
A Classification and Comparison Framework for
Software Architecture Description Languages

Nenad Medvidovic and Richard N. Taylor, Member, IEEE Computer Society

AbstractÐSoftware architectures shift the focus of developers from lines-of-code to coarser-grained architectural elements and their

overall interconnection structure. Architecture description languages (ADLs) have been proposed as modeling notations to support

architecture-based development. There is, however, little consensus in the research community on what is an ADL, what aspects of an

architecture should be modeled in an ADL, and which of several possible ADLs is best suited for a particular problem. Furthermore, the

distinction is rarely made between ADLs on one hand and formal specification, module interconnection, simulation, and programming

languages on the other. This paper attempts to provide an answer to these questions. It motivates and presents a definition and a

classification framework for ADLs. The utility of the definition is demonstrated by using it to differentiate ADLs from other modeling

notations. The framework is used to classify and compare several existing ADLs, enabling us, in the process, to identify key properties

of ADLs. The comparison highlights areas where existing ADLs provide extensive support and those in which they are deficient,

suggesting a research agenda for the future.

Index TermsÐSoftware architecture, architecture description language, component, connector, configuration, definition,

classification, comparison.

æ

1 INTRODUCTION

SOFTWARE architecture research is directed at reducing
costs of developing applications and increasing the

potential for commonality between different members of a
closely related product family [54], [66]. Software develop-
ment based on common architectural idioms has its focus
shifted from lines-of-code to coarser-grained architectural
elements (software components and connectors) and their
overall interconnection structure. To support architecture-
based development, formal modeling notations and analy-
sis and development tools that operate on architectural
specifications are needed. Architecture description lan-
guages (ADLs) and their accompanying toolsets have been
proposed as the answer. Loosely defined, ªan ADL for
software applications focuses on the high-level structure of
the overall application rather than the implementation
details of any specific source moduleº [71]. ADLs have
recently become an area of intense research in the software
architecture community [11], [16], [73], [37].

A number of ADLs have been proposed for modeling

architectures, both within a particular domain and as

general-purpose architecture modeling languages. In this

paper, we specifically consider those languages most

commonly referred to as ADLs: Aesop [14], [12],

ArTek [69], C2 [39], [42], Darwin [35], [36], LILEANNA

[70], MetaH [6], [72], Rapide [31], [32], SADL [46], [47],

UniCon [62], [63], Weaves [20], [21], and Wright [2], [4].1

Recently, initial work has been done on an architecture
interchange language, ACME [15], which is intended to
support mapping of architectural specifications from one
ADL to another and, hence, enable integration of support
tools across ADLs. Although, strictly speaking, ACME is
not an ADL, it contains a number of ADL-like features.
Furthermore, it is useful to compare and differentiate it
from other ADLs to highlight the difference between an
ADL and an interchange language. It is therefore, included
in this paper.

There is, however, still little consensus in the research
community on what an ADL is, what aspects of an
architecture should be modeled by an ADL, and what
should be interchanged in an interchange language [43]. For
example, Rapide may be characterized as a general-purpose
system description language that allows modeling of
component interfaces and their externally visible behavior,
while Wright formalizes the semantics of architectural
connections. Furthermore, the distinction is rarely made
between ADLs on one hand and formal specification,
module interconnection (MIL), simulation, and program-
ming languages on the other. Indeed, for example, Rapide
can be viewed as both an ADL and a simulation language,
while Clements contends that CODE [49], a parallel
programming language, is also an ADL [8].

Another source of discord is the level of support an ADL
should provide to developers. At one end of the spectrum,
it can be argued that the primary role of architectural
descriptions is to aid understanding and communication
about a software system. As such, an ADL must have

70 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

. N. Medvidovic is with the Department of Computer Science, University of
Southern California, Los Angeles, CA 90007-4313. E-mail: neno@usc.edu.

. R.N. Taylor is with the Department of Information and Computer Science,
University of California, Irvine, CA 92697-3425. E-mail: taylor@uci.edu.

Manuscript received 13 Feb. 1998; revised 29 Dec. 1998; accepted 18 Feb.
1999.
Recommended for acceptance by M. Jazayeri.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106346.

1. The full name of the ADL for modeling architectures in the C2
architectural style is ªC2SADEL.º To distinguish it from SADL, which
resulted from an unrelated project, C2SADEL will be referred to simply as
ªC2º in this paper.

0098-5589/00/$10.00 ß 2000 IEEE

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

simple, understandable, and possibly graphical syntax,
well-understood, but not necessarily formally defined
semantics, and the kinds of tools that aid visualization,
understanding, and simple analyses of architectural de-
scriptions (e.g., Argo [59]). At the other end of the spectrum,
the tendency has been to provide formal syntax and
semantics of ADLs, powerful analysis tools, model check-
ers, parsers, compilers, code synthesis tools, runtime
support tools, and so on (e.g., SADL's architecture refine-
ment patterns [47], Darwin's use of �-calculus to formalize
architectural semantics [36], or UniCon's parser and
compiler [62]). While both perspectives have merit, ADL
researchers have generally adopted one or the other
extreme view. It is our contention that both are important
and should be reflected in an ADL.

Several researchers have attempted to shed light on these
issues, either by surveying what they consider existing
ADLs [8], [27], [28], [71] or by listing ªessential require-
mentsª for an ADL [32], [62], [64], [65]. In our previous
work, we attempted to understand and compare ADLs
based on problem areas within software architectures for
which they are suited [40]. Each of these attempts furthers
our understanding of what an ADL is; however, for various
reasons, each ultimately falls short in providing a definitive
answer to the question.

This paper builds upon the results of these efforts. It is
further influenced by insights obtained from studying
individual ADLs, relevant elements of languages com-
monly not considered ADLs (e.g., programming lan-
guages), and experiences and needs of an ongoing
research project, C2. The paper presents a definition and a
relatively concise classification framework for ADLs: An
ADL must explicitly model components, connectors, and their
configurations; furthermore, to be truly usable and useful, it
must provide tool support for architecture-based develop-
ment and evolution. These four elements of an ADL are
further broken down into constituent parts.

The remainder of the paper is organized as follows:
Section 2 discusses contributions and shortcomings of other
attempts at surveying and classifying ADLs. Section 3
defines our taxonomy of ADLs and demonstrates its utility
by determining whether several existing notations are
ADLs. Section 4 assesses the above-mentioned ADLs based
on the criteria established in Section 3. Discussion and
conclusions round out the paper.

2 RELATED APPROACHES

Any effort such as this one is based on discoveries and
conclusions of other researchers. We closely examined ADL
surveys conducted by Clements and Kogut [8], [27], [28] and
Vestal [71]. We also studied several researchers' attempts at
identifying essential ADL characteristics and requirements:
Luckham and Vera [32], Shaw et al. [62], Shaw and Garlan
[64], [65], and Tracz [70]. As a basis for architectural
interchange, ACME [15] gave us key insights into what
needs to remain constant across ADLs. Finally, we built
upon our conclusions from earlier attempts to shed light on
the nature and needs of architecture modeling [40], [42].

2.1 Previous Surveys

Clements and Kogut [8], [27], [28] provide an extensive
classification of existing ADLs. The classification is based
on an exhaustive questionnaire of ADL characteristics and
features, completed by each language's design team. The
survey was conducted in a top-down fashion: The authors
used domain analysis techniques to decide what features an
ADL should have and then assessed existing languages
with respect to those features.

While their taxonomy is valuable in bettering our
understanding of surveyed ADLs, it comes up short in
several respects. Domain analysis is typically used in well-
understood domains, which is not the case with ADLs. The
survey does not provide any deeper insight into what an
ADL is, nor does it present its criteria for including a
particular modeling notation. Quite the contrary, several
surveyed languages are not commonly considered ADLs,
yet little justification is given for their inclusion. Perhaps
most illustrative is the example of Modechart, a specifica-
tion language for hard-real-time computer systems [26].
Clements labels Modechart ªa language on the edge of
ADLs,º whose utility to the architecture community lies in
its sophisticated analysis and model checking toolset [7].
Tool support alone is not a sufficient reason to consider it an
ADL however.

Several of the criteria Kogut and Clements used for ADL
evaluation, such as the ability to model requirements and
algorithms, are outside an ADL's scope.2 This kind of
survey also runs the risk of not asking all of the relevant
questions. Finally, the authors often have to extrapolate
very specific information from multiple, potentially
subjective, vague, or misunderstood questions.

Vestal's approach [71] is more bottom-up. He surveyed
four existing ADLs (LILEANNA, MetaH, Rapide, and QAD
[22]) and attempted to identify their common properties. He
concluded that they all model or support the following
concepts to some degree:

. components,

. connections,

. hierarchical composition, where one component
contains an entire subarchitecture,

. computation paradigms, i.e., semantics, constraints,
and nonfunctional properties,

. communication paradigms,

. underlying formal models,

. tool support for modeling, analysis, evaluation, and
verification, and

. automatic application code composition.

Although ªcursoryº (as he qualifies it) and limited in its
scope, Vestal's survey contains useful insights that bring us
closer to answering the question of what an ADL is. In its
approach, our survey is closer to Vestal's than to Clements
and Kogut's.

In our previous work [40], we attempted to identify the
problems or areas of concern that need to be addressed by
ADLs:

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 71

2. A discussion of the scope of software architectures and, therefore,
ADLs, is given by Perry and Wolf [54]. Their conclusions are largely
mirrored in the definition of architectures given by Shaw and Garlan [66].

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

. representation,

. design process support,

. static and dynamic analysis,

. specification-time and execution-time evolution,

. refinement,

. traceability, and

. simulation/executability.

Understanding these areas and their properties is a key to
better understanding the needs of software architectures,
architecture-based development, and architectural descrip-
tion and interchange; a study of these areas is also needed
to guide the development of next-generation ADLs. We
demonstrated that each existing ADL currently supports
only a small subset of these domains, and discussed
possible reasons for that.

While we believe that this taxonomy gives the architect a
sound foundation for selecting an ADL and orients
discourse toward problem solving, it is still very much a
preliminary contribution. Furthermore, our comparison of
ADLs based on these categories did not reveal what specific
characteristics and constructs render an ADL well-suited
for solving a particular set of problems or whether certain
constructs are complementary or mutually exclusive.
Consequently, we believe that a feature-based classification
and comparison of ADLs is also needed.

2.2 Insights from Individual Systems

In [32], Luckham and Vera list requirements for an ADL,
based on their work on Rapide:

. component abstraction,

. communication abstraction,

. communication integrity, which mandates that only
components that are connected in an architecture
may communicate in the resulting implementation,

. ability to model dynamic architectures,

. hierarchical composition, and

. relativity, or the ability to relate (map) behaviors
between architectures.

As a result of their experience with UniCon, Shaw et al.
list the following properties an ADL should exhibit [62]:

. ability to model components, with property
assertions, interfaces, and implementations,

. ability to model connectors, with protocols, property
assertions, and implementations,

. abstraction and encapsulation,

. types and type checking, and

. ability to accommodate analysis tools.

Clearly, the above features alone cannot be considered
definitive indicators of how to identify an ADL. They have
resulted from limited experience of two research groups
with their own languages. However, they represent valuable
data points in trying to understand and classify ADLs.

2.3 Attempts at Identifying Underlying Concepts

In [70], Tracz defines an ADL as consisting of four ªCºs:
components, connectors, configurations, and constraints.
This taxonomy is appealing, especially in its simplicity, but
needs further elaboration: justification for and definitions of
the four ªCªs, aspects of each that need to be modeled,

necessary tool support, and so on. Tracz's taxonomy is
similar to Perry and Wolf's original model of software
architectures, which consists of elements, form, and
rationale [54]. Perry and Wolf's elements are Tracz's
components and connectors, their form subsumes an
architectural configuration, and the rationale is roughly
equivalent to constraints.

Shaw and Garlan have attempted to identify unifying
themes and motivate research in ADLs. Both authors have
successfully argued the need to treat connectors explicitly,
as first-class entities in an ADL [4], [61], [64].

In [64], they also elaborate six classes of properties that
an ADL should provide: composition, abstraction, reusa-
bility, configuration, heterogeneity, and analysis. They
demonstrate that other existing notations, such as
informal diagrams, modularization facilities provided by
programming languages, and MILs, do not satisfy the
above properties and, hence, cannot fulfill architecture
modeling needs.

In [65], Shaw and Garlan identify seven levels of
architecture specification capability:

. capturing architectural information,

. construction of an instance,

. composition of multiple instances,

. selection among design or implementation
alternatives,

. verifying adherence of an implementation to
specification,

. analysis, and

. automation.

