An Overview of Component Models: Part 2

Hakim Hannousse

ECOLE DES MINES DE NANTES

DEPARTMENT OF COMPUTER SCIENCE

@ Component Models
e Kmelia Component Model [5 Papers]
e Fractal Component Model [1 Paper + 1 Technical Report]
e Kmelia and Fractal Models: Comparison
@ Aspect Oriented Programming Issues
e Formal Semantics for Aspects : CASB [1 Technical Report]
e Aspect Classification [1 paper]
e Formalizing Concurrent Aspects [1 paper]

@ Perspectives

Components Models
[Jelelele}

Kmelia is a Formal Component Model [Attiog06]

Component Y < W, Init, A, N', I, Dy, v, Cg >

° Wdéf<T, V,Vy, Inv >

d
oDséf<Is, By >
o, <o P 0V, S >

d .
o S “ < suby, caly, reqs, int; >

o B,Y <5 L, 6 b Sy Sp>
d
Assembly o < C, links, subs >
A component composition is defined as a well-formed assembly
which is encapsulated within a component.

Components Models
[¢] lele]e}

Kmelia is a Hierarchical Component Model [Pascal06]

@ Services in Kmelia are not simple operations

@ Kmelia introduces the concept of Assemblies
e Kmelia proposes three hierarchy levels :

e Links Hierarchy
e Services interfaces Hierarchy
e Component Composition is an encapsulation of an assembly

Components Models
[e]e] le]e}

Kmelia defines Components Protocols [Pascal07a]

@ A protocol is a pre-ordering of services calls that should be
respected during the system execution.

@ A protocol has a behavior
@ A protocol in Kmelia is a specific service defined using vertical
structuring operators
e Sate annotation << >>
e Transition annotation [[]]
@ Protocol inconsistency detection can be made using pre/post
conditions.

Components Models
[e]e]e] o}

Kmelia introduces HBIDL to describe components and services [Pascal07b]

e HBIDL extends IDL by the specification of the behavior of
services with their architectures
e HBIDL has many advantages:
e provides detailed documntations of complex interaction services
e supports compatibility levels
e serves as an intermediate between CBSE and SBSE
e HBIDL has some adaptation problems such as:

e Parameters vs Messages mismatch
e Hierarchichal mismatch

Components Models
[e]e]e]e] }

Kmelia has a Formal Anlyser Toolbox: COSTO [Pascal07c¢]

@ COSTO is a toolbox that supports the design and analysis of
Kmelia’s abstract component model

@ COSTO is an eclipse plugin
@ COSTO toolbox includes:

COSTO core module
Verification module
LOTOS Module
MEC Module
Export Module

@ COSTO takle state explosion problem

Components Models
o0

Fractal Component Model (1) [Bruneton04, Bruneton06]

A Fractal Component is an entity that has two parts:
@ Membrane
o Content

Fractal Model supports three kind of Components:
@ Basic Components
@ Primitive Components
@ Composite Components

Fractal Supports two kinds of Components Binding:
@ Primitive binding

@ Composite Binding

Components Models
(o] J

Fractal Component Model (2) [Bruneton04, Bruneton06]

Fractal Component Model has the following main features:
@ Fractal is a hierarchical model
@ Fractal supports sharing components
@ Fractal is a reflective model

@ Fractal has an implementation model named Julia

Components Models
L]

Kmelia and Fractal Component Models: A Comparison

e Kmelia is Service Based Model # Fractal is a Component Based
Model

e Kmelia follows monadic semantics # Fractal follows
demi-polyadic semantics

@ Three hierarchy levels are allowed in Kmelia # One hierarchy
level for Fractal

@ No sharing Components for Kmelia # Sharing Components is
allowed with Fractal

@ reconfiguration is limited in Kmelia # reconfiguration is more
developed in Fractal

Aspect Oriented Programming Issues
®000000

Formal Semantics for Aspects

Aspect Oriented Programming Issues
0O@00000

CASB: Semantic Elements

CASB introduces the concept of configurations (C , X)
A program Cis of the form C == i : C|¢

Semantic is described in term of binary relation —,

A single reduction : (i : C, %) — (C', %)

An aspect is a function

Y I — (X — C) x {before, after, around}

@ A tagged instruction : i

@ A matching function: match : P x I — bool

@ A weaving relation: —

Aspect Oriented Programming Issues
[e]e] le]elele)

