
An Overview of Aspect and Component Models:
Part 3

Hakim Hannousse

DEPARTMENT OF COMPUTER SCIENCE

Components Models Aspect Oriented Programming Issues Perspectives

Outline

Component Models
Kmelia Component Model [5 Papers]
Fractal Component Model [1 Paper + 1 Technical Report]
Kmelia and Fractal Models: Comparison

Aspect Oriented Programming Issues
Formal Semantics for Aspects : CASB [1 Technical Report]
Aspect Classification [1 paper]
Aspect Interaction [2 paper]
Formalizing Concurrent Aspects [1 paper]

Perspectives

Components Models Aspect Oriented Programming Issues Perspectives

Kmelia is a Formal Component Model [Attiog06]

Component
def
= <W, Init, A, N , I, Ds, v, Cs >

W def
= < T, V,VT , Inv >

Ds
def
= < Is, Bs >

Is
def
= < σ, P, Q, Vs, Ss >

Ss
def
= < subs, cals, reqs, ints >

Bs
def
= < S, L, δ, φ, S0, SF >

Assembly
def
= < C, links, subs >

A component composition is defined as a well-formed assembly
which is encapsulated within a component.

Components Models Aspect Oriented Programming Issues Perspectives

Kmelia is a Hierarchical Component Model [Pascal06]

Services in Kmelia are not simple operations

Kmelia introduces the concept of Assemblies
Kmelia proposes three hierarchy levels :

Links Hierarchy
Services interfaces Hierarchy
Component Composition is an encapsulation of an assembly

Components Models Aspect Oriented Programming Issues Perspectives

Kmelia defines Components Protocols [Pascal07a]

A protocol is a pre-ordering of services calls that should be
respected during the system execution.

A protocol has a behavior
A protocol in Kmelia is a specific service defined using vertical
structuring operators

Sate annotation << >>
Transition annotation [[]]

Protocol inconsistency detection can be made using pre/post
conditions.

Components Models Aspect Oriented Programming Issues Perspectives

Kmelia introduces HBIDL to describe components and services [Pascal07b]

HBIDL extends IDL by the specification of the behavior of
services with their architectures
HBIDL has many advantages:

provides detailed documentations of complex interaction services
supports compatibility levels
serves as an intermediate between CBSE and SBSE

HBIDL has some adaptation problems such as:
Parameters vs Messages mismatch
Hierarchichal mismatch

Components Models Aspect Oriented Programming Issues Perspectives

Kmelia has a Formal Anlyser Toolbox: COSTO [Pascal07c]

COSTO is a toolbox that supports the design and analysis of
Kmelia’s abstract component model

COSTO is an eclipse plugin
COSTO toolbox includes:

COSTO core module
Verification module
LOTOS Module
MEC Module
Export Module

COSTO takle state explosion problem

Components Models Aspect Oriented Programming Issues Perspectives

Fractal Component Model (1) [Bruneton04, Bruneton06]

A Fractal Component is an entity that has two parts:

Membrane

Content

Fractal Model supports three kind of Components:

Basic Components

Primitive Components

Composite Components

Fractal Supports two kinds of Components Binding:

Primitive binding

Composite Binding

Components Models Aspect Oriented Programming Issues Perspectives

Fractal Component Model (2) [Bruneton04, Bruneton06]

Fractal Component Model has the following main features:

Fractal is a hierarchical model

Fractal supports sharing components

Fractal is a reflective model

Fractal has an implementation model named Julia

Components Models Aspect Oriented Programming Issues Perspectives

CORBA Component Model (CCM) [OMG’04, Marvie’06]

CCM =
∑

Component Types +
∑

Component Homes +
∑

Links
Component Type = Name + Attributes + [Ports]

Attributes are used for configuration purpose
Ports = Facets ∪ Receptacles ∪ Event Sources ∪ Event Sinks
An inheritance relationship is defined between component types

Component Types are two kinds : Basic and Extended

Component Home is a meta-type that manages component
instances

Components Models Aspect Oriented Programming Issues Perspectives

CCM: Facets [OMG’04, Marvie’06]

A Facet defines a role that can be performed upon a component

Each Facet has its own reference

Several copies of a Facet reference may exist at a time.