They conclude that, while ADLs invariably provide
notations for capturing system descriptions (level 1), few
support other levels. It is unclear, however, what set of
criteria they applied to the different ADLs and how
stringent those criteria were, particularly since this paper
will show that a number of ADLs do provide a considerable
amount of support for most of the above capabilities.

Finally, in [43], Medvidovic et al. argue that, in order to
adequately support architecture-based development and
analysis, one must model architectures at four levels of
abstraction: internal component semantics, component
interfaces, component interconnections in an architecture,
and architectural style rules. This taxonomy presents an
accurate high-level view of architecture modeling needs,
but is too general to serve as an adequate ADL comparison
framework. Furthermore, it lacks any focus on connectors.

2.4 Architecture Interchange

Perhaps the closest the research community has come to a
consensus on ADLs has been the emerging endorsement by
a segment of the community of ACME as an architecture
interchange language [15]. In order to meaningfully inter-
change architectural specifications across ADLs, a common
basis for all ADLs must be established. Garlan and
colleagues believe that common basis to be their core
ontology for architectural representation:

. components,

. connectors,

72 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

. systems, or configurations of components and
connectors,

. ports, or points of interaction with a component,

. roles, or points of interaction with a connector,

. representations, used to model hierarchical
compositions, and

. rep-maps, which map a composite component or
connector's internal architecture to elements of its
external interface.

In ACME, any other aspect of architectural description is
represented with property lists (i.e., it is not core).

ACME has resulted from a careful consideration of issues
in and notations for modeling architectures. As such, it could
be viewed as a good starting point for studying existing
ADLs and developing new ones. However, ACME
represents the least common denominator of existing ADLs,
rather than a definition of an ADL. It also does not provide
any means for understanding or classifying those features of
an architectural description that are placed in property lists.
Finally, certain structural constraints imposed by ACME
(e.g., a connector may not be directly attached to another
connector) satisfy the needs of some approaches (e.g., Aesop,
UniCon, and Wright), but not of others (e.g., C2).

3 ADL CLASSIFICATION AND COMPARISON

FRAMEWORK

Individually, none of the above attempts adequately answer
the question of what an ADL is. Instead, they reflect their
authors' views on what an ADL should have or should be able
to do. However, a closer study of their collections of features
and requirements shows that there is a common theme
among them, which is used as a guide in formulating our
framework for ADL classification and comparison. To
complete the framework, the characteristics of individual
ADLs and summaries of discussions on ADLs that occurred
at the three International Software Architecture Workshops
[11], [73], [37], were studied. To a large degree, our
taxonomy reflects features supported by all, or most,
existing ADLs. In certain cases, we also argue for
characteristics typically not supported by current ADLs,
but which have either been identified in the literature as
important for architecture-based development or have
resulted from our experience with our own research project
in software architectures, C2. Finally, we have tried to learn
from and, where relevant, apply the extensive experience
with languages for modeling other aspects of software in
formulating our framework.

To properly enable further discussion, several definitions
are needed. There is no standard, universally accepted
definition of architecture, but we will use as our working
definition the one provided by Shaw and Garlan [66]:

Software architecture [is a level of design that] involves the
description of elements from which systems are built, interactions
among those elements, patterns that guide their composition, and
constraints on these patterns.

An ADL is thus a language that provides features for
modeling a software system's conceptual architecture,
distinguished from the system's implementation. ADLs
provide both a concrete syntax and a conceptual framework

for characterizing architectures [15]. The conceptual frame-
work typically reflects characteristics of the domain for
which the ADL is intended and/or the architectural style.
The framework typically subsumes the ADL's underlying
semantic theory (e.g., CSP, Petri nets, finite state machines).

3.1 Framework Categories

We introduce the top-level categories of our ADL
classification and comparison framework in this section.
The building blocks of an architectural description are:
1) components, 2) connectors, and 3) architectural configura-
tions.3 An ADL must provide the means for their explicit
specification; this enables us to determine whether or not
a particular notation is an ADL. In order to infer any kind
of information about an architecture, at a minimum,
interfaces of constituent components must also be modeled.
Without this information, an architectural description
becomes but a collection of (interconnected) identifiers,
similar to a ªboxes and linesª diagram with no explicit
underlying semantics. Several other aspects of compo-
nents, connectors, and configurations are desirable, but
not essential: Their benefits have been acknowledged and,
possibly, demonstrated in the context of a problem
domain or a style, but their absence does not mean that
a given language is not an ADL.

Even though the suitability of a given language for
modeling software architectures is independent of whether
and what kinds of tool support it provides, an accompanying
toolset will render an ADL both more usable and useful.
Conversely, the desired manipulations of architectural
models by tools may influence the modeling features
provided in an ADL. A large segment of the ADL research
community is actively studying the issue of tool support; an
effort to identify a canonical ªADL toolkitº is currently
under way [17].

The ADL classification and comparison framework is
depicted in Fig. 1. It is intended to be extensible and
modifiable, which is crucial in a field that is still largely in
its infancy. The remainder of this section motivates and
further elaborates on each category of the framework.

The categories identified in the framework are orthogonal
to an ADL's scope of applicability. As a model of a system at
a high level of abstraction, an ADL is intended (and can only
be expected) to provide a partial depiction of the system. The
types of information on which the ADL focuses may be the
characteristics of an application domain, a style of system
composition (i.e., an architectural style), or a specific set of
properties (e.g., distribution, concurrency, safety, and so
on). Regardless of the focus and nature of the ADL, in
general the desired kinds of representation, manipulation,
and qualities of architectural models described in the ADL,
and identified in Fig. 1, remain constant.

3.1.1 Modeling Components

A component in an architecture is a unit of computation or a
data store. Therefore, components are loci of computation and
state [62]. Components may be as small as a single procedure
or as large as an entire application. Each component may

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 73

3. ªArchitectural configurationsº will, at various times in this paper, be
referred to simply as ªconfigurationsº or ªtopologies.º

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

require its own data or execution space, or it may share them
with other components. As already discussed, explicit
component interfaces are a feature required of ADLs.
Additional comparison features are those for modeling
component types, semantics, constraints, evolution, and non-
functional properties. Each is discussed below:

InterfaceÐA component's interface is a set of interaction
points between it and the external world. The interface
specifies the services (messages, operations, and variables) a
component provides. In order to support reasoning about a
component and the architecture that includes it, ADLs may
also provide facilities for specifying component needs, i.e.,
services required of other components in the architecture.
An interface thus defines computational commitments a
component can make and constraints on its usage.

TypesÐComponent types are abstractions that encapsu-
late functionality into reusable blocks. A component type
can be instantiated multiple times in a single architecture or
it may be reused across architectures. Component types can
be parameterized, further facilitating reuse. Explicit model-
ing of types also aids understandability and analyzability of
an architecture in that the properties of a type are shared by
all of its instances.

SemanticsÐWe define component semantics as a high-
level model of a component's behavior. Such a model is
needed to perform analysis, enforce architectural con-
straints, and ensure consistent mappings of architectures
from one level of abstraction to another. Note that a
component's interface also allows a certain, limited degree

of reasoning about its semantics. However, the notion of
semantics used in this paper refers strictly to models of
component behavior.

ConstraintsÐA constraint is a property of or assertion
about a system or one of its parts, the violation of which will
render the system unacceptable (or less desirable) to one or
more stakeholders [9]. In order to ensure adherence to
intended component uses, enforce usage boundaries, and
establish dependencies among internal parts of a
component, constraints on them must be specified.

EvolutionÐAs architectural building blocks, compo-
nents will continuously evolve. Component evolution can
be informally defined as the modification of (a subset of) a
component's properties, e.g., interface, behavior, or im-
plementation. ADLs can ensure that evolution happens in a
systematic manner by employing techniques such as
subtyping of component types and refinement of
component features.

Nonfunctional PropertiesÐA component's nonfunc-
tional properties (e.g., safety, security, performance, port-
ability) typically cannot be directly derived from the
specification of its behavior. Early specification of such
properties (at the architectural level) is needed to enable
simulation of runtime behavior, perform analysis, enforce
constraints, map component implementations to processors,
and aid in project management.

3.1.2 Modeling Connectors

Connectors are architectural building blocks used to model
interactions among components and rules that govern those
interactions. Unlike components, connectors may not
correspond to compilation units in an implemented system.
They may be implemented as separately compilable
message routing devices, but may also manifest themselves
as shared variables, table entries, buffers, instructions to a
linker, dynamic data structures, sequences of procedure
calls embedded in code, initialization parameters, client-
server protocols, pipes, SQL links between a database and
an application, and so forth [15], [62]. The features
characterizing connectors are their interfaces, types, seman-
tics, constraints, evolution, and nonfunctional properties.4 Each
is defined and motivated below:

InterfaceÐA connector's interface is a set of interac-
tion points between the connector and the components
and other connectors attached to it. Since a connector
does not perform any application-specific computations, it
exports as its interface those services it expects of its
attached components. Connector interfaces enable proper
connectivity of components and their interaction in an
architecture and, thereby, reasoning about architectural
configurations.

TypesÐConnector types are abstractions that encapsu-
late component communication, coordination, and media-
tion decisions. Architecture-level interactions may be
characterized by complex protocols. Making these protocols
reusable both within and across architectures requires that
ADLs model connectors as types. This is typically done in
two ways: as extensible type systems, defined in terms of

74 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Fig. 1. ADL classification and comparison framework. Essential

modeling features are in bold font.

4. Although the comparison categories for components and connectors
are identical, they were derived and refined independently of each other.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

interaction protocols, or as built-in, enumerated types, based
on particular implementation mechanisms.

SemanticsÐSimilarly to components, connector seman-
tics is defined as a high-level model of a connector's
behavior. Unlike components, whose semantics express
application-level functionality, connector semantics entail
specifications of (computation-independent) interaction
protocols. ADLs may support modeling of connector
semantics in order to enable component interaction analy-
sis, consistent refinement of architectures across levels of
abstraction, and enforcement of interconnection and
communication constraints.

ConstraintsÐConnector constraints ensure adherence to
intended interaction protocols, establish intraconnector
dependencies, and enforce usage boundaries. An example
of a simple and easily enforceable constraint is a restriction
on the number of components that interact through the
connector. Establishing adherence to more complex con-
nector constraints (e.g., minimal throughput) may require
access to information external to the given connector (e.g., a
model of the attached components' dynamic semantics).

EvolutionÐAnalogously to component evolution, the
evolution of a connector is defined as the modification of (a
subset of) its properties, e.g., interface, semantics, or
constraints on the two. Component interactions in archi-
tectures are governed by complex and potentially changing
and expanding protocols. Furthermore, both individual
components and their configurations evolve. ADLs can
accommodate this evolution by modifying or refining
existing connectors with techniques such as incremental
information filtering, subtyping, and refinement.

Nonfunctional PropertiesÐA connector's nonfunctional
properties are not entirely derivable from the specification
of its semantics. They represent (additional) requirements
for correct connector implementation. Modeling nonfunc-
tional properties of connectors enables simulation of
runtime behavior, analysis of connectors, constraint
enforcement, and selection of appropriate off-the-shelf
(OTS) connectors (e.g., message buses) and their mappings
to processors.

3.1.3 Modeling Configurations

Architectural configurations, or topologies, are connected
graphs of components and connectors that describe archi-
tectural structure. This information is needed to determine
whether appropriate components are connected, their inter-
faces match, connectors enable proper communication, and
their combined semantics result in desired behavior. In
concert with models of components and connectors, descrip-
tions of configurations enable assessment of concurrent and
distributed aspects of an architecture, e.g., potential for
deadlocks and starvation, performance, reliability, security,
and so on. Descriptions of configurations also enable
analyses of architectures for adherence to design heuristics
(e.g., direct communication links between components
hamper evolvability of an architecture) and architectural
style constraints (e.g., direct communication links between
components are disallowed).

Characteristic features at the level of architectural
configurations fall in three general categories:

. qualities of the configuration description: understand-
ability, compositionality, refinement and traceability, and
heterogeneity;

. qualities of the described system: heterogeneity,
scalability, evolvability, and dynamism;

. properties of the described system: dynamism,
constraints, and nonfunctional properties.5

Note that the three categories are not entirely orthogonal:
Heterogeneity and dynamism each appear in two cate-
gories. Heterogeneity may be manifested in multiple
employed formalisms in configuration descriptions and
multiple programming languages in system implementa-
tions. Anticipated dynamism is a system property in that
the system may be architected specifically to accommodate
the (expected) dynamic change; unanticipated dynamism is
a quality that refers to a system's general suitability for
dynamic change.

