An Overview of Aspect and Component Models:

Part 3

Hakim Hannousse

ECOLE DES MINES DE NANTES

DEPARTMENT OF COMPUTER SCIENCE

@ Component Models

e Kmelia Component Model [5 Papers]
e Fractal Component Model [1 Paper + 1 Technical Report]
e Kmelia and Fractal Models: Comparison

@ Aspect Oriented Programming Issues

e Formal Semantics for Aspects : CASB [1 Technical Report]
e Aspect Classification [1 paper]

e Aspect Interaction [2 paper]

e Formalizing Concurrent Aspects [1 paper]

@ Perspectives

Components Models
[Jelelele}

Kmelia is a Formal Component Model [Attiog06]

Component Y < W, Init, A, N', I, Dy, v, Cg >

° Wdéf<T, V,Vy, Inv >

d
oDséf<Is, By >
o, <o P 0V, S >

d .
o S Y < suby, caly, reqs, int; >

o B,Y <5 L, 6 b Sy Sp>
d
Assembly o < C, links, subs >
A component composition is defined as a well-formed assembly
which is encapsulated within a component.

Components Models
[¢] lele]e}

Kmelia is a Hierarchical Component Model [Pascal06]

@ Services in Kmelia are not simple operations

@ Kmelia introduces the concept of Assemblies
e Kmelia proposes three hierarchy levels :

e Links Hierarchy
e Services interfaces Hierarchy
e Component Composition is an encapsulation of an assembly

Components Models
[e]e] le]e}

Kmelia defines Components Protocols [Pascal07a]

@ A protocol is a pre-ordering of services calls that should be
respected during the system execution.

@ A protocol has a behavior
@ A protocol in Kmelia is a specific service defined using vertical
structuring operators
e Sate annotation << >>
e Transition annotation [[]]
@ Protocol inconsistency detection can be made using pre/post
conditions.

Components Models
[e]e]e] o}

Kmelia introduces HBIDL to describe components and services [Pascal07b]

e HBIDL extends IDL by the specification of the behavior of
services with their architectures
e HBIDL has many advantages:
e provides detailed documentations of complex interaction services
e supports compatibility levels
e serves as an intermediate between CBSE and SBSE
e HBIDL has some adaptation problems such as:

e Parameters vs Messages mismatch
e Hierarchichal mismatch

Components Models
[e]e]e]e] }

Kmelia has a Formal Anlyser Toolbox: COSTO [Pascal07c¢]

@ COSTO is a toolbox that supports the design and analysis of
Kmelia’s abstract component model

@ COSTO is an eclipse plugin
@ COSTO toolbox includes:

COSTO core module
Verification module
LOTOS Module
MEC Module
Export Module

@ COSTO takle state explosion problem

Components Models
000000000

Fractal Component Model (1) [Bruneton04, Bruneton06]

A Fractal Component is an entity that has two parts:
@ Membrane
o Content

Fractal Model supports three kind of Components:
@ Basic Components
@ Primitive Components
@ Composite Components

Fractal Supports two kinds of Components Binding:
@ Primitive binding

@ Composite Binding

Components Models
O@0000000

Fractal Component Model (2) [Bruneton04, Bruneton06]

Fractal Component Model has the following main features:
@ Fractal is a hierarchical model
@ Fractal supports sharing components
@ Fractal is a reflective model

@ Fractal has an implementation model named Julia

Components Models
[e]e] le]elele]e]e]

CORBA Component Model (CCM) [OMG’04, Marvie’06]

Tnterface du composant —— @

y D
Tacellss. prmlu -
0 ‘. m
= 2]
@ Composant e
I Meétier @
x5 | i
O Puits & ‘D ~Sources
événemenisg o . dvénement
\ y
NAtributs/

CCM =) Component Types + > Component Homes + >, Links
@ Component Type = Name + Attributes + [Ports]

e Attributes are used for configuration purpose
e Ports = Facets U Receptacles U Event Sources U Event Sinks
e An inheritance relationship is defined between component types

@ Component Types are two kinds : Basic and Extended

@ Component Home is a meta-type that manages component
instances

Components Models
[e]o]e] lelele]e]e]

CCM: Facets [OMG’04, Marvie’06]

A Facet defines a role that can be performed upon a component
Each Facet has its own reference
Several copies of a Facet reference may exist at a time.

Facets can be specified only in a static way

A client can navigate between Facets

Components Models
[e]o]ele] lele]e]e]

CCM: Receptacles [OMG’04, Marvie’06]

@ A receptacle allows a component type to accept a reference
@ A receptacles maybe simples or multiples

@ A cookie is created for each connection in the case of multiple
receptacles

@ Receptacles can be used for reconfiguration.

