
Aspects as Components

Marcelo Medeiros Eler and Paulo Cesar Masiero

Dept. of Computer Science, ICMC - University of Sao Paulo,
13560-970 Sao Carlos - SP - BR. P.O.Box 668

{mareler, masiero}@icmc.usp.br

Abstract. An adaptation of the UML Component method to design
crosscutting components is briefly presented. Such components are al-
lowed to crosscut only the public interface of base (convencional) compo-
nents. The design and implementation of crosscutting components using
the language JAsCO is discussed.

1 Introduction

Components are units of composition with contractually specified interfaces and
explicit context dependencies only [4]. Component-based software development
(CBSD) aims at decomposing software into independent modules that are easy to
manage, reuse and evolve. Several methods to support CBSD have been proposed
[1, 4, 6], which usually provide guidelines on how to encapsulate concerns into
components. However, there are crosscutting concerns such as logging, tracing
and persistence, that cannot be implemented as components using tools like
CORBA, EJB and COM. By their nature, they crosscut the component structure
within components and across the components’ boundaries [3].

A way to solve this problem is to use containers but the calls to the services
provided by them are still spread along several components. Another way is to
combine CBSD with aspect-oriented software development (AOSD) to support
the implementation of crosscutting concerns as independent modules. The pro-
blem with this combination is that, by their nature, aspects may crosscut the
internal component structure thus clashing with the component opaqueness. A
solution to this is to compromise aspect expressiveness allowing aspects to ope-
rate only on the public operations exposed in the components’ interfaces and
forbidding them of extending any operation through inter-type declarations [3].

We show briefly an adaptation of the UML Components method [1] to pro-
duce a component-based design that also includes aspectual (crosscutting) com-
ponents, preserving the component opaqueness by allowing only crosscutting of
public operations in the interface of base components. A brief introduction to the
component architecture that is produced and to how crosscutting components
can be designed to be reused is presented.

2 Component/Aspect Architecture

We have devised a method to develop software with components and aspects.
Using this method, we produce a component/aspect architecture as the one

M. Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 411–414, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

412 M.M. Eler and P.C. Masiero

shown in Figure 1 (part A) for a Hotel Reservation System (HRS) [1]. In the ar-
chitecture, we have crosscuting (LoggingOpMgr) and base componentes (Reser-
vationSystem and CustomerMgr, for example). The crosscutting component
provides a crosscutting interface and requires services from business components
(UserMgr and LoggingMgr). The diamond and the interface name ’ICC’ prefix
both indicate a crosscutting interface.

<<comp spec>>
ReservationSystem

<<aspect comp spec>>
LoggingOpMgr

<<comp spec>>
CustomerMgr

<<comp spec>>
HotelMgr

<<comp spec>>
BillingSystem

<<comp spec>>
UserMgr

<<comp spec>>
LoggingMgr

ICustomerMgt

IInputOp

IOuputOp

ICCLoggingOpMgt

IUserMgt

ILoggingMgtIBilling

IHotelMgt

IInput:ReservationSystem

ICCLoggingOpMgt:LoggingOpMgr

inputOp()

2: registerExecutedOperation(msg)

1: do_inputOp()

<<after>>

A

B

Fig. 1. Component/aspect architecture for the Hotel Reservation System [1]

The semantics for this diagram is that any operation in the interface of IIn-
putOp will be crosscut by the crosscutting component when called by any other
component and is enhanced by the behavior specified at the crosscutting inter-
face. Following the guidelines of Clarke and Baniassad [5], the woven behavior
may be represented as in Figure 1 (part B) where, for each operation crosscut
(e.g. inputOp()), we create a copy of this operation in do op1() and a new op-
eration inputOp(). In this case, this new operation calls the original operation
(do op1()) and after that calls the crosscutting operation registerExecutedOp-
eration().

3 Design and Reuse of Aspectual Components

There are many possible designs for an aspectual component, all of them influ-
enced by the AOP language used and also by the intended reuse: if white box
or black box. A possible way to generalize a component so that it can be reused
without change of the code (black box) is to have its code prepared to be used
in as many as possible advice configurations such, for example, before, after,
and before followed by after. It is difficult to foresee all the possible uses of an
around advice because a new behavior is to be executed instead of the original

Aspects as Components 413

operation; but this can be done for a white box reuse. The different types of
advices that are available in the component implementation have to be made
clear in its documentation.