The differences between the two pairs of features are
subtle, particularly in the case of dynamism. While keeping
the above categorization in mind, in order to maintain the
conceptual simplicity of our framework and avoid confu-
sion, we proceed by describing individual features; we
include both notions of heterogeneity and dynamism under
single respective headings. We motivate and, where
appropriate, define the configuration features below:

Understandable SpecificationsÐOne role of software
architecture is to serve as an early communication conduit
for different stakeholders in a project and facilitate under-
standing of (families of) systems at a high level of
abstraction. ADLs must thus model structural (topological)
information with simple and understandable syntax. The
structure of a system should ideally be clear from a
configuration specification alone, i.e., without having to
study component and connector specifications.

CompositionalityÐCompositionality, or hierarchical
composition, is a mechanism that allows architectures to
describe software systems at different levels of detail:
Complex structure and behavior may be explicitly
represented or they may be abstracted away into a single
component or connector. Situations may also arise in which
an entire architecture becomes a single component in
another, larger architecture. Such abstraction mechanisms
should be provided as part of an ADLs modeling
capabilities.

Refinement and TraceabilityÐIn addition to providing
architects with semantically elaborate facilities for specify-
ing architectures, ADLs must also enable correct and
consistent refinement of architectures into executable
systems and traceability of changes across levels of
architectural refinement. This view is supported by the
prevailing argument for developing and using ADLs: They
are necessary to bridge the gap between informal, ªboxes
and linesº diagrams and programming languages which
are deemed too low-level for application design activities.

HeterogeneityÐA goal of software architectures is to
facilitate development of large-scale systems, preferably

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 75

5. The term ªqualityº is used in the conventional, application-
independent manner, e.g., as defined by Ghezzi et al. [18]. The term
ªpropertyº refers to the characteristics of an application introduced to
address specific requirements.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

with preexisting components and connectors of varying
granularity, possibly specified in different formal modeling
languages and implemented in different programming
languages, with varying operating system requirements,
and supporting different communication protocols. It is
therefore important that ADLs be open, i.e., that they
provide facilities for architectural specification and devel-
opment with heterogeneous components and connectors.

ScalabilityÐArchitectures are intended to provide
developers with abstractions needed to cope with the issues
of software complexity and size. ADLs must therefore
directly support specification and development of large-
scale systems that are likely to grow further.

EvolvabilityÐNew software systems rarely provide
entirely unprecedented functionality, but are, rather, ªvar-
iations on a theme.º An architecture evolves to reflect and
enable evolution of a family of software systems. Since
evolution (i.e., maintenance) is the single costliest software
development activity [18], system evolvability becomes a
key aspect of architecture-based development. ADLs need
to augment evolution support at the level of components
and connectors with features for their incremental addition,
removal, replacement, and reconnection in a configuration.

DynamismÐEvolution, as we define it, refers to ªoff-
lineº changes to an architecture (and the resulting system).
Dynamism, on the other hand, refers to modifying the
architecture and enacting those modifications in the system
while the system is executing. Support for dynamism is
important in the case of certain safety- and mission-critical
systems, such as air traffic control, telephone switching, and
high availability public information systems. Shutting
down and restarting such systems for upgrades may incur
unacceptable delays, increased cost, and risk [52]. To
support architecture-based run-time evolution, ADLs need
to provide specific features for modeling dynamic changes
and techniques for effecting them in the running system.

ConstraintsÐConstraints that depict dependencies in a
configuration complement those specific to individual
components and connectors. Many global constraints are
derived from or directly depend upon local constraints. For
example, constraints on valid configurations may be
expressed as interaction constraints among constituent
components and connectors, which, in turn, are expressed
through their interfaces and protocols; performance of a
system described by a configuration will depend upon the
performance of each individual architectural element;
safety of an architecture is a function of the safety of its
constituents.

Nonfunctional PropertiesÐCertain nonfunctional prop-
erties are system-level, rather than individual component or
connector properties. Configuration-level nonfunctional
properties are needed to select appropriate components
and connectors, perform analysis, enforce constraints, map
architectural building blocks to processors, and aid in
project management.

3.1.4 Tool Support for Architectural Description

The motivation behind developing formal languages for
architectural description is that their formality renders them
suitable for reasoning and manipulation by software tools.
A supporting toolset that accompanies an ADL is, strictly

speaking, not a part of the language. However, the
usefulness of an ADL is directly related to the kinds of
tools it provides to support architectural design, analysis,
evolution, executable system generation, and so forth. The
importance of architectural tools is reflected in the on-going
effort by a large segment of the community to identify the
components that comprise a canonical ªADL toolkitº [17].
Although the results of this work are still preliminary,
several general categories have emerged. They reflect the
kinds of tool support commonly provided by existing
architectural approaches: active specification, multiple
views, analysis, refinement, implementation generation,
and dynamism. Each is discussed below:

Active SpecificationÐADL tools provide active specifi-
cation support by reducing the space of possible design
options based on the current state of the architecture. Such
tools provide design guidance and can significantly reduce
a software architect's cognitive load. They can be either
proactive, by suggesting courses of action or disallowing
design options that may result in undesirable design states,
or reactive, by informing the architect of such states once
they are reached during design. Active specification tools
can deliver their feedback intrusively, forcing the architect
to acknowledge it before continuing, or nonintrusively,
allowing the architect to view the feedback at his discretion.

Multiple ViewsÐWhen defining an architecture, differ-
ent stakeholders (e.g., architects, developers, managers,
customers) may require different views of the architecture.
The customers may be satisfied with a high-level, ªboxes-
and-linesº description, the developers may want detailed
(formal) component and connector specifications, while the
managers may require a view of the corresponding system
development process. Providing the most appropriate view
to a given stakeholder and ensuring inter-view consistency
are key issues to be addressed by an ADL toolkit.

AnalysisÐArchitectural descriptions are often intended
to model large, distributed, concurrent systems. The ability
to evaluate the properties of such systems upstream, at an
architectural level, can substantially lessen the cost of any
errors. Given that many details are abstracted away in
architectures, this task may also be easier than at source
code level. Analysis of architectures has thus been a
primary focus of ADL toolset developers.

RefinementÐThe importance of supporting refinement
of architectures across levels of detail was briefly argued
above and more extensively by Garlan [13] and Moriconi
et al. [47]. Refining architectural descriptions is a complex
task whose correctness and consistency cannot always be
guaranteed by formal proof, but adequate tool support can
give architects increased confidence in this respect.

Implementation GenerationÐThe ultimate goal of any
software design and modeling endeavor is to produce
the executable system. An elegant architectural model
is of limited value unless it can be converted into a
running application. Doing so manually may result in
many problems of consistency and traceability between an
architecture and its implementation. It is therefore desir-
able, if not imperative, for an ADL toolkit to provide tools to
assist in producing source code.

76 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

DynamismÐWe have argued for the need to model
dynamic changes at the level of architecture. However, an
ADL's ability to model dynamic changes is insufficient to
guarantee that they will be applied to the executing system
in a property-preserving manner. Software tools are needed
to analyze the modified architecture to ensure its desirable
properties, correctly map the changes expressed in terms of
architectural constructs to the implementation modules,
ensure continuous execution of the application's vital
subsystems and preservation of state during the modifica-
tion, and analyze and test the modified application while it
is executing.

3.2 Differentiating ADLs from Other Languages

In order to clarify what an ADL is, it may be useful to point
out several notations that, though similar, are not ADLs
according to our definition: high-level design notations,
MILs, programming languages, object-oriented (OO) mod-
eling notations, and formal specification languages.

The requirement to model configurations explicitly
distinguishes ADLs from some high-level design languages.
Existing languages that are sometimes referred to as ADLs
can be grouped into three categories based on how they
model configurations:

. Implicit configuration languages model configurations
implicitly through interconnection information that
is distributed across definitions of individual
components and connectors;

. In-line configuration languages model configurations
explicitly, but specify component interconnections,
along with any interaction protocols, ªin-lineº;

. Explicit configuration languages model both compo-
nents and connectors separately from configurations.

The items in the first category, implicit configuration
languages, are, by the definition given in this paper, not
ADLs, although they may serve as useful tools in modeling
certain aspects of architectures. Two examples of such
languages are LILEANNA and ArTek. In LILEANNA,
interconnection information is distributed among the with
clauses of individual packages, package bindings (view
construct), and compositions (make). In ArTek, there is no
configuration specification; instead, each connector speci-
fies component ports to which it is attached.

The focus on conceptual architecture and explicit treat-
ment of connectors as first-class entities differentiate, ADLs
from MILs [55], programming languages, and OO notations
and languages (e.g., Unified Modeling Language, or UML
[57], [58]). MILs typically describe the uses relationships
among modules in an implemented system and support only
one type of connection [4], [64]. Programming languages
describe a system's implementation whose architecture is
typically implicit in subprogram definitions and calls.
Explicit treatment of connectors also distinguishes ADLs
from OO languages, as demonstrated in [34].

It is important to note that there is a less than firm
boundary between ADLs and MILs. Certain ADLs,
e.g., Wright and Rapide, model components and connectors
at a high level of abstraction and do not assume or prescribe
a particular relationship between an architectural descrip-
tion and an implementation. We refer to these languages as

implementation independent. On the other hand, several
ADLs, e.g., Weaves, UniCon, and MetaH, require a much
higher degree of fidelity of an architecture to its imple-
mentation. Components modeled in these languages are
directly related to their implementations so that a module
interconnection specification may be indistinguishable from
an architectural description in such a language. These are
implementation constraining languages.

We have also recently shown that an OO language, such
as UML, can be used to model software architectures if it
supports certain extensions [41], [60]. These extensions are
used to represent architectural abstractions that either differ
(e.g., topological constraints) or do not exist (e.g., con-
nectors) in OO design. Extending UML in such a manner is
clearly useful in that it supports mapping of an architecture
to a more familiar and widely used notation, therefore
facilitating broader understanding of the architecture and
enabling more extensive tool support for manipulating it.
However, it is unrealistic to expect that UML could be
extended to model every feature of every ADL; our initial
experience indeed confirms this [60]. Moreover, although
UML may provide modeling power equivalent to or
surpassing that of an ADL, the abstractions it provides will
not match an architect's mental model of the system as
faithfully as the architect's ADL of choice. If the primary
purpose of a language is to provide a vehicle of expression
that matches the intuitions and practices of users, then that
language should aspire to reflect those intentions and
practices [65]. We believe this to be a key issue and one that
argues against considering a notation like UML an ADL: A
given language (e.g., UML) offers a set of abstractions that
an architect uses as design tools; if certain abstractions
(e.g., components and connectors) are buried in others
(e.g., classes), the architect's job is made more (and
unnecessarily) difficult; separating components from
connectors, raising them both to visibility as top-level
abstractions, and endowing them with certain features and
limitations also raises them in the consciousness of the
designer.

An ADL typically subsumes a formal semantic theory.
That theory is part of the ADL's underlying framework for
characterizing architectures; it influences the ADL's suit-
ability for modeling particular kinds of systems (e.g., highly
concurrent systems) or particular aspects of a given system
(e.g., its static properties). Examples of formal specification
theories are Statecharts [23], partially-ordered event sets
[33], communicating sequential processes (CSP) [24],
model-based formalisms (e.g., chemical abstract machine,
or CHAM [25], Z [67]), algebraic formalisms (e.g., Obj [19]),
and axiomatic formalisms (e.g., Anna [30]). Of the above-
mentioned formal notations, Z has been demonstrated
appropriate for modeling only certain aspects of
architectures, such as architectural style rules [1], [42].
Partially-ordered event sets, CSP, Obj, and Anna have
already been successfully used by existing modeling
languages (Rapide, Wright, and LILEANNA, respectively).

Modeling capabilities of the remaining two notations,
Statecharts and CHAM, are somewhat similar to those of
ADLs. Although they do not express systems in terms of
components, connectors, and configurations per se, their

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 77

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

features may be cast in that mold and they have indeed

been referred to as examples of ADLs [8], [25]. We discuss in

the remainder of the section why it is inappropriate to do so.

3.2.1 Statecharts

Statecharts is a modeling formalism based on finite state

machines (FSM) that provides a state encapsulation

construct, support for concurrency, and broadcast commu-

nication. To compare Statecharts to an ADL, the states are

viewed as components, transitions among them as simple

connectors, and their interconnections as configurations.

However, Statecharts does not model architectural config-

urations explicitly: Interconnections and interactions among

a set of concurrently executing components are implicit in

intracomponent transition labels. In other words, as was the

case with LILEANNA and ArTek, the topology of an

ªarchitectureº described as a Statechart can only be

determined by studying its constituent components. There-

fore, Statecharts is not an ADL.
There is an even deeper issue in attempting to model

architectures as FSMs: Although it may be useful to

represent component or connector semantics with State-

charts, it is doubtful that an adequate architectural break-

down of a system can be achieved from a state-machine

perspective. Harel [23] agrees with this view, arguing that

one has to assume some physical and functional description of the
system, providing, say, a hierarchical decomposition into
subsystems and the functions and activities they support...
Statecharts can then be used to control these internal activities...
We assume that this kind of description is given or can be produced
using an existing method.