Components Models
00000000

CCM: Events [OMG’04, Marvie’06]

e Events are used for asynchronous communications
e Event sources are two kinds: Emitters and Publishers

@ An Event Sink may receive events from various sources at the
same time

Components Models
0O00000e00

CCM: Component Homme [OMG’04, Marvie’06]

@ A Component Home is a component manager that provides
instantiation of component types at runtime

@ Many home types may manage the same component type only
with different instances

@ Component Homes are two kinds: Keyless and with primary key
Homes

@ Component Homes are not components = non hierarchical
model

Components Models
000000080

CCM: Components Configuration [OMG’04, Marvie’06]

@ A Component configuration is implemented using configuration
objects

@ A Component home has Factory operations for component
instances

Components Models
0O0000000e

CCM: Global Software Production Process [OMG’04, Marvie’06]

Components Models
(]

Kmelia and Fractal Component Models: A Comparison

e Kmelia is Service Based Model # Fractal is a Component Based
Model

e Kmelia follows monadic semantics # Fractal follows
demi-polyadic semantics

@ Three hierarchy levels are allowed in Kmelia # One hierarchy
level for Fractal

@ No sharing Components for Kmelia # Sharing Components is
allowed with Fractal

@ reconfiguration is limited in Kmelia # reconfiguration is more
developed in Fractal

Aspect Oriented Programming Issues
®000000

Formal Semantics for Aspects

Aspect Oriented Programming Issues
0O@00000

CASB: Semantic Elements

CASB introduces the concept of configurations (C , X)
A program Cis of the form C == i : C|¢

Semantic is described in term of binary relation —

A single reduction : (i : C, %) — (C', %)

An aspect is a function

Y I — (X — C) x {before, after, around}

@ A tagged instruction : i

@ A matching function: match : P x I — bool

@ A weaving relation: —

Aspect Oriented Programming Issues
[e]e] le]elele)

CASB: Weaving of a Single Aspect

o Before aspect

P(i) = (¢, before)
(i:C,2)— (testp:i: C, %)

@ After aspect

¥(i) = (¢, after)
(i:C,%)— (i:testp: C, %)

@ Around aspect

Y(i) = (¢, around)
(i:C,%,P) — (test ¢ : pop, : C,%,i: P)

(popp : C,X,i: P) — (C,%,P)
(proceed : C,%,i: P) — (i : pushyi: C,%,P)

[e]e]e] lelele)

CASB: Weaving of Several Aspects

@ Aspects of the same Kind
o Before aspects

Y(i) = ((¢1...0n), before)
(i:C, %) — (test ¢y : ... :test ¢y 11 : C, %)

o After aspects

V(i) = ((¢1..-¢n), after)
(i:C, %) — (i:test ¢y : ... : test ¢, : C, %)

e Around aspects

Y(i) = ((¢1...0n), around)
(i:C,3,P) — (test ¢y : popyn: C, X, test ¢y = ... i test g, i i : C, %)

(poppn: C,3,x1 : ... :x,: P) — (C, %, P)
(proceed : C,¥,x : P) — (x: push, x : C, %, P)

@ Aspects of Different Kinds
Y(O)=(P111) (D tn)) V(D1,11).(Snstn))=(($},around)...(¢, .around))

CASB: Pointcuts

Aspect Oriented
[e]e]e]e] lele)

P =T |Pr ANPa|P1 VPP

match(T;, i)

match(Py A Py, i)
match(Py V Py, i)
match(—P, i)

true if 3o : o(T;) =i
false otherwise
match(Py,i) N match(P,, i)
match(P,i) V match(P, i)
—match(P, i)

Asy
0000080

CASB: Exception Handling

@ Exception Syntax :
S == try Sy catch ex Sy | throw ex | ...
@ Semantics :

(try Sy catchex S, : C, %, E) —yp, (S : pop, : C, %, (ex, S, : C) : E)

(throw ex : C, X, (exq, Co) : ... : (exx, Cy) : (ex,C") : E) —, (C', 2, E)

(pope : C,E,X : E) b (C727E)

Aspect Oriented Programming Issues
O00000e

CASB: Advanced Aspect Features

@ Aspect Deployment
(deployid S : C, %, V) — (S : popg : C, X, ¢iq : V)
(popy : C, 5,9 :) — (C, 5, 7)
@ Aspect Instantiation

update(V,i, %) = (V. %) (oW')(i) = (¢, before)
(i,C,2, W) — (test p: i : C, %/, V')

Aspect Oriented Programming Issues
00000000

Aspects Classification

@ Organize aspects into categories sharing some properties

@ —— > Specify the preserved properties by the aspects of each
category

@ —— > Optimization of the verification time

Observers Category

@ Definition :
V(C,%).2% € A, & proj,(a) = proj,(&) A preserve,(a)

@ Preserved Properties :

e u= sp’_'Sp’SO(f/\‘Pg"P[f\/(pg,
| o US| oIWe | true J o °
@? u= ep|-ep|splosplo’ Aoy oV ey

| P U@y | Wy | true U’

Aborters Category

e Definition : V(C,X).X¥ € A, & (proj,(a) = proj,(&) v 3(i >
0),3(> i).projp(a—i) = projp(G—;j)A
V(k > j).ax = (€,-)) A preservep(&)

@ Preserved Properties :
a

et u= sp | osp et AQS [of Vs | of W | true U @

0 u= —ep] <p/]" A go/z" | 4,0/1“ Vv go/z" | true U Q0

@ An aspect in EAOP is :