The code for the LoggingOpMgr component implemented in JAsCO [2] is
shown in Figure 2 (part A). The code is prepared to be used in all three situations

class LoggingOpMgr

{

 public void registerExecutedOperation(String msg) {

 // code of registerExecutedOperation

 }

 hook ICCLoggingOpMgt

 {

 ICCLoggingOpMgt(method(..args)) {

 call(method);

 }

 before(){

 global.registerExecutedOperation("BEFORE::"+ msg);

 }

 after() {

 global.registerExecutedOperation("AFTER::"+ msg);

 }

}

A

B static connector installLoggingOpMgr

 LoggingOpMgr.ICCLoggingOpMgt ICCL =

 new LoggingOpMgr.ICCLoggingOpMgt

 ({ * ReservationSystem.makeReservation(..),

 * ReservationSystem.amendReservation(..),

 * ReservationSystem.cancelReservation(..),

 * ReservationSystem.beginStay(..),

 * ReservationSystem.registerClient(..)});

 ICCL.before();

 ICCL.after();

}

Fig. 2. JAsCo Code for the LoggingOpMgr component

<<comp spec>>
CarRentalPriv

<<comp spec>>
CarRentalPriv

<<aspect comp spec>>
LoggingOpMgr

<<comp spec>>
CustomerMgr

<<comp spec>>
CarMgr

<<comp spec>>
BillingMgr

<<comp spec>>
UserMgr

<<comp spec>>
LoggingMgr

ICustomerMgt

IPickUpMgt
IInitialPage

ICartMgt

IRentalMgt
IReservationMgt

ICCLoggingOpMgt

IUserMgt

ILoggingMgt

IBillingMgt

ICarMgt
recordCarFine(..)
payment(..)
rentCar(..)

makeReservation(..)

static connector installLoggingOpMgr
{
 LoggingOpMgr.ICCLoggingOpMgt ICCL =
 new LoggingOpMgr.ICCLoggingOpMgt({* CarRentalPub.makeReservation(..),
 * CarRentalPriv.recordCarFine(..),
 * CarRentalPriv.payment(..),
 * CarRentalPriv.rentCar(..)});
 ICCL.before();
}

A

B

Fig. 3. Component/aspect architecture for a Car Rental System (CRS)

414 M.M. Eler and P.C. Masiero

listed above. The connector shown (part B) is realized at the assembly phase
and links LoggingOpMgr to the SystemReservation component. The connector
defines the advices used (in this case, before and after, in the ICCL.before() and
ICCL.after() commands) and the operations to be crosscut.

The LoggingOpMgr’s code (Figure 2) is reused as it is in a Car Rental System,
whose component and aspect diagram is shown in Figure 3 (part A). The notes
used show that now only certain operations of the crosscutting interface have
added behavior. Absence of a note means that all of the operations are crosscut.
The connector’s code (Figure 3, part B) shows the LoggingOpMgr being reused
during the assembly phase for the CRS. The connector defines the advice (in this
case, before) and the operations that will be crosscut in the interface. Note that
the behavior of a crosscutting component does not change when is reused. What
changes is the execution of the crosscutting behavior before, after or instead
(around) the operations that will have their behavior enhanced.

4 Concluding Remarks

The approach presented also supports the design of functional crosscutting com-
ponents, not shown in the example. Implementation can also be done using other
languages like AspectJ, with some restrictions. For example: using JAsCO, it is
possible to change a connector dinamically, what is not possible with AspectJ.
Further work is going on to derive more generic designs for black box and white
box reuse of crosscutting components as well for crosscutting concerns that are
not fully orthogonal such as persistence.

References

1. Cheesman, J.; Daniels, J.: Uml components: A simple process for specifying
component-based software. Addison-Wesley, 2000.

2. Suvee, D.; Vanderperren, W.; Jonckers, V.: Jasco: an aspect-oriented approach tai-
lored for component based software development. In: AOSD, 2003, p. 2129.

3. Cottenier, T.; Elrad, T.: Validation of context-dependent aspect-oriented adapta-
tions to components. In: Workshop on Component-Oriented Programming, 2004.

4. Szyperski, C.; Gruntz, G. D.; Murer, S.: Component software - beyond object-
oriented programming. Addison-Wesley / ACM Press, 2002.

5. Clarke, S.; Baniassad., E.: Aspect-oriented analysis and design: The theme approach.
Addison-Wesley Professional, 2005.

6. Clements, P. C.: From subroutines to subsystems: Component based software de-
velopment. American Programmer, v. 6, n. 11, 1995.

	Introduction
	Component/Aspect Architecture
	Design and Reuse of Aspectual Components
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