3.2.2 Chemical Abstract Machine

In the chemical abstract machine (CHAM) approach, an

architecture is modeled as an abstract machine fashioned

after chemicals and chemical reactions. A CHAM is

specified by defining molecules, their solutions, and

transformation rules that specify how solutions evolve.

An architecture is then specified with processing, data, and

connecting elements. The interfaces of processing and

connecting elements are implied by: 1) their topology and

2) the data elements their current configuration allows them

to exchange. The topology is, in turn, implicit in a solution

and the transformation rules. Therefore, even though

CHAM can be used effectively to prove certain properties

of architectures, without additional syntactic constructs it

does not fulfill the requirements to be an ADL.

4 COMPARISON OF ADLs

This section presents a detailed comparison of existing

ADLs along the dimensions discussed in Section 3.1. We

highlight representative approaches and support our argu-

ments with example ADL specifications. The chosen

examples are deliberately kept simple. They are intended

to give the reader a flavor of the kind of solutions an ADL

may provide for a particular problem, independently of the

ADL's overall syntax and semantics.
Our decision to provide multiple examples instead of a

single representative example is motivated by the the

inability of the research community to identify a model

problem for which all ADLs are likely to be well-suited [68].

Thus, selecting any one candidate problem would likely

draw the (justified) criticism of focusing on the strengths of

only certain languages. This point is related to the

discussion from Section 3: Different ADLs focus on different

application domains, architectural styles, or aspects of the

architectures they model. This is certainly the case with the

ADLs we have studied and which represent a large cross-

section of existing work in the area, as shown in Table 1.

4.1 ADL Support for Modeling Components

Each surveyed ADL models components. ACME, Aesop,

C2, Darwin, SADL, UniCon, and Wright share much of

their vocabulary and refer to them simply as components; in

Rapide, they are interfaces; in Weaves, tool fragments; and, in

MetaH, processes. In this section, we discuss the support

provided by ADLs for different aspects of components.

4.1.1 Interface

All surveyed ADLs support specification of component

interfaces. They differ in the terminology and the kinds of

information they specify. For example, an interface point in

SADL or Wright is a port and, in UniCon, a player. On the

other hand, in C2, the entire interface is provided through a

single port; individual interface elements are messages.

Weaves combines the two approaches by allowing multiple

component ports, each of which can participate in the

exchange of interface elements, or objects.
ADLs typically distinguish between interface points that

refer to provided and required functionality. MetaH and

Rapide make the additional distinction between synchro-

nous and asynchronous interfaces. For example, provides

and requires interface constituents in Rapide refer to

functions and specify synchronous communication, while

in and out actions denote asynchronous events.

78 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

TABLE 1
ADL Scope and Applicability

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

Interface points are typed in a number of ADLs: ACME,
Aesop, Darwin, MetaH, SADL, and UniCon. UniCon
supports a predefined set of common player types,
including RoutineDef, RoutineCall, GlobalDataDef,
GlobalDataUse, ReadFile, WriteFile, RPCDef, and RPCCall.
On the other hand, ports in C2 and Weaves are type-
indifferent in order to maximize the flexibility of
interconnection. Weaves ports perform wrapping and
unwrapping of data objects by means of envelopes, which
hide the types of the underlying data objects, while C2 ports
are designed to handle any C2 messages.

Finally, Wright and UniCon allow specification of
expected component behavior or constraints on component
usage relevant to each point of interaction. For example,
UniCon allows specification of the number of associations
in which a player can be involved. Fig. 2 depicts the
constraint that the input player of the StreamIn type is bound
to standard input and participates in exactly one association
in a given architecture.

Wright specifies the protocol of interaction at each port
in CSP [24]. In the example given in Fig. 3, DataRead is a
simple input (read only) port.6

4.1.2 Types

All of the surveyed ADLs distinguish component types
from instances. Rapide does so with the help of a separate
types language [31]. Weaves distinguishes between sockets
and tool fragments that populate them. With the exception
of MetaH and UniCon, all ADLs provide extensible
component type systems. MetaH and UniCon support only
a predefined, built-in set of types. MetaH component types
are: process, macro, mode, system, and application.7 Compo-
nent types supported by UniCon are: Module, Computation,
SharedData, SeqFile, Filter, Process, SchedProcess, and General.

Several ADLs (ACME, Darwin, Rapide, SADL, and
Wright) make explicit use of parameterization of compo-
nent interface signatures. This is typically done in the
manner similar to programming languages such as Ada and
C++. Rapide and Wright also allow the behavior associated
with a particular type to be parameterized. Rapide does so
by specifying event patterns, discussed below. Wright

allows parameterization of a component by its computation,
a CSP specification that defines the component's behavior.
This allows the architect to vary the behavior of a
component in a systematic manner.

4.1.3 Semantics

All ADLs support specification of component semantics,
although to varying degrees. The ADLs' underlying
semantic models range from expressing semantic informa-
tion in component property lists (UniCon) to models of
dynamic component behavior (Rapide and Wright).8 Other
points along this spectrum are arbitrarily complex beha-
vioral specifications that are treated as uninterpreted
annotations (ACME); an accompanying language for
modeling algorithms in the ADL's domain (MetaH);
specification of static component semantics via invariants
and operation pre- and post-conditions (C2); and models of
interaction and composition properties of composite
components expressed in the �-calculus [44] (Darwin).

Rapide introduces a unique mechanism for expressing
both a component's behavior and its interaction with other
components: partially ordered sets of events (posets).
Rapide uses event patterns to recognize posets. During
poset recognition, free variables in a pattern are bound to
specific matching values in a poset. Event patterns are used
both as triggers and outputs of component state transitions.
Fig. 4 shows an example of a simple Rapide component
with a causal relationship between events: When the
Application component observes a Receive event, it generates
a Results event in response; the two events have the same
string parameter.

4.1.4 Constraints

All ADLs constrain the usage of a component by specifying
its interface as the only legal means of interaction. Formal
specification of component semantics further specifies
relationships and dependencies among internal elements
of a component. Several additional means for constraining
components are common.

A number of ADLs provide stylistic invariants (Aesop,
C2, SADL, and Wright). An example stylistic invariant is
C2's requirement that a component have exactly two
communication ports, one each on its top and bottom sides.
A component can also be constrained via attributes. Fig. 2
shows how a UniCon component is constrained by
restricting the number of associations in which its players
can participate. MetaH also constrains the implementation
and usage of a component by specifying its (nonfunctional)
attributes, such as: ExecutionTime, Deadline, and Criticality.
Finally, Rapide enables specification of pattern constraints

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 79

Fig. 3. Interaction protocol for a component port in Wright: ! denotes

event transitions,
p

a successfully terminating process, u nondetermi-

nistic choice, and �� deterministic choice.

Fig. 4. A Rapide component's behavior specified with posets.

6. In all examples, we adhere to each ADL's presentation conventions
(naming, capitalization, highlighting, etc.).

7. As MetaH is used to specify both the software and the hardware
architecture of an application, system is a hardware construct, while
application pertains to both.

8. As discussed in the preceding section, Wright uses CSP to specify a
component's computation.

Fig. 2. Specification of a component player in UniCon.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

on event posets that are generated and observed from a
component's interface. In the example shown in Fig. 5, the
constraint implies that all, and only, messages taken in by
the Resource component are delivered.

4.1.5 Evolution

A number of ADLs view and model components as
inherently static. For example, MetaH and UniCon define
component types by enumeration, allowing no subtyping,
and hence no evolution support; Weaves considers tool
fragment evolution outside its scope. Several ADLs
support component evolution via subtyping. They typi-
cally support a limited notion of subtyping or rely on the
mechanisms provided by the underlying programming
language. For example, ACME supports strictly structural
subtyping with its extends feature, while Rapide evolves
components via OO inheritance. SADL allows the
specification of high-level properties that must be
satisfied by subtypes: The example in Fig. 6 specifies
that Local_Client is the subtype of Client such that all of
its instances satisfy the predicate Local.

Aesop and C2 provide more extensive component sub-
typing support. Aesop enforces behavior-preserving subtyp-
ing to create substyles of a given architectural style. An Aesop
subclass must provide strict subtyping behavior for opera-
tions that succeed, but may also introduce additional sources
of failure with respect to its superclass. C2, on the other hand,
supports multiple subtyping relationships among compo-
nents: name, interface, behavior, and implementation [39], [42].
Different combinations of these relationships are specified
using the keywords and and not. Fig. 7 demonstrates two
possible subtyping relationships: Well_1 preserves (and
possibly extends) the behavior of the component Matrix,
but may change its interface and implementation; Well_2's
subtyping relationship mandates that it must alter Matrix's
interface.

Rapide and SADL also provide features for refining
components across levels of abstraction. This mechanism
may be used to evolve components by explicating any
deferred design decisions, which is somewhat similar to
extending inherited behavior in OO languages. Indeed,
subtyping is simply a form of refinement in a general case.
This is, however, not true of Rapide and SADL, both of
which place additional constraints on refinement maps in
order to prove or demonstrate certain properties of
architectures. Refinement of components and connectors
in Rapide and SADL is a byproduct of the refinement of
configurations, their true focus. Therefore, we will defer

further discussion of this issue until Section 4.3.

4.1.6 Nonfunctional Properties

Despite the need for and benefits of specifying nonfunc-
tional properties, there is a notable lack of support for them
in existing ADLs. ACME, Aesop, and Weaves allow
specification of arbitrary component properties and/or
annotations. However, none of them interprets such
properties nor do they make direct use of them.

MetaH and UniCon provide more advanced support for
modeling nonfunctional properties. They require such
information to analyze architecture for real-time schedul-
ability (both ADLs) and reliability and security (MetaH).
Both also use source code location attributes for implemen-
tation generation. Several representative nonfunctional
properties in MetaH are: SourceName, SourceFile, ClockPeriod,
Deadline, and Criticality. UniCon allows specification of
Priority, Library, ImplType (source, object, executable, data, or
whatever), and Processor.

4.1.7 Summary of ADL Components

Overall, surveyed ADLs provide comprehensive support
for modeling components. All of them regard components
as first-class entities. Furthermore, all models interface and
distinguish between component types and instances. On the
other hand, a majority of the ADLs do not support
evolution or nonfunctional properties. It is illustrative that
Aesop is the only ADL that provides at least some support
for each of the six classification categories and that, of the
five ADLs that support five of the categories, C2 and Rapide
do not model nonfunctional properties, and MetaH,
UniCon, and Weaves do not support evolution. Every
ADL supports or allows at least four of the six categories. A
more complete summary of this section is given in Table 2.

4.2 ADL Support for Modeling Connectors

ADLs model connectors in various forms and under various
names. For example, ACME, Aesop, C2, SADL, UniCon,
and Wright model connectors explicitly and refer to them as
connectors. Weaves also models connectors explicitly, but
refers to them as transport services. Rapide and MetaH
connections and Darwin bindings are modeled in-line, and
cannot be named, subtyped, or reused (i.e., connectors are
not first-class entities). Darwin and Rapide do allow
abstracting away complex connection behaviors into ªcon-
nector components.º In this section, we compare existing
ADLs with respect to the support they provide for different
aspects of connectors.

4.2.1 Interface

In general, only the ADLs that model connectors as first-
class entities support explicit specification of connector
interfaces. Most such ADLs model component and
connector interfaces in the same manner, but refer to
them differently. Thus, connector interface points in

80 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Fig. 5. A pattern constraint in Rapide.

Fig. 6. A subtype specification in SADL.

Fig. 7. Specification of component subtypes in C2.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

ACME, Aesop, UniCon, and Wright are roles, which are
named and typed. Explicit connection of component ports
(players in UniCon) and connector roles is required in an
architectural configuration. Wright supports CSP specifica-
tions of each role's interaction protocol in the same
manner as port protocols (see Fig. 3). This allows
compatibility analysis of connected ports and roles.

In UniCon, each role may include optional attributes, such
as the type of players that can serve in the role and minimum
and maximum number of connections. UniCon supports only
a predefined set of role types, including: Source, Sink, Reader,
Readee, Writer, Writee, Definer, and Caller. An example UniCon
role is shown in Fig. 8. It belongs to the Pipe connector type
and is constrained to be connected to at most a single player.
Note that, unlike the player shown in Fig. 2, which must
participate in exactly one association, this role does not have to
be connected to a player.