Facets can be specified only in a static way

A client can navigate between Facets

Components Models Aspect Oriented Programming Issues Perspectives

CCM: Receptacles [OMG’04, Marvie’06]

A receptacle allows a component type to accept a reference

A receptacles maybe simples or multiples

A cookie is created for each connection in the case of multiple
receptacles

Receptacles can be used for reconfiguration.

Components Models Aspect Oriented Programming Issues Perspectives

CCM: Events [OMG’04, Marvie’06]

Events are used for asynchronous communications

Event sources are two kinds: Emitters and Publishers

An Event Sink may receive events from various sources at the
same time

Components Models Aspect Oriented Programming Issues Perspectives

CCM: Component Homme [OMG’04, Marvie’06]

A Component Home is a component manager that provides
instantiation of component types at runtime

Many home types may manage the same component type only
with different instances

Component Homes are two kinds: Keyless and with primary key
Homes

Component Homes are not components⇒ non hierarchical
model

Components Models Aspect Oriented Programming Issues Perspectives

CCM: Components Configuration [OMG’04, Marvie’06]

A Component configuration is implemented using configuration
objects

A Component home has Factory operations for component
instances

Components Models Aspect Oriented Programming Issues Perspectives

CCM: Global Software Production Process [OMG’04, Marvie’06]

Components Models Aspect Oriented Programming Issues Perspectives

Kmelia and Fractal Component Models: A Comparison

Kmelia is Service Based Model 6= Fractal is a Component Based
Model

Kmelia follows monadic semantics 6= Fractal follows
demi-polyadic semantics

Three hierarchy levels are allowed in Kmelia 6= One hierarchy
level for Fractal

No sharing Components for Kmelia 6= Sharing Components is
allowed with Fractal

reconfiguration is limited in Kmelia 6= reconfiguration is more
developed in Fractal

Components Models Aspect Oriented Programming Issues Perspectives

Formal Semantics for Aspects

Components Models Aspect Oriented Programming Issues Perspectives

CASB: Semantic Elements

CASB introduces the concept of configurations (C , Σ)
A program C is of the form C ::= i : C | ε
Semantic is described in term of binary relation→b

A single reduction : (i : C,Σ)→b (C′,Σ′)
An aspect is a function
ψ : I → (Σ→ C)× {before, after, around}
A tagged instruction : i

A matching function: match : P × I → bool

A weaving relation: →

Components Models Aspect Oriented Programming Issues Perspectives

CASB: Weaving of a Single Aspect

Before aspect

ψ(i) = (φ, before)
(i : C,Σ)→ (test φ : i : C,Σ)

After aspect

ψ(i) = (φ, after)
(i : C,Σ)→ (i : test φ : C,Σ)

Around aspect

ψ(i) = (φ, around)
(i : C,Σ,P)→ (test φ : popp : C,Σ, i : P)

(popp : C,Σ, i : P)→ (C,Σ,P)

(proceed : C,Σ, i : P)→ (i : pushp i : C,Σ,P)

Components Models Aspect Oriented Programming Issues Perspectives

CASB: Weaving of Several Aspects

Aspects of the same Kind
Before aspects

ψ(i) = ((φ1...φn), before)
(i : C,Σ)→ (test φ1 : ... : test φn : i : C,Σ)

After aspects

ψ(i) = ((φ1...φn), after)
(i : C,Σ)→ (i : test φ1 : ... : test φn : C,Σ)

Around aspects

ψ(i) = ((φ1...φn), around)
(i : C,Σ,P)→ (test φ1 : popp n : C,Σ, test φ2 : ... : test φn : i : C,Σ)

(popp n : C,Σ, x1 : ... : xn : P)→ (C,Σ,P)

(proceed : C,Σ, x : P)→ (x : pushp x : C,Σ,P)

Aspects of Different Kinds
ψ(i)=((φ1,t1)...(φn,tn)) γ((φ1,t1)...(φn,tn))=((φ′

1,around)...(φ′
n,around))

(i:C,Σ,P)→(test φ′
1:popp n:C,Σ,test φ′

2:...:test φ′
n:i:P)

Components Models Aspect Oriented Programming Issues Perspectives

CASB: Pointcuts

P ::= Ti | P1 ∧ P2 | P1 ∨ P2 | ¬P

match(Ti, i) = true if ∃σ : σ(Ti) = i
= false otherwise

match(P1 ∧ P2, i) = match(P1, i) ∧ match(P2, i)
match(P1 ∨ P2, i) = match(P1, i) ∨ match(P2, i)
match(¬P, i) = ¬match(P, i)

Components Models Aspect Oriented Programming Issues Perspectives

CASB: Exception Handling

Exception Syntax :

S ::= try S1 catch ex S2 | throw ex | ...