A = puaA
|C>1; A
|C>1; a
|A; OA;

@ Crosscuts and Inserts :
C = T|C1/\C2|C1\/C2|—|C

@ Aterm T is :
T :=fT..Ty|x

@ Aspect Composition :

(na.Cy>1Iy; a) || (pa.Cav> I a)

Aspect Weaving (1)

ente:
[e]e]e]e] lelele]

sel j (na.A) = seljA
selj (Co1; A) = ¢ if C j=fail
= {C.>l} otherwise
selj (A} O Ay) = seljA; ifseljA| # ¢
= seljA, otherwise
next j (pa.A) = next;jA[ua.A/a]
nextj (C>I; A) = Cvol; A if C j=fail
= A otherwise
nextj (Aj JA;) = mnextjA ifsel jA| # ¢
= mnextjA; ifsel j Ay # ¢
= (A1 0Ay) otherwise

ented Progr:
[e]e]e]e]e] lele]

Aspect Weaving (2)

@ The Monitor:

i, P, 0] — olend)

S={CoI}US Cj=1v (|,9I,0)5 (1,9I,0)
i, P, 0]® = [j, P, 0']%

@ Woven Execution:

j, P, U}sele = oa (j, P, 04) — (j/, P, U/)
(A, j, P, o) = (nextjA,j, P, o)

Aspect Oriented Pro; ming Issues
[e]e]e]e]e]

Aspect Strong Independence

@ Laws for Aspects :

[(un)fold)
lassoc]
[commut]
lelimy]
[elim;)
lelim3)
[priority)
[propag]

pa.A = Alpa.A/a)

(A104,)04; = A0(A,043)

(Cr > 113 ADDO(Cr > b Ay) = (G I A)(C > 15 Ay) if Cy A Cy = fail
Cr>1 = false> I if C = fail
(false > 1; Aj)0A;, = A,

false> I; Cy > 1I1; A = false>I; A

(Cr o113 APO(Cr > I Ay) = (Cy > 1y; AO(Cy A =Cy > D5 Ap)
lerd = (€, ‘311;/A1)/D~~D(Cu > In; An)
and A" = (Cp o I{; ADO....O(C, > 15 A)

j=1..
thenA || A" = T2 "G A G o (1)5 (A7 | AD)

Oi1..aCi > Ii; (4]| A)
Oj=1.mC) > 15 (A]l A])

Aspect Oriented Prog
0000000e

Aspect Independence w.r.t a Program

Iv(A,j) = ifseljA=¢ then Dj’e(stepp Hhw(AJ")
elseif seljA={Cv>I} thenCr 1, Dj/e(stepp jw(nextjA,j")
else if seljA={Cr1, C'>1'} then CAC'> (100 1'); Dyestep, jylv(nextjA,)

Aspect Oriented Programming Issues
®000000

Conflict Resolution

e Using parallel operators such us ||sq and ||z

@ Defining scopes for Aspects: scope id Idset A

Aspect Oriented Programming Issues
0O@00000

Extended version for the Framework [Rémi’04]

@ Inter-crosscut Variables :
C = v=T|CiNC|CV(C|C

C = Cl(» = T/T)]
C = Clz/3x]Ax = 2

nextj (C>1; A) = CvolI; A ifCj=fail
= YA otherwise

Y(pa.A) = pa.pA

Y(Col A) = Y'Codl; YA

YA OAy) = (YA OYA,)

Composition Operators

@ Sequential Composition Operator : A} — C — Aj
e Adaptors A; ||o Az:

0O = pa0

|C>F; O

|C>F; a

10,00,

(U®B)

id | skip

< | seq | fst | snd | skip

o™
1l

Aspect Requirements

@ Requirements are aspects

o CFA is expressed by:

J u= fhodn|?
S o= usS
| (J1 = SD[]---[[(Jn = Sn)

| s

Aspect Oriented Programming Issues
[e]e]ele] Jele)

Sequential EAOP [Rémi’06]

@ Aspects are translated from EAOP syntax to the FSP

o Events are introduced to synchronize advices together or advices
with the base program

@ Weaving is modeled as parallel composition of the FSP
describing the base program and the Aspect.

Aspect Oriented Programming Issues
0000080

Concurrent EAOP

@ Each program is viewed as a parallel composition of several
FSPs automatons describing its threads

@ Aspects are viewed as independent processes that run in parallel
and synchronized with the base program

@ A hiding operator is introduced to implement the concurrency.

Aspect Oriented Programming Issues
000000

Concurrent Aspect Composition in EAOP

@ Sequential Functional Composition: Fun(aspect, aspect,)

@ Parallel Conjunctive Composition: : parAnd(aspect;, aspect,)

Perspectives

	Components Models
	Kmelia Component Model
	Fractal Component Model
	Components Models Comparison

	Aspect Oriented Programming Issues
	Formal Semantics
	Aspects Classification
	Conflict Resolution Techniques

	Perspectives

