top
of it. Moreover, the goal of the CCM is ambi-
tious and some of the point may be hard to im-
plement. It is also impossible to master all the as-
pects of the specification from the execution level
to the meta-model of the CCM. The process right
now is to remove points that are known to be
un-implementable. Thus, a real and implemented
specification should arise.

From an academic point of view, CORBA com-
ponents are monolithic, ports are co-located and
cannot be distributed over containers for a single
component. We also regret the lack of aggrega-
tion means: A component assembly is not a com-
ponent and thus cannot be used as a component.
Port definition is static and no port may be added
on a component type dynamically. This last re-
marks is related to the lack of aggregation means,
it argues about the lack of dynamic aggregation.

Then, the Component Implementation Frame-
work is a purely technical framework. The CCM
does not provide a component design framework.
This lack raises some questions: Is it easy to im-
plement components? When should I use a com-
ponent, when should I keep using objects? Does
every thing should become a component? Could
every thing become a component?

Finally, it seems that the CCM properly de-

fines how components for distributed applications
should be produced. Nevertheless, it does not pro-
vide guidelines on how to produce, using these
components, distributed applications. No rule nor

methodology is outlined.

Whenever, these drawbacks, the CCM looks like
the most complete component model and will cer-
tainly be one of the major industrial model of the
forthcoming years. It will not be the ready to use
solution of the two forthcoming years. But, it is
expectable that the model and its associated plat-
forms will be ready in few years when the users
discover the limits of models like COM/DCOM,
NET, and EJB which could be qualified of first
generation of industrial component models.

8.3 EJB vs CCM

Table 2 compares, on given aspects, the CCM and
the EJB models. According to this table, the
CCM can easily be seen as more flexible and pow-
erful than EJB. First, EJB may be seen as a subset
of the CCM as a CCM dedicated container may
host EJB. Second, EJB is a proprietary solution
only usable with the Java programming language.
The CCM tends to be open, as any one may con-
tribute, and usable in an heterogeneous environ-
ment. Third, EJB are not really distributed as an
application could only be deployed to a single site.
On the opposite a CCM application may be spread
over several sites. Finally, EJB is a technology of
today, many products are already available and
used. The CCM is a technology of tomorrow, no
complete platforms are existing but it should be-
come a major model in a few years according to
its potential.

8.4 OpenCCM

OpenCCM was the first early implementation
publicly released. It is right now available in Java,
and will also be available in the future in C+-+.
Even if it does not provide all the functionalities
of the containers defined in the specification, it al-
ready provides a means to define, develop, deploy,
and run applications based on CORBA compo-
nents. As an open source project, people are en-
couraged to participate and to contribute to the
development of the OpenCCM platform.

On the perspective side, on-going research
projects include the definition of adaptive contain-

[10]

[11]

neering Institute — Carnegie Mellon Univer-
sity, April 1999.

L. Bellisard and M. Riveill. From Distributed
Objects to Distributed Components: The
Olan Approach. In Workshop Putting Dis-
tributed Objects to Work, ECOOP’96, Aus-
tria, July 1996.

P. Clements. A Survey of Architecture De-
scription Languages. Height International
Workshop on Software Specification and De-
sign, March 1996. Germany.

P. Clements and L. Northrop. Software Ar-
chitecture: An Executive Overview. Tech-
nical Report CMU/SEI-96-TR-003 ESC-TR-
96-003, Software Engineering Institute -
Carnegie Mellon University, February 1996.

A. DeSoto. Using the Bean
Development Kit - a Tutorial.
http://java.sun.com/beans/docs/ Tutorial-
Nov97.pdf, November 1997. ;

F. Bachman et al. Volume II: Technical Con-
cepts of Component-Based Software Engi-
neering. Technical Report CMU/SEI-2000-
TR-~008, Carnegie Mellon University, May
2000.

E. Gamma, R. Helm, R. Johnson, J. Vlis-
sides, and G. Booch. Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison-Westley Professional Comput-
ing, USA, 1995.

R. Grimes. Professional DCOM Program-
ming. Wrox Press ltd., Birmingham, Canada,
1997.

M. Henning and S. Vinoski. Advanced
CORBA Programming with C++. Addison-
Westley, 1999. ISBN: 0-201-37927-9.

Inprise. VisiBroker 4.5 for Java User Guide,
2001. http://www.inprise.com.

[12] R. Marvie, P. Merle, and J.-M. Geib. To-

wards a Dynamic CORBA Component Plat-
form. In Proceedings of the 2nd International
Symposium on Distributed Object Applica-
tions (DOA’2000), pages 305-314, Antwer-
pen, Belgium, September 2000. IEEE. ISBN:
0-7695-0819-7.

[13]

[14]

23]

[24]

R. Marvie, P. Merle, J.-M. Geib, and
C. Gransart. CCM + IDLscript = Appli-
cations Distribuées. Ewolution des plates-
formes orientées objets répartis, numéro spé-
ctal de Calculateurs Paralléles et Réseau,
12(1):75-104, 2000. Ed. Hermes, ISBN: 2-
7462-0169-0.

R. Marvie, P. Merle, J.-M. Geib, and
M. Vadet. OpenCCM: une plate-forme ou-
verte pour composants CORBA. In Actes
de la 2éme Conférence Frangaise sur les Sys-
téemes d’Exploitation (CFSE’2), pages 1-14,
Paris, France, April 2001.

V. Matena and M. Hapner. Enterprise Java
Beans Specification v1.1 - Final Release. Sun
Microsystems, May 1999.

T. Meijler and O. Nierstrasz. Beyond Ob-
jects: Components. In WCOP’98 Proceed-
ings of the Third International Workshop on
Component-Oriented Programming, 1998.

Metamata. Java. Compiler Compiler.
http://www.metamata.com/javacc/index. html.

Sun Microsystems. Java Remote Method In-
vocation Specification. Sun Microsystems,
October 1998.

OMG. CORBAServices: Common Object
Services Specification. Object Management
Group, November 1997.

OMG. CORBA Components: Joint Revised
Submission. Object Management Group, Au-
gust 1999. OMG TC Document orbos/99-07-
{01..03,05} orbos/99-08{05..07,12,13}.

OMG. CORBA Scripting Language Specifica-
tion, v1.0. Object Management Group, June
2001. OMG TC Document formal/01-06-05.

OMG. CORBA/IIOP 2.4.2 Specification.
Object Management Group, February 2001.
OMG TC Document formal/01-02-01.

OOC. ORBacus 4.0.5 for C++ and Java User
Guide, 2001. http://www.ooc.com.

OpenORB. OpenORB 1.0.1 User Guide,
2001. http://www.openorb.ory.