Semantics :

(try S1 catch ex S2 : C,Σ,E)→b (S1 : pope : C,Σ, (ex, S2 : C) : E)

(throw ex : C,Σ, (ex0,C0) : ... : (exk,Ck) : (ex,C′) : E)→b (C′,Σ,E)

(pope : C,Σ,X : E)→b (C,Σ,E)

Components Models Aspect Oriented Programming Issues Perspectives

CASB: Advanced Aspect Features

Aspect Deployment

(deploy id S : C,Σ,Ψ)→ (S : popΨ : C,Σ, ψid : Ψ)

(popΨ : C,Σ, ψi : Ψ)→ (C,Σ,Ψ)

Aspect Instantiation

update(Ψ, i,Σ) = (Ψ′,Σ′) (◦Ψ′)(i) = (φ, before)
(i,C,Σ,Ψ)→ (test φ : i : C,Σ′,Ψ′)

Components Models Aspect Oriented Programming Issues Perspectives

Aspects Classification

Organize aspects into categories sharing some properties

−− > Specify the preserved properties by the aspects of each
category

−− > Optimization of the verification time

Components Models Aspect Oriented Programming Issues Perspectives

Observers Category

Definition :

∀(C,Σ).Σψ ∈ Aa ⇔ projb(α) = projb(α̃) ∧ preserveb(α̃)

Preserved Properties :
ϕo ::= sp | ¬sp | ϕo

1 ∧ ϕo
2 | ϕo

1 ∨ ϕo
2

| ϕo
1 ∪ ϕo

2 | ϕo
1Wϕo

2 | true ∪ ϕ′o
ϕ
′o ::= ep | ¬ep | sp | ¬sp | ϕ′o1 ∧ ϕ

′o
2 | ϕ

′o
1 ∨ ϕ

′o
2

| ϕ′o1 ∪ ϕ
′o
2 | ϕ

′o
1 Wϕ

′o
2 | true ∪ ϕ′o

Components Models Aspect Oriented Programming Issues Perspectives

Aborters Category

Definition : ∀(C,Σ).Σψ ∈ Ao ⇔ (projb(α) = projb(α̃) ∨ ∃(i ≥
0),∃(j ≥ i).projb(α→i) = projb(α̃→j)∧
∀(k > j).α̃k = (ε,)) ∧ preserveb(α̃)
Preserved Properties :
ϕa ::= sp | ¬sp | ϕa

1 ∧ ϕa
2 | ϕa

1 ∨ ϕa
2 | ϕa

1Wϕa
2 | true ∪ ϕ′a

ϕ
′a ::= ¬ep | ϕ′a1 ∧ ϕ

′a
2 | ϕ

′a
1 ∨ ϕ

′a
2 | true ∪ ϕ′o

Components Models Aspect Oriented Programming Issues Perspectives

Aspect Interactions: Detection and Resolution (EAOP)[Rémi’02]

An aspect in EAOP is :

A ::= µa.A
| C . I; A
| C . I; a
| A1 � A2

Crosscuts and Inserts :

C ::= T | C1 ∧ C2 | C1 ∨ C2 | ¬C

A term T is :
T ::= f T1 ... Tn | x

Aspect Composition :

(µa.C1 . I1; a) || (µa.C2 . I2; a)

Components Models Aspect Oriented Programming Issues Perspectives

Aspect Weaving (1)

sel j (µa.A) = sel j A
sel j (C . I; A) = φ if C j=fail

= {C. . I} otherwise
sel j (A1 � A2) = sel j A1 if sel j A1 6= φ

= sel j A2 otherwise

next j (µa.A) = next j A[µa.A/a]
next j (C . I; A) = C . I; A if C j=fail

= A otherwise
next j (A1 � A2) = next j A1 if sel j A1 6= φ

= next j A2 if sel j A2 6= φ
= (A1 � A2) otherwise

Components Models Aspect Oriented Programming Issues Perspectives

Aspect Weaving (2)

The Monitor:

[j, P, σ]φ 7→ σ[end]

S = {C . I} ∪ S ′ C j = ψ (↓, ψI, σ) ∗→ (↑, ψI, σ′)
[j, P, σ]S 7→ [j, P, σ′]S′

Woven Execution:

[j, P, σ]sel j A ∗7→ σa (j, P, σa)→ (j′, P, σ′)
(A, j, P, σ)⇒ (next j A, j′, P, σ′)

Components Models Aspect Oriented Programming Issues Perspectives

Aspect Strong Independence

Laws for Aspects :
[(un)fold] µa.A = A[µa.A/a]
[assoc] (A1�A2)�A3 = A1�(A2�A3)
[commut] (C1 . I1; A1)�(C2 . I2; A2) = (C2 . I2; A2)�(C1 . I1; A1) if C1 ∧ C2 = fail
[elim1] C . I = false . I if C = fail
[elim2] (false . I; A1)�A2 = A2
[elim3] false . I; C1 . I1; A = false . I; A
[priority] (C1 . I1; A1)�(C2 . I2; A2) = (C1 . I1; A1)�(C2 ∧ ¬C1 . I2; A2)
[propag] let A = (C1 . I1; A1)�....�(Cn . In; An)

and A′ = (C′
1 . I′1; A′

1)�....�(C′
m . I′m; A′

m)

then A ‖ A′ = �j=1..m
i=1..n Ci ∧ C′

j . (Ii ./ I′j); (Ai ‖ A′
j)

�i=1..nCi . Ii; (Ai ‖ A′)
�j=1..mC′

j . I′j ; (A ‖ A′
j)

Components Models Aspect Oriented Programming Issues Perspectives

Aspect Independence w.r.t a Program

Iw(A, j) = if sel j A = φ then �j′∈(stepp j)Iw(A, j′)
else if sel j A = {C . I} then C . I; �j′∈(stepp j)Iw(next j A, j′)
else if sel j A = {C . I, C′ . I′} then C ∧ C′ . (I ./ I′); �j′∈(stepp j)Iw(next j A, j′)

Components Models Aspect Oriented Programming Issues Perspectives

Conflict Resolution

Using parallel operators such us ‖seq and ‖fst

Defining scopes for Aspects: scope id Idset A

Components Models Aspect Oriented Programming Issues Perspectives

Extended version for the Framework [Rémi’04]

Inter-crosscut Variables :

C ::= v=̇T | C1 ∧ C2 | C1 ∨ C2 | ¬C

C = C[(• .= T/T̂)]

C = C[z/x̄] ∧ x .= z

next j (C . I; A) = C . I; A if C j=fail
= ψA otherwise

ψ(µa.A) = µa.ψA
ψ(C . I; A) = ψ′C . ψ′I; ψ′A
ψ(A1 � A2) = (ψA1 � ψA2)

Components Models Aspect Oriented Programming Issues Perspectives

Composition Operators

Sequential Composition Operator : A1 − C→ A2

Adaptors A1 ‖O A2:

O ::= µa.O
| C . F; O
| C . F; a
| O1 � O2

F ::= (U ⊕ B)
U ::= id | skip
B ::= ./ | seq | fst | snd | skip

Components Models Aspect Oriented Programming Issues Perspectives

Aspect Requirements

Requirements are aspects

CFA is expressed by:

J ::= f J1...Jn | ?
S ::= µs.S

| (J1 → S1)[]...[](Jn → Sn)
| s

Components Models Aspect Oriented Programming Issues Perspectives

Sequential EAOP [Rémi’06]

Aspects are translated from EAOP syntax to the FSP

Events are introduced to synchronize advices together or advices
with the base program

Weaving is modeled as parallel composition of the FSP
describing the base program and the Aspect.

Components Models Aspect Oriented Programming Issues Perspectives

Concurrent EAOP

Each program is viewed as a parallel composition of several
FSPs automatons describing its threads

Aspects are viewed as independent processes that run in parallel
and synchronized with the base program

A hiding operator is introduced to implement the concurrency.

Components Models Aspect Oriented Programming Issues Perspectives

Concurrent Aspect Composition in EAOP

Sequential Functional Composition: Fun(aspect1, aspect2)
Parallel Conjunctive Composition: : parAnd(aspect1, aspect2)

Components Models Aspect Oriented Programming Issues Perspectives

Perspectives

	Components Models
	Kmelia Component Model
	Fractal Component Model
	Components Models Comparison

	Aspect Oriented Programming Issues
	Formal Semantics
	Aspects Classification
	Conflict Resolution Techniques

	Perspectives