CASB: Weaving of a Single Aspect

o Before aspect

P(i) = (¢, before)
(i:C, %) — (testp:i: C, %)

@ After aspect

¥(i) = (¢, after)
(i:C,%)— (i:testp: C, %)

@ Around aspect

Y(i) = (¢, around)
(i:C,%,P) — (test ¢ : pop, : C,%,i: P)

(popp : C,X,i: P) — (C,%,P)
(proceed : C,%,i: P) — (i : pushyi: C,%,P)

Aspect Oriented
[e]e]e] Jelele]

CASB: Weaving of Several Aspects

@ Aspects of the same Kind
e Before aspects

Y(i) = ((¢1...0n), before)
(i:C, %) — (test ¢y : ... i test ¢y 11 : C, %)

e After aspects

(i) = ((¢1..-0n), after)
(i:C, %) — (i:test ¢y : ... : test ¢, : C, %)

e Around aspects

Y(i) = ((¢1...0n), around)
(i:C,3,P) — (test ¢y : popyn: C, X, test ¢ = ... : test ¢, i i : C, %)

(poppn: C,3,x1 ¢ ... :x,: P) — (C, %, P)
(proceed : C,¥,x: P) — (x: push, x : C, %, P)

@ Aspects of Different Kinds
Y(O)=(P111) (D tn)) Y(D1,11).(Snstn))=(($},around)...(¢, .around))

CASB: Pointcuts

Aspect Oriented
[e]e]e]e] lele)

P =T |Pr ANPa|P1 VPP

match(T;, i)

match(Py A Py, i)
match(Py V Py, i)
match(—P, i)

true if 3o : o(T;) =i
false otherwise
match(Py,i) N match(P,, i)
match(P,i) V match(P, i)
—match(P, i)

Asy
0000080

CASB: Exception Handling

@ Exception Syntax :
S == try Sy catch ex Sy | throw ex | ...
@ Semantics :

(try Sy catchex S, : C, %, E) —yp, (S : pop, : C, %, (ex,S2 : C) : E)

(throw ex : C, X, (exq, Co) : ... : (exx, Cy) : (ex,C") : E) —, (C', 2, E)

(pope : C,E,X : E) b (C727E)

Aspect Oriented Programming Issues
O00000e

CASB: Advanced Aspect Features

@ Aspect Deployment
(deployid S : C, %, V) — (S : popg : C, X, ¢iq : V)
(popgy : C, X, :) — (C, %, 7)
@ Aspect Instantiation

update(V,i, %) = (V. %) (oW')(i) = (¢, before)
(i,C,2, W) — (test p: i : C, %/, V')

Aspect Oriented Programming Issues
000

Aspects Classification

@ Organize aspects into categories sharing some properties

@ —— > Specify the preserved properties by the aspects of each
category

@ —— > Optimization of the verification time

Observers Category

@ Definition :
V(C,%).X¥ € A, & proj,(a) = proj,(&) A preserve,(a)

@ Preserved Properties :

e u= sp’_'Sp’SO(f/\‘Pg"P[f\/(pg,
| o US| @IWe | true J o °
@? u= ep|-ep|splosplo’ Aoy oV

| P U@y | Wy | true Uy’

Aborters Category

e Definition : V(C,X).2¥ € A, & (proj,(a) = proj,(&) v 3(i >
0),3(j > i).projp(a—i) = projp(G—;j)A
V(k > j).ax = (€,-)) A preserve,(&)

@ Preserved Properties :
a

et u= sp | osp i AQS [of Vs | oiWeh | true U @

Ot n= —ep] <p/]" A go/z“ | 4,0/1“ Vv go/z" | true U Q0

Aspect Oriented Programming Issues
[Jele}

Sequential EAOP

@ Syntax :
A = paA|CoLA|CrLalA OA;

to be continued...

Aspect Oriented Programming Issues
oeo

Concurrent EAOP

Aspect Oriented Prog
[e]e] J

Concurrent Aspect Composition in EAOP

@ Sequential Functional Composition

@ Parallel Conjunctive Composition

Perspectives

	Components Models
	Kmelia Component Model
	Fractal Component Model
	Components Models Comparison

	Aspect Oriented Programming Issues
	Formal Semantics
	Aspects Classification
	Concurrent Aspects

	Perspectives