SADL, C2, and Weaves model connector interfaces
differently from component interfaces. A SADL connector
is defined as part of the design vocabulary for a particular
architectural style. The specification of the connector in an
architecture only specifies the type of data the connector
supports (e.g., the connector declared in Fig. 9a expects a

token sequence). Other information about the connector,

such as its arity and the constraints on its usage, is given in

the definition of its style (Fig. 9b).
The interfaces of C2 and Weaves connectors are generic:

The connectors are indifferent to the types of data they

handle; their main task is to mediate and coordinate the

communication among components. Additionally, a C2

connector can support an arbitrary number of components.

In C2, this feature is referred to as context-reflection: The

interface of a connector is determined by (potentially

dynamic) interfaces of components that communicate

through it, as depicted in Fig. 10.

4.2.2 Types

Only ADLs that model connectors as first-class entities

distinguish connector types from instances. This excludes

Darwin, MetaH, and Rapide. Although MetaH does not

support connector types, it does define three broad categories

of connections: port connections, which connect an out port of

one component to an in port of another; event connections,

which connect outgoing events to incoming events (event-to-

event) or to their recipient components (event-to-process and

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 81

TABLE 2
ADL Support for Modeling Components

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

event-to-mode); and equivalence connections, which specify
objects that are shared among components.

ACME, Aesop, C2, SADL, and Wright base connector
types on interaction protocols. UniCon, on the other hand,
only allows connectors of prespecified enumerated types:
Pipe, FileIO, ProcedureCall, DataAccess, PLBundler, Remote-
ProcCall, and RTScheduler. ACME and SADL also provide
parameterization facilities that enable flexible specification
of connector signatures and of constraints on connector
semantics. Similarly to its components, Wright allows a
connector to be parameterized by the specification of its
behavior (glue).

4.2.3 Semantics

It is interesting to note that ADLs that do not model
connectors as first-class objects, e.g., Rapide, may model
connector semantics, while languages that do model
connectors explicitly, such as ACME, do not always provide
means for defining their semantics. ADLs tend to use a
single mechanism for specifying the semantics of both
components and connectors. For example, Rapide uses
posets to describe communication patterns among its
components; Wright models connector glue and event trace
specifications with CSP, as shown in Fig. 11; and UniCon
allows specification of semantic information for connectors
in property lists (e.g., a real-time scheduling algorithm or
path traces through real-time code). Additionally, connector

semantics in UniCon are implicit in their (predefined)
connector types. For example, declaring a connector to be a
pipe implies certain functional properties.

Several ADLs use a different semantic model for their
connectors than for components. For example, as demon-
strated in Fig. 9, SADL provides a constraint language for
specifying style-specific connector semantics. C2 models a
connector's message filtering policy: message_sink,
no_filtering, message_filtering, and prioritized. Finally, Weaves
employs a set of naming conventions that imply its
transport services' semantics. For example, a single-writer,
single-reader queue transport service is named Queue_1_1.

4.2.4 Constraints

With the exception of C2 and Weaves, whose connector
interfaces are a function of their attached components (see
Section 4.2.1), ADLs that model connectors as first-class
objects constrain their usage via interfaces. None of the
ADLs that specify connections in-line (Darwin, MetaH, and
Rapide) place any such constraints on them. Implementa-
tion and usage of connectors is further constrained in those
ADLs that model connector semantics.

Aesop, C2, SADL, and Wright also impose stylistic
invariants, such as C2's restriction that each connector port
may only be attached to a single other port. UniCon restricts
the number of component players attached to a connector
role by using the MinConns and MaxConns attributes.
Additionally, the types of players that can serve in a given
role are constrained in UniCon via the Accept attribute and
in Wright by specifying interaction protocols for the role
(see Fig. 11). For example, the output UniCon role from Fig. 8
can be constrained to accept the StreamIn player of the Filter
component type (see Fig. 12).

4.2.5 Evolution

ADLs that do not model connectors as first-class objects
(Darwin, MetaH, and Rapide) also provide no facilities for
their evolution. Others focus on configuration-level evolu-
tion (Weaves) or provide a predefined set of connector types
with no language features for evolution support (UniCon).

Several ADLs employ identical mechanisms for connector
and component evolution: ACME supports structural con-
nector subtyping, Aesop supports behavior preserving
subtyping, and SADL supports subtyping of connectors
and their refinements across styles and levels of abstraction.
C2 connectors are inherently evolvable because of their

context-reflective interfaces; C2 connectors also evolve by

altering their filtering policies. Finally, Wright supports

82 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Fig. 8. Specification of a connector role in UniCon.

Fig. 9. SADL connector interfaces. (a) Definition and instantiation of a
connector in the specification of a SADL architecture. (b) Specification of
the connector's type in the definition of the dataflow style; all connectors
of the DF_Chanl type will support interactions between two components.

Fig. 10. C2 connectors have context reflective interfaces. Each C2 connector is capable of supporting arbitrary addition, removal, and reconnection
of any number of C2 components. (a) Software architect selects a set of components and a connector from a design palette. The connector has no
communication ports since no components are attached to it. (b/d) As components are attached to the connector to form an architecture, the
connector creates new communication ports to support component intercommunication.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

connector evolution via parameterization, where, e.g., the

same connector can be instantiated with a different glue.

4.2.6 Nonfunctional Properties

UniCon is the lone ADL that supports explicit specification of

nonfunctional connector properties, using such information

to analyze an architecture for real-time schedulability. Its

SchedProcess connector has an Algorithm attribute. If the value
of Algorithm is set to RateMonotonic, UniCon uses trace,

period, execution time, and priority information for schedul-

ability analysis. As with their components, ACME, Aesop,
and Weaves allow specification of arbitrary, but uninter-

preted connector annotations.

4.2.7 Summary of ADL Connectors

The support provided by the ADLs for modeling connectors

is considerably less extensive than for components. Three
ADLs (Darwin, MetaH, and Rapide) do not regard

connectors as first-class entities, but, rather, model them

in-line. Their connectors are always specified as instances

and cannot be manipulated during design or reused in the
future. Overall, their support for connectors is negligible, as

can be observed in Table 3.
All ADLs that model connectors explicitly also model their

interfaces anddistinguish connector types from instances. It is

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 83

Fig. 11. A connector specified in Wright; role and glue semantics are

expressed in CSP.

Fig. 12. Constraining a UniCon connector role to accept a specific

component player.

TABLE 3
ADL Support for Modeling Connectors

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

interesting to note that, as in the case of components, support
for evolution and nonfunctional properties is rare, and that
Aesop is again the only ADL that provides at least some
support for each classification category. A more complete
summary of this section is given in Table 3.

4.3 ADL Support for Modeling Configurations

Explicit architectural configuration facilitates communica-
tion among a system's many stakeholders, who are likely to
have various levels of technical expertise and familiarity
with the problem at hand. This is accomplished by
abstracting away the details of individual components
and connectors and representing the system's structure at
a high level. In this section, we discuss the key aspects of
explicit configurations and compare surveyed ADLs with
respect to them.

4.3.1 Understandable Specifications

Configuration descriptions in in-line configuration ADLs
(e.g., Rapide) tend to be encumbered with connector details.
On the other hand, explicit configuration ADLs
(e.g., Wright) have the best potential to facilitate under-
standability of architectural structure. Clearly, whether this
potential is realized or not will also depend on the
particular ADL's syntax. For example, UniCon falls in the
latter category, but it allows the connections between
players and roles to appear in any order, possibly
distributed among individual component and connector
instantiations, as shown in Fig. 13.

Several languages provide a graphical notation as
another means of achieving understandability. An example
of an architecture modeled using C2's graphical notation
was shown in Fig. 10. A graphical architectural description
may actually hinder understanding unless there is a precise
relationship between it and the underlying model,
i.e., unless the textual and graphical descriptions are
interchangeable. Languages like C2, Darwin, and UniCon

support such ªsemantically soundº graphical notations,
while ACME, SADL, and Wright do not.9

4.3.2 Compositionality

Most ADLs provide explicit features to support hierarchical
composition of components, where the syntax for specify-
ing composite components typically resembles that for
specifying configurations. Wright allows both composite
components and connectors: The computation (glue) of a
composite component (connector) is represented by an
architectural description, rather than in CSP. It is interesting
to note that Darwin and UniCon do not have explicit
constructs for modeling architectures. Instead, they both
model architectures as composite components. The state-
ment sequence shown in Fig. 13 occurs inside the
specification of a UniCon composite component. An
example of a Darwin component illustrating its support
for compositionality is shown in Fig. 15.

4.3.3 Refinement and Traceability

Architectural refinement and traceability of architectural
decisions, properties, and relationships across refinements
is still very much an open research area. Support for them
in existing ADLs is limited. Several ADLs enable system
generation directly from an architectural specification.
These are typically the implementation constraining languages
(see Section 3) in which a source file corresponds to each
architectural element. There are several problems with this
approach to refining an architecture. Primarily, there is an
assumption that the relationship between elements of an
architectural description and those of the resulting execu-
table system will be one-to-one. This may be unnecessary,
and even unreasonable, as architectures describe systems at

84 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Fig. 14. A refinement mapping declared in SADL. Level 1
architecture's component comp is mapped to Level 2 architecture's
new_comp. Level 1 connector conn is implemented by new_comp's
subcomponent subcomp. Level 1 port has been eliminated from the
Level 2 architecture; SADL ensures that the functionality associated
with the port is provided elsewhere in arch_L2.

Fig. 15. Top: a Darwin composite component. Bottom: graphical view of
the component. Definitions of basic components C1 and C2, which
themselves may be composite, are omitted for simplicity.

Fig. 13. Configuration specification in UniCon. The two connections are
separated by component and connector instantiations. All instantiations
in this figure (preceded by the USES keyword) are trivial; UniCon also
allows specification of component and connector instance attributes,
which would further obscure the structure of this configuration.

9. Note that a graphical specification of an architecture may not contain
all the information in its textual counterpart (e.g., formal component and
connector specifications) and vice versa (e.g., graphical layout information).
Additional support is needed to make the two truly interchangeable (see
Section 4.4.2).

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

a higher level of abstraction than source code modules.
There is also no guarantee that the specified source modules
will correctly implement the desired behavior. Finally, even
if the specified modules currently implement the needed
behavior correctly, this approach provides no means of
ensuring that future changes to those modules are traced
back to the architecture and vice versa.

SADL and Rapide support refinement and traceability
more extensively. They provide maps for refining architec-
tures across different levels of abstraction. SADL uses its
maps (see Fig. 14) to prove the correctness of architectural
refinements, while Rapide generates comparative simula-
tions of architectures at different levels. Both languages thus
provide the means for tracing design decisions and changes
from one level of architectural specification (or implemen-
tation) to another. They enforce different refinement rules,
however: SADL's stringent correctness-preserving criterion
ensures that all decisions made at a given level are
maintained at all subsequent levels, but disallows new
decisions being introduced; Rapide's maps allow new
decisions, but may also eliminate high-level behaviors at
the lower levels. Garlan has recently argued for a marriage
of the two approaches [13].

4.3.4 Heterogeneity

No ADL provides explicit support for multiple formal
specification languages. Of those ADLs that support
implementation of architectures, several are also tightly tied
to a particular programming language. For example, Aesop
and Darwin only support development with components
implemented in C++, while MetaH is restricted to Ada and
UniCon to C. On the other hand, C2 currently supports
development in C++, Ada, and Java, while Weaves supports
interconnection of tool fragments implemented in C, C++,
Objective C, and Fortran.

Several ADLs place restrictions that limit the number
and kinds of components and connectors they can support.
For example, MetaH requires each component to include a
loop with a call to the predeclared procedure KERNEL.A-
WAIT_DISPATCH to periodically dispatch a process. Any
existing components have to be modified to include this
construct before they can be used in a MetaH architecture.
Similarly, UniCon allows certain types of components and
connectors (e.g., pipes, filters and sequential files), but
requires wrappers for others (e.g., spreadsheets, constraint
solvers, or relational databases).

Finally, another aspect of heterogeneity is the granularity
of components. Most surveyed ADLs support modeling of
both fine and coarse-grain components. At one extreme are
components that describe a single operation, such as
computations in UniCon or procedures in MetaH, while the
other extreme can be achieved by hierarchical composition,
discussed in Section 4.3.2.

4.3.5 Scalability

We consider the impact of scaling an architecture along
two general dimensions: adding elements to the architec-
ture's interior (Fig. 16a) and adding them along the
architecture's boundaries (Fig. 16b). To support the former,
ADLs can, minimally, employ compositionality features,
discussed in Section 4.3.2: The original architecture is

treated as a single, composite component, which is then
attached to new components and connectors. Objectively
evaluating an ADLs ability to support the latter is more
difficult, but certain heuristics can be of help.

It is generally easier to expand architectures described in
explicit configuration ADLs than in-line configuration ADLs:
Connectors in the latter are described solely in terms of the
components they connect and adding new components may
require modifications to existing connector instances.
Additionally, ADLs that allow a variable number of
components to be attached to a single connector are better
suited to scaling up than those that specify the exact
number of components a connector can service. For
example, ACME and Aesop could not handle the extension
to the architecture shown in Fig. 16a without redefining
Conn1 and Conn2, while C2 and UniCon can.

To properly evaluate an ADL's support for scalability,
these heuristics should be accompanied by other criteria.
The ultimate determinant of scalability support is the ability
of developers to implement and/or analyze large systems
based on the architectural descriptions given in an ADL. For
example, as an in-line configuration language, Rapide has
been highlighted as an ADL whose features may hamper
scalability, yet it has been used to specify architectures of
several large, real world systems. Several other ADLs have
been applied to large-scale examples:

. Wright was used to model and analyze the Runtime
Infrastructure (RTI) of the Department of Defense
High-Level Architecture for Simulations [5], whose
original specification was over 100 pages long.

. SADL ensured the consistency between the reference
architecture and the implementation of a power-
control system used by the Tokyo Electric Power
Company, implemented in 200,000 Fortran 77 lines
of code (LOC).

. C2 has been used in the specification and imple-
mentation of its supporting environment, consisting
of a number of large custom-built and OTS
components [42], [52]. The custom-built components

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 85

Fig. 16. An existing architecture is scaled up: (a) by adding new

components/connectors to its interior and (b) by expanding it ªoutward.º

C2's graphical notation is used for illustration.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

comprise over 100,000 Java LOC; the OTS compo-
nents comprise several million LOC.

. Weaves has been used in satellite telemetry proces-
sing applications, whose size has ranged between
100,000 and over 1,000,000 LOC.

. A representative example of Rapide's use is the
X/Open Distributed Transaction Processing
Industry Standard, whose documentation is over
400 pages long. X/Open's reference architecture
and subsequent extensions have been successfully
specified and simulated in Rapide [31].

4.3.6 Evolvability

Evolvability of an architectural configuration can be viewed
from two different perspectives. One is its ability to
accommodate addition of new components in the manner
depicted in Fig. 16. The issues inherent in doing so were
discussed in Section 4.3.5. Another view of evolvability is an
ADL's tolerance and/or support for incomplete architectur-
al descriptions. Incomplete architectures are common
during design as some decisions are deferred and others
have not yet become relevant. It would therefore be
advantageous for an ADL to allow incomplete descriptions.
However, most existing ADLs and their supporting toolsets
have been built around the notion that precisely these kinds
of situations must be prevented. For example, Darwin,
MetaH, Rapide, and UniCon compilers, constraint checkers,
and runtime systems have been constructed to raise
exceptions if such situations arise. In this case, an ADL,
such as Wright, which focuses its analyses on information
local to a single connector, is better suited to accommodate
expansion of the architecture than, e.g., SADL, which is
very rigorous in its refinement of entire architectures.

Another aspect of evolution is support for families of
applications. One way in which all ADLs support families is
by separating component and connector types from
instances. For example, Weaves supports specification of
architectural frameworks, which are populated with sockets,
rather than actual tool fragments and transport services.
Each instantiation of an architecture can then be considered
a member of the same family. This is a limited notion of
family, as it does not allow the architecture itself to be
modified. Furthermore, the family to which an application
belongs is implicit in its architecture.

ACME is the only surveyed language that specifies
architectural families explicitly, as first-class language
constructs, and supports their evolution. The component
and connector types declared in a family provide a design

vocabulary for all systems that are declared as members of
that family. The example given in Fig. 17 shows the
declaration of a simple ACME family and its evolution.

4.3.7 Dynamism

The majority of existing ADLs view configurations stati-
cally. The exceptions are C2, Darwin, Rapide, and Weaves.
Darwin and Rapide support only constrained dynamic
manipulation of architectures, where all runtime changes
must be known a priori [51], [52]. Darwin allows runtime
replication of components via dynamic instantiation, as well
as deletion and rebinding of components by interpreting
Darwin scripts. An example of dynamic instantiation in
Darwin is given in Fig. 18: Invoking the service create_inst
with a data parameter results in a new instance of
component comp to which data is passed.

Rapide supports conditional configuration: Its where
clause enables architectural rewiring at runtime, using the
link and unlink operators. Recently, Wright has adopted a
similar approach to dynamic architecture changes: It
distinguishes between communication and control events,
where the control events are used to specify conditions
under which dynamic changes are allowed [3]. The
reconfiguration actions that are triggered in response to
control events are: new, del, attach, and detach.

C2 and Weaves support dynamic manipulation without
any restrictions on the types of permitted changes. Instead,
arbitrary modifications are allowed in principle; their
consistency is ensured at system runtime. C2's architecture
modification (sub)language (AML) specifies a set of opera-
tions for insertion, removal, and rewiring of elements in an
architecture at runtime: addComponent, removeComponent,
weld, and unweld [38], [52]. For example, the extension to the
architecture depicted in Fig. 16a is specified in C2's AML as
shown in Fig. 19. Weaves provides similar support by
exporting an application programmable interface (API) to a
model of a weave.

4.3.8 Constraints

Most ADLs enforce built-in constraints on what they
consider to be valid configurations. For example, UniCon
always requires a connector role to be attached to a
component player, while Darwin only allows bindings
between provided and required services. On the other
hand, several ADLs provide facilities for specifying

86 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Fig. 17. Declaration of a family of architectures, fam, and its subfamily,
sub_fam, in ACME. fam is evolved into sub_fam by adding a new
component and a property to one of fam component ports.

Fig. 18. Dynamic component instantiation in Darwin.

Fig. 19. Dynamic insertion of a component into a C2 architecture

Sample_Arch. The start command informs the C2 implementation

infrastructure (see Section 4.4.5) to start executing Comp5.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

arbitrary global constraints. For example, Rapide's timed
poset language [33] can be used to constrain configurations
in the same manner as components (see Fig. 5). Similarly, as
with individual components, MetaH explicitly constrains
configurations with nonfunctional attributes. Refinement
maps in SADL provide constraints on valid refinements of a
configuration (see Section 4.3.3). Finally, Wright allows
specification of structural invariants corresponding to
different architectural styles. An example Wright style
constraint is given in Fig. 20.

4.3.9 Nonfunctional Properties

All ADLs that support specification of nonfunctional
properties of components and connectors also support
hierarchical composition. Hence, they can specify such
properties on architectures by treating them as composite
components. MetaH and Rapide also support direct
modeling of nonfunctional properties of architectures:
MetaH allows specification of properties such as the
processor on which the system will execute, while Rapide
allows modeling of timing information in its constraint
language. SADL has been used to model security in a
software architecture by adopting a different approach:
Instead of providing security modeling features in SADL,
the ªoriginalº architecture is modified by adding the
necessary component and connector parameters and archi-
tectural constraints [48]. It is unclear whether this approach
is applicable to other nonfunctional properties or how
simple the needed modifications are in a general case.

4.3.10 Summary of ADL Configurations

It is at the level of configurations that the foci of some ADLs
can be more easily noticed. For example, SADL's particular
contribution is in architectural refinement, while Darwin
mostly focuses on system compositionality and dynamism.
No single ADL satisfies all of the classification criteria,
although Rapide and Weaves come close. Coverage of
several criteria is sparse across ADLs: refinement and
traceability, evolution, dynamism, and nonfunctional prop-
erties. These are good indicators of where future research
should be directed. On the other hand, most ADLs allow or
also provide explicit support for understandability, compo-
sitionality, and heterogeneity. A more complete summary
of this section is given in Table 4.

4.4 Tool Support for ADLs

The need for tool support in architectures is well-recognized.
However, there is a definite gap between what the research
community identifies as desirable and the state of the practice.
While every surveyed ADL provides some tool support, with

the exception of C2 and Rapide, they tend to focus on a single
area of interest, such as analysis (e.g., Wright), refinement
(e.g., SADL), or dynamism (e.g., Weaves). Furthermore,
within these areas, ADLs tend to direct their attention to a
particular technique (e.g., Wright's analysis for deadlocks),
leaving other facets unexplored. This is the very reason
ACME has been proposed as an architecture interchange
language: to enable interaction and cooperation among
different ADLs' toolsets and, thus, fill in these gaps. This
section surveys the tools provided by the different languages,
attempting to highlight the biggest shortcomings.

4.4.1 Active Specification

Only a handful of existing ADLs provide tools that actively
support specification of architectures. In general, such tools
can be proactive or reactive. Proactive specification tools act
in a proscriptive manner, similar to syntax-directed editors
for programming languages: They limit the available design
decisions based on the current state of architectural design.
For example, such tools may prevent selection of compo-
nents whose interfaces do not match those currently in the
architecture or disallow invocation of analysis tools on
incomplete architectures.

UniCon's graphical editor operates in this manner. It
invokes UniCon's language processing facilities to prevent
errors during design, rather than correct them after the fact.
Furthermore, the editor limits the kinds of players and roles
that can be assigned to different types of components and
connectors, respectively. Similarly, C2's DRADEL develop-
ment environment proactively guides the ªarchitectingº
process by disallowing certain operations (e.g., architectural
type checking) before others are completed (e.g., topological
constraint checking) [42]. Darwin's Software Architect's
Assistant [50] is another example of a proactive specification
tool. The Assistant automatically adds services (i.e., interface
points) of appropriate types to components that are bound
together. It also maintains the consistency of data types of
connected ports: Changing one port's type is automatically
propagated to all ports which are bound to it.

Reactive specification tools detect existing errors. They may
either only inform the architect of the error (nonintrusive) or
also force him to correct it before moving on (intrusive). In the
formercase,onceaninconsistencyisdetected, thetool informs
the architect, but allows him to remedy the problem as he sees
fit or ignore it altogether. C2'sDRADEL environment includes
a type checker that provides nonintrusive support: The
architect can proceed to the implementation generation phase
even in the presence of type mismatches. In the latter case, the
architect is forced to remedy the current problem before
moving on. Certain features of MetaH's graphical editor can
be characterized as intrusive: The MetaH editor gives the
architect full freedom to manipulate the architecture until the
Apply button is depressed, after which any errors must be
rectified before the architect may continue with the design.

4.4.2 Multiple Views

Most ADLs support at least two views of an architectureÐ-
textual and graphicalÐand provide automated support for
alternating between them. Aesop, MetaH, UniCon, and
Weaves also distinguish different types of components and

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 87

Fig. 20. The pipe-and-filter style declared in Wright. The constraint on

the style specifies that all connectors are pipes and that all component

ports are either data input or data output ports.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

connectors iconically and allow both top-level and detailed

views of composite elements.
Support for other views is sparse. C2's Argo design

environment provides a view of the architecture-centered

development process [59]. Darwin's Software Architect's

Assistant provides a hierarchical view of the architecture

which shows all the component types and the ªincludeº

relationships among them in a tree structure. Rapide and C2

allow visualization of an architecture's execution behavior by

building an executable simulation of the architecture and
providing tools for viewing and filtering events generated by

the simulation. In particular, Rapide uses its Simulator tool to
build the simulation and its Animation Tools to animate its
execution. Rapide also provides Poset Browser, a tool that

allows viewing events generated by the simulation. Weaves
adoptsa similar approach: It allows insertion of low-overhead

observers into a weave to support real-time execution
animation.

88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

TABLE 4
ADL Support for Modeling Architectural Configurations

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

4.4.3 Analysis

The types of analyses for which an ADL is well-suited
depend on its underlying semantic model and, to a lesser
extent, its specification features. For example, Wright uses
CSP to analyze individual connectors and components
attached to them for deadlocks; Aesop and C2 ensure style-
specific topological constraints and type conformance
among architectural elements; MetaH and UniCon support
schedulability analysis by specifying nonfunctional proper-
ties, such as criticality and priority; finally, SADL can
establish relative correctness of two architectures with
respect to a refinement map.

Another set of analysis techniques involves simulation of
the behavior described in an architecture. Examples are
Rapide's, C2's, and Weaves' event monitoring and filtering
tools. Similarly, Darwin allows instantiation of parameters
and dynamic components to enact ªwhat ifª scenarios. A
related technique, commonly employed in Weaves, is to
insert into the architecture a ªlistenerº component whose
only task is to analyze the data it receives from adjacent
components.

Language parsers and compilers are another kind of
analysis tool. Parsers analyze architectures for syntactic
correctness, while compilers establish semantic correctness.
All of the surveyed languages have parsers. Several
(Darwin, MetaH, and UniCon) also have ªcompilers,º
enabling them to generate executable systems from archi-
tectural descriptions, provided that component implemen-
tations already exist. Rapide's compiler generates
executable simulations of Rapide architectures. C2's
DRADEL environment, on the other hand, provides a tool
that generates executable implementation skeletons from an
architectural model; the skeletons are completed either by
developing new or reusing OTS functionality.

Another aspect of analysis is enforcement of constraints.
Parsers and compilers enforce constraints implicit in type
information, nonfunctional attributes, component and con-
nector interfaces, and semantic models. Rapide also sup-
ports explicit specification of other types of constraints, and
provides means for their checking and enforcement. Its
Constraint Checker analyzes the conformance of a Rapide
simulation to the formal constraints defined in the archi-
tecture. C2's constraint checker currently focuses only on the
topological rules of the style; an initial integration with the
architecture constraint checking tool, Armani [45], allows
specification and enforcement of arbitrary constraints.

4.4.4 Refinement

Several ADLs support direct refinement of architectural
models to executable code via ªcompilation.º Darwin,
MetaH, and UniCon achieve this in a manner similar to
MILs: Architectural components are implemented in a
programming language and the architectural description
serves only to ensure proper interconnection and commu-
nication among them. The drawbacks of this approach were
discussed in Section 4.3.3. Rapide, on the other hand,
provides an executable sublanguage that contains many
common programming language control structures. C2
goes beyond linking existing modules, but not as far as to
provide executable language constructs: An architecture is

refined into a partial implementation which contains

completion guidelines for developers derived from the

architectural description. For example, each method is

accompanied by specifications of its precondition and

postcondition, as shown in Fig. 21; the developer must

only ensure their satisfaction when implementing the

method and need not worry about the rest of the system.
Only SADL and Rapide provide tool support for

refining architectures across multiple levels of abstraction

and specificity. SADL's support is partial. It requires

manual proofs of mappings of constructs between an

abstract and a more concrete architectural style. Such a proof

is performed only once; thereafter, SADL provides a tool

that automatically checks whether any two architectures

described in the two styles adhere to the mapping. Rapide,

on the other hand, supports event maps between individual

architectures. The maps are compiled by Rapide's Simulator

so that the Constraint Checker can verify that the events

generated during simulation of the concrete architecture

satisfy the constraints in the abstract architecture.

4.4.5 Implementation Generation

A large number of ADLs, but not all, support generation

of a system from its architecture. Exceptions are SADL,

ACME, and Wright, which are currently used strictly as

modeling notations and provide no implementation

generation support. It is interesting to note that, while

SADL focuses on refining architectures, it does not take

the final refinement step from architectural descriptions to

source code.
Several ADLs employ architectural ªcompilers,º as

already discussed above. Aesop adopts a different ap-

proach: It provides a C++ class hierarchy for its concepts

and operations, such as components, connectors, ports,

roles, and attachments. This hierarchy forms a basis from

which an implementation of an architecture may be

produced; the hierarchy is, in essence, a domain-specific

language for implementing Aesop architectures.
A similar approach is used in C2, which provides a

framework of abstract classes for C2 concepts [42].
Components and connectors used in C2 applications are
subclassed from the appropriate framework classes. The
framework has been implemented in C++, Java, and Ada;
several OTS middleware technologies have been integrated
with the framework to enable interactions between C2
components implemented in different languages [10].
Application skeletons produced by C2's code generation
facilities discussed above result in instantiated, but partially
implemented, framework classes.

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 89

Fig. 21. Each method generated by C2 is preceded by its precondition

and followed by its postcondition.

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

4.4.6 Dynamism

The limited support for modeling dynamism in existing

ADLs, discussed in Section 4.3.7, is reflected in the limited

tool support for dynamism. Darwin and Rapide can model

only planned modifications at runtime: Both support

conditional configuration; Darwin also allows component

replication. Their compilation tools ensure that all possible

configuration alternatives are enabled.
C2 and Weaves toolsets support dynamism more exten-

sively. Weaves provides a visual editor, Jacquard, which uses

the provided API to the architectural model to dynamically

manipulate a weave in an arbitrary fashion. C2's ArchStudio

tool [52] enables arbitrary interactive construction, execution,

and runtime-modification of C2-style architectures imple-

mented in Java. ArchStudio supports modification of an

architecture at runtime by dynamically loading and linking

new components or connectors into the architecture. Both C2

and Weaves exploit their flexible connectors (see Section 4.2)

to support dynamism.

4.4.7 Summary of ADL Tool Support

Existing ADLs span a broad spectrum in terms of the design

and development tools they provide. On the one hand,

ACME currently only facilitates visualization of its archi-

tectures, SADL's toolset consists primarily of a refinement

consistency checker, and Weaves has focused on interactive

specification and manipulation of architectures. On the

other hand, Darwin, Rapide, and UniCon provide powerful

architecture modeling environments; C2 and Darwin are

the only ADLs that provide tool support in all classification

categories. Overall, existing ADLs have put the greatest

emphasis on visualization and analysis of architectures and

the least on refinement and dynamism. A more complete

summary of this section is given in Table 5.

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

TABLE 5
ADL Tool Support

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

5 CONCLUSIONS

Classifying and comparing any two languages objectively is
a difficult task. For example, a programming language, such
as Ada, contains MIL-like features and debates rage over
whether Java is ªbetterº than C++ and why. On the other
hand, there exist both an exact litmus test (Turing complete-
ness) and ways to distinguish different kinds of program-
ming languages (imperative vs. declarative vs. functional,
procedural vs. OO). Similarly, formal specification lan-
guages have been grouped into model-based, state-based,
algebraic, axiomatic, and so forth. Until now, however, no
such definition or classification existed for ADLs.

The main contribution of this paper is just such a
definition and classification framework. The definition
provides a simple litmus test for ADLs that largely reflects
community consensus on what is essential in modeling an
architecture: An architectural description differs from other
notations by its explicit focus on connectors and architectur-
al configurations. We have demonstrated how the definition
and the accompanying framework can be used to determine
whether a given notation is an ADL and, in the process,
discarded several notations as potential ADLs. Some
(LILEANNA and ArTek) may be more surprising than
others (CHAM and Statecharts), but the same criteria were
applied to all.

Of those languages that passed the litmus test, several
straddled the boundary by either modeling their connectors
in-line (in-line configuration ADLs) or assuming a bijective
relationship between architecture and implementation (im-
plementation constraining ADLs). We have discussed the
drawbacks of both categories. Nevertheless, it should be
noted that, by simplifying the relationship between archi-
tecture and implementation, implementation constraining
ADLs have been more successful in generating implementa-
tions than ªmainstreamº (implementation independent) ADLs.
Thus, for example, although C2 is implementation inde-
pendent, we assumed this one-to-one relationship in
building the initial prototype of our implementation
generation tools [42].

The comparison of existing ADLs highlighted several
areas where they provide extensive support, both in terms of
architecture modeling capabilities and tool support. For
example, a number of languages use powerful formal
notations for modeling component and connector semantics.
They also provide a plethora of architecture visualization
and analysis tools. On the other hand, the survey also
pointed out areas in which existing ADLs are severely
lacking. Only a handful support the specification of
nonfunctional properties, even though such properties
may be essential for system implementation and manage-
ment of the corresponding development process. Architec-
tural refinement and constraint specification have also
remained largely unexplored. Finally, both tools and
notations for supporting architectural dynamism are still
in their infancy. Only two ADLs have even attempted to
achieve unanticipated dynamism thus far.

Perhaps most surprising is the inconsistency with which
ADLs support connectors, especially given their argued
primary role in architectural descriptions. Several ADLs
provide only minimal connector modeling capabilities. Others

either only allow modeling of complex connectors (e.g.,
Wright) or implementation of simple ones (e.g., UniCon). C2
has provided the initial demonstration of the feasibility of
implementing complex connectors by employing existing
research and commercial connector technologies, such as
Polylith [56] and CORBA [53]. However, this remains a wide
open research issue.

Finally, neither the definition nor the accompanying
framework have been proposed as immutable laws on
ADLs. Quite the contrary, we expect both to be modified
and extended in the future. We are currently considering
several issues: providing a clearer distinction between
descriptive languages (e.g., ACME) and those that
primarily enable semantic modeling (e.g., Wright); com-
paring software ADLs to hardware ADLs; and expanding
the framework to include other criteria (e.g., support for
extensibility). We have had to resort to heuristics and
subjective criteria in comparing ADLs at times, indicating
areas where future work should be concentrated. But,
what this taxonomy provides is an important advance
toward answering the question of what an ADL is and
why and how it compares to other ADLs. Such informa-
tion is needed both for evaluating new and improving
existing ADLs and for targeting future research and
architecture interchange efforts more precisely.

ACKNOWLEDGMENTS

The authors would to thank the following people for their
insightful comments on earlier drafts of this paper: R. Allen,
K. Anderson, P. Clements, R. Fielding, D. Garlan, M.
Gorlick, W. Griswold, D. Hilbert, A. van der Hoek, P.
Kammer, J. Kramer, D. Luckham, J. Magee, R. Monroe, M.
Moriconi, K. Nies, P. Oreizy, D. Redmiles, R. Riemensch-
neider, J. Robbins, D. Rosenblum, R. Selby, M. Shaw, S.
Vestal, J. Whitehead, and A. Wolf. We also thank the
referees of Transactions on Software Engineering for their
helpful reviews.

This effort was sponsored by the Defense Advanced
Research Projects Agency, and Rome Laboratory, Air Force
Materiel Command, USAF, under agreement number
F30602-97-2-0021. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.

REFERENCES

[1] G. Abowd, R. Allen, and D. Garlan, ªUsing Style to Understand
Descriptions of Software Architecture,º Proc. First ACM SIGSOFT
Symp. Foundations of Software Eng., pp. 9-20, Dec. 1993.

[2] R. Allen, ªA Formal Approach to Software Architecture,º PhD
Thesis, Carnegie Mellon Univ., CMU Technical Report CMU-CS-
97-144, May 1997.

[3] R. Allen, R. Douence, and D. Garlan, ªSpecifying Dynamism in
Software Architectures,º Proc. Workshop Foundations of Component-
Based Systems, pp. 11-22, Sept. 1997.

[4] R. Allen and D. Garlan, ªA Formal Basis for Architectural
Connection,º ACM Trans. Software Eng. and Methodology, vol. 6,
no. 3, pp. 213-249, July 1997.

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 91

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

[5] R. Allen, D. Garlan, and J. Ivers, ªFormal Modeling and Analysis
of the HLA Component Integration Standard,º Proc. Sixth ACM
SIGSOFT Symp. Foundations of Software Eng., pp. 70-79, Nov. 1998.

[6] P. Binns, M. Engelhart, M. Jackson, and S. Vestal, ªDomain-
Specific Software Architectures for Guidance, Navigation, and
Control,º Int'l J. Software Eng. and Knowledge Eng., vol. 6, no. 2,
1996.

[7] P.C. Clements, ªFormal Methods in Describing Architectures,º
Proc. Workshop Formal Methods and Architecture, 1995.

[8] P.C. Clements, ªA Survey of Architecture Description Lan-
guages,º Proc. Eighth Int'l Workshop Software Specification and
Design, Mar. 1996.

[9] P.C. Clements, ªWorking Paper for the Constraints Sub-Group,º
EDCS Architecture and Generat ion Cluster , Apr. 1997.
ht tp ://www.sei . cmu.edu/~edcs/CLUSTERS/ARCH/
index.html.

[10] E.M. Dashofy, N. Medvidovic, and R.N. Taylor, ªUsing Off-the-
Shelf Middleware to Implement Connectors in Distributed Soft-
ware Architectures,º Proc. 21st Int'l Conf. Software Eng. (ICSE '99),
pp. 3-12, May 1999.

[11] Proc. First International Workshop Architectures for Software Systems,
D. Garlan, ed., Apr. 1995.

[12] D. Garlan, ªAn Introduction to the Aesop System,º July 1995.
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/
html/aesop-overview.ps.

[13] D. Garlan, ªStyle-Based Refinement for Software Architecture,º
Proc. Second Int'l Software Architecture Workshop (ISAW-2), A.L. Wolf,
ed., pp. 72-75, Oct. 1996.

[14] D. Garlan, R. Allen, and J. Ockerbloom, ªExploiting Style in
Architectural Design Environments,º Proc. SIGSOFT '94: Founda-
tions of Software Eng., pp. 175-188, Dec. 1994.

[15] D. Garlan, R. Monroe, and D. Wile, ªACME: An Architecture
Description Interchange Language,º Proc. CASCON '97, Nov. 1997.

[16] ªSummary of the Dagstuhl Workshop Software Architecture,º
ACM Software Eng. Notes, D. Garlan, F.N. Paulisch, and W.F.
Tichy, eds., pp. 63-83, July 1995.

[17] D. Garlan, J. Ockerbloom, and D. Wile, ªTowards an ADL
Toolkit,º EDCS Architecture and Generation Cluster, Dec. 1998.
http://www.cs.cmu.edu/~spok/adl/index.html.

[18] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering. Prentice Hall, 1991.

[19] J.A. Goguen and T. Winkler, ªIntroducing OBJ3,º Technical
Report SRI-CSL-88-99, SRI Int'l, 1988.

[20] M. Gorlick and A. Quilici, ªVisual Programming in the Large
versus Visual Programming in the Small,º Proc. IEEE Symp. Visual
Languages, pp. 137-144, Oct. 1994.

[21] M.M. Gorlick and R.R. Razouk, ªUsing Weaves for Software
Construction and Analysis,º Proc. 13th Int'l Conf. Software Eng.
(ICSE13), pp. 23-34, May 1991.

[22] P. Hagger, ªQAD, a Modular Interconnection Language for
Domain Specific Software Architectures,º technical report, Univ.
of Maryland, June 1993.

[23] D. Harel, ªStatecharts: A Visual Formalism for Complex Systems,º
Science of Computer Programming, 1987.

[24] C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[25] P. Inverardi and A.L. Wolf, ªFormal Specification and Analysis
of Software Architectures Using the Chemical Abstract Machine
Model,º IEEE Trans. Software Eng., vol. 21, no. 4, pp. 373-386,
Apr. 1995.

[26] F. Jahanian and A.K. Mok, ªModechart: A Specification Language
for Real-Time Systems,º IEEE Trans. Software Eng., vol. 20, no. 12,
pp. 933-947, Dec. 1994.

[27] P. Kogut and P.C. Clements, ªFeatures of Architecture Description
Languages,º draft of a CMU/SEI Technical Report, Carnegie
Mellon Univ., Dec. 1994.

[28] P. Kogut and P.C. Clements, ªFeature Analysis of Architecture
Description Languages,º Proc. Software Technology Conf. (STC '95),
Apr. 1995.

[29] C.W. Krueger, ªSoftware Reuse,º Computing Surveys, vol. 24, no. 2,
pp. 131-184, June 1992.

[30] D. Luckham, ANNA, a Language for Annotating Ada Programs:
Reference Manual, Berlin: Springer-Verlag, 1987.

[31] D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D. Bryan, and
W. Mann, ªSpecification and Analysis of System Architecture
Using Rapide,º IEEE Trans. Software Eng., vol. 21, no. 4, pp. 336-
355, Apr. 1995.

[32] D.C. Luckham and J. Vera, ªAn Event-Based Architecture
Definition Language,º IEEE Trans. Software Eng., vol. 21, no. 9,
pp. 717-734, Sept. 1995.

[33] D.C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz, ªPartial
Orderings of Event Sets and Their Application to Prototyping
Concurrent, Timed Systems,º J. Systems and Software, vol. 21, no. 3,
pp. 253-265, June 1993.

[34] D.C. Luckham, J. Vera, and S. Meldal, ªThree Concepts of System
Architecture,º Technical Report, CSL-TR-95-674, Stanford Univ.,
Palo Alto, Calif., July 1995.

[35] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, ªSpecifying
Distributed Software Architectures,º Proc. Fifth European Software
Eng. Conf. (ESEC '95), Sept. 1995.

[36] J. Magee and J. Kramer, ªDynamic Structure in Software
Architectures,º Proc. ACM SIGSOFT '96: Fourth Symp. Foundations
of Software Eng. (FSE4), pp. 3-14, Oct. 1996.

[37] Proc. Third Int'l Software Architecture Workshop, J. Magee and
D.E. Perry, eds., Nov. 1998.

[38] N. Medvidovic, ªADLs and Dynamic Architecture Changes,º
Proc. Second Int'l Software Architecture Workshop (ISAW-2),
A.L. Wolf, ed., pp. 24-27, Oct. 1996.

[39] N. Medvidovic, P. Oreizy, J.E. Robbins, and R.N. Taylor, ªUsing
Object-Oriented Typing to Support Architectural Design in the C2
Style,º Proc. ACM SIGSOFT '96: Fourth Symp. Foundations Software
of Eng. (FSE4), pp. 24-32, Oct. 1996.

[40] N. Medvidovic and D.S. Rosenblum, ªDomains of Concern in
Software Architectures and Architecture Description Languages,º
Proc. USENIX Conf. Domain-Specific Languages, pp. 199-212, Oct.
1997.

[41] N. Medvidovic and D.S. Rosenblum, ªAssessing the Suitability of
a Standard Design Method for Modeling Software Architectures,º
Proc. First Working IFIP Conf. Software Architecture (WICSA1),
pp. 161-182, Feb. 1999.

[42] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, ªA Language
and Environment for Architecture-Based Software Development
and Evolution,º Proc. 21st Int'l Conf. Software Eng. (ICSE '99), pp.
44-53, May 1999.

[43] N. Medvidovic, R.N. Taylor, and E.J. Whitehead Jr., ªFormal
Modeling of Software Architectures at Multiple Levels of
Abstraction,º Proc. California Software Symp., pp. 28-40, Apr. 1996.

[44] R. Milner, J. Parrow, and D. Walker, ªA Calculus of Mobile
Processes, parts I and II,ª J. Information and Computation, vol. 100,
pp. 1-40 and 41-77, 1992.

[45] R. Monroe, ªCapturing Software Architecture Design Expertise
with Armani,º Technical Report CMU-CS-98-163, Carnegie Mellon
Univ., Oct. 1998.

[46] M. Moriconi and R.A. Riemenschneider, ªIntroduction to SADL
1.0: A Language for Specifying Software Architecture Hierar-
chies,º Technical Report SRI-CSL-97-01, SRI Int'l, Mar. 1997.

[47] M. Moriconi, X. Qian, and R.A. Riemenschneider, ªCorrect
Architecture Refinement,º IEEE Trans. Software Eng., vol. 21,
no. 4, pp. 356-372, Apr. 1995.

[48] M. Moriconi, X. Qian, R.A. Riemenschneider, and L. Gong,
ªSecure Software Architectures,º Proc. 1997 IEEE Symp. Security
and Privacy, May 1997.

[49] P. Newton and J.C. Browne, ªThe CODE 2.0 Graphical Parallel
Programming Language,º Proc. ACM Int'l Conf. Supercomputing,
July 1992.

[50] K. Ng, J. Kramer, and J. Magee, ªA CASE Tool for Software
Architecture Design,º J. Automated Software Eng., vol. 3, nos. 3/4,
pp. 261-284, 1996.

[51] P. Oreizy, ªIssues in the Runtime Modification of Software
Architectures,º Technical Report, UCI-ICS-96-35, Univ. of Cali-
fornia, Irvine, Aug. 1996.

[52] P. Oreizy, N. Medvidovic, and R.N. Taylor, ªArchitecture-Based
Runtime Software Evolution,º Proc. 20th Int'l Conf. Software Eng.
(ICSE '98), pp. 177-186, Apr. 1998.

[53] R. Orfali, D. Harkey, and J. Edwards, The Essential Distributed
Objects Survival Guide. John Wiley & Sons, 1996.

[54] D.E. Perry and A.L. Wolf, ªFoundations for the Study of Software
Architectures,º SIGSOFT Software Eng. Notes, vol. 17, no. 4, pp. 40-
52, Oct. 1992.

[55] R. Prieto-Diaz and J.M. Neighbors, ªModule Interconnection
Languages,º J. Systems and Software, vol. 6, no. 4, pp. 307-334,
Oct. 1989.

[56] J. Purtilo, ªThe Polylith Software Bus,º ACM Trans. Programming
Languages and Systems, vol. 16, no. 1, pp. 151-174, Jan. 1994.

92 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2000

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

[57] ªUML Semantics,º Rational Partners, Object Management Group
document ad/97-08-04, Sept. 1997. http://www.omg.org/docs/
ad/97-08-04.pdf.

[58] ªUML Notation Guide,º Rational Partners, Object Management
Group document ad/97-08-05, Sept. 1997. http://www.omg.org/
docs/ad/97-08-05.pdf.

[59] J.E. Robbins, D.M. Hilbert, and D.F. Redmiles, ªExtending Design
Environments to Software Architecture Design,º Proc. Knowledge-
Based Software Eng. Conf. (KBSE), pp. 63-72, Sept. 1996.

[60] J.E. Robbins, N. Medvidovic, D.F. Redmiles, and D.S. Rosenblum,
ªIntegrating Architecture Description Languages with a Standard
Design Method,º Proc. 20th Int'l Conf. Software Eng. (ICSE '98),
pp. 209-218, Apr. 1998.

[61] M. Shaw, ªProcedure Calls Are the Assembly Language of System
Interconnection: Connectors Deserve First Class Status,º Proc.
Workshop Studies of Software Design, May 1993.

[62] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, and G.
Zelesnik, ªAbstractions for Software Architecture and Tools to
Support Them,º IEEE Trans. Software Eng., vol. 21, no. 4, pp. 314-
335, Apr. 1995.

[63] M. Shaw, R. DeLine, and G. Zelesnik, ªAbstractions and
Implementations for Architectural Connections,º Proc. Third Int'l
Conf. Configurable Distributed Systems, May 1996.

[64] M. Shaw and D. Garlan, ªCharacteristics of Higher-Level
Languages for Software Architecture,º Technical Report, CMU-
CS-94-210, Carnegie Mellon Univ., Dec. 1994.

[65] M. Shaw and D. Garlan, ªFormulations and Formalisms in
Software Architecture,º Computer Science Today: Recent Trends and
Developments. J. van Leeuwen, ed. Springer-Verlag, 1995.

[66] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, Apr. 1996.

[67] J.M. Spivey, The Z Notation: A Reference Manual. New York,
Prentice Hall, 1989.

[68] M. Shaw, D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C.
Scott, and M. Schumacher, ªCandidate Model Problems in
Software Architecture,º unpublished manuscript, Nov. 1995.
http://www.cs.cmu.edu/afs/cs/project/compose/www/html/
ModProb/.

[69] A. Terry, R. London, G. Papanagopoulos, and M. Devito, ªThe
ARDEC/Teknowledge Architecture Description Language (Ar-
Tek), Version 4.0,º technical report, Teknowledge Federal Syst.,
and U.S. Army Armament Research, Development, and Eng.
Center, July 1995.

[70] W. Tracz, ªLILEANNA: A Parameterized Programming Lan-
guage,º Proc. Second Int'l Workshop Software Reuse, pp. 66-78,
Mar. 1993.

[71] S. Vestal, ªA Cursory Overview and Comparison of Four
Architecture Description Languages,º technical report, Honeywell
Technology Center, Feb. 1993.

[72] S. Vestal, ªMetaH Programmer's Manual, Version 1.09,º technical
report, Honeywell Technology Center, Apr. 1996.

[73] Proc. Second International Software Architecture Workshop (ISAW-2),
A.L. Wolf, ed., Oct. 1996.

[74] A.L. Wolf, Succeedings of the Second Int'l Software Architecture
Workshop (ISAW-2), ACM SIGSOFT, vol. 22, no. 1, pp. 42-56, Jan.
1997.

Nenad Medvidovic received the BS degree in
computer science from Arizona State Univer-
sity, where he graduated summa cum laude in
1992. He received the MS degree in informa-
tion and computer science and the PhD degree
from the Department of Information and Com-
puter Science at the University of California,
Irvine in 1995 and 1998, respectively. He is an
assistant professor in the Computer Science
Department at the University of Southern

California in Los Angeles. His research interests focus on software
architectures, specifically, architectural styles, modeling and analysis
of architectures, architecture-based software evolution, software
reuse, and interoperability. His WWW home page can be accessed
at http://sunset.usc.edu/~neno/.

Richard N. Taylor received the PhD degree in
computer science from the University of Color-
ado at Boulder in 1980. He was a 1985
recipient of a Presidential Young Investigator
Award and, in 1998, was recognized as an
ACM Fellow. He is a professor of information
and computer science at the University of
California at Irvine, where he has been since
1982. His research interests are centered on
software architectures, hypermedia, the World

Wide Web protocols, and workflow technologies. Professor Taylor is
the director of the Institute for Software Research (ISR), an alliance
between the corporate community and the University. He was the
chairman of ACM's Special Interest Group on Software Engineering,
SIGSOFT (1989-1993). He served as program cochair of the 1997
International Conference on Software Engineering (ICSE '97) and
general chair of the 1999 International Joint Conference on Work
Activities, Coordination, and Collaboration. Dr. Taylor is a member of
the IEEE Computer Society.

MEDVIDOVIC AND TAYLOR: A CLASSIFICATION AND COMPARISON FRAMEWORK FOR SOFTWARE ARCHITECTURE DESCRIPTION... 93

Authorized licensed use limited to: University of Nantes. Downloaded on July 16, 2009 at 06:57 from IEEE Xplore. Restrictions apply.

