An Overview of Aspectualized Component Models

Hakim Hannousse

イロト イ部 トイをトイをトー

目

 OQ

K ロ > K @ > K ミ > K ミ > ニ ミー の Q Q <

Outline

Aspectualized Component Models

- FuseJ Component Model [2 Papers]
- CaeserJ [2 Paper]

FuseJ Component Model : Concepts & Features

- Aspects are ordinary Components
- FuseJ introduces the concept of Service specification
	- provided services
	- expected services
- Gates are used to access to component services : Incoming gates, Outgoing gates, ordinary gates
- • The interaction between gates is made using connectors : regular and aspect-oriented interactions

FuseJ Component Model : Language - Gates (1)

```
interface BookingService for BookingServiceComponent {
\mathbf{1}\overline{2}3
      gate BookHotel {
\overline{4}binds:
5
           Float bookHotel(String hotelname);
6
        exposes:
\overline{7}String inputHotelName = hotelname;
8
           Float outputPrice = returnvalue;
9
      \mathcal{F}10
11
      outputgate ChargeForHotel {
12
        binds:
13
           void fireChargeRequest(ChargeEvent event);
14
        exposes:
15
           ChargeEvent chargeEvent = event;
      \mathbf{r}16
17
18 \}
```
FuseJ Component Model : Language - Gates (2)

```
interface PaymentService for PaymentServiceComponent {
1
\overline{2}3
     gate ChargeAmount {
\overline{4}binds:
5
          void chargeAmount(String conumber, Float amount);
6
        exposes:
\overline{7}String inputCCNumber = ccnumber;
8
          Float inputAmount = amount;\overline{9}\mathcal{F}1011gate ReserveAmount {
12
        binds:
13
          void reserveAmount(String conumber, Float amount);
14
        exposes:
15
          String inputCCNumber = ccnumber:
          Float inputAmount = amount;
16
     \mathbf{r}17
18
19
     outputgate BillingActions {
20
        binds:
21
          void *Amount(String conumber, Float amount);
22
        exposes:
23
          String inputCCNumber = ccnumber;
24
          Float inputAmount = amount;25
     \mathcal{F}26
27 }
```
KEIN (FINKEIN EI KORO)

KEIN (FINKEIN EI KORO)

FuseJ Component Model : Language - Gates (3)

```
\mathbf{1}interface DiscountService for DiscountServiceComponent {
\overline{2}3
      inputgate Discount {
\overline{4}binds:
5
          Float getDiscountPrice(Float price, Float percent);
6
        exposes:
\overline{7}Float inputPrice = price;
9
          Float discountPercentage = percent;
10Float outputPrice = returnvalue;
11\mathcal{F}12
13}
```
KEIN (FINKEIN EI KORO)

FuseJ Component Model : Language - Regular Interaction Connectors

```
connector BookingPayment {
1
\overline{c}3
     execute:
\overline{4}PaymentService.ChargeAmount;
5
     for:
6
       BookingService.ChargeForHotel;
\overline{7}where:
8
        PaymentService.ChargeAmount.inputCCNumber =
9
          BookingService.ChargeForHotel.chargeEvent.visaNumber;
       PaymentService.ChargeAmount.inputAmount =
10
          BookingService.ChargeForHotel.chargeEvent.amount;
11
12
13}
```
KEIN (FINKEIN EI KORO)

FuseJ Component Model : Language - Aspect-Oriented Interaction Connectors

```
connector BookingDiscount {
\mathbf{1}\overline{2}3
     execute:
4
        DiscountService.Discount;
5
     around:
6
        BookingService.BookHotel;
\overline{7}where:
8
        DiscountService.Discount.inputPrice =
\overline{9}BookingService.BookHotel.outputPrice;
10
        DiscountService.Discount.discountPercentage = 15;
11when:
12
        DateService.ChristmasHolidayDate.outputValue;
13
14 }
```
FuseJ Component Model : Implementation Model

FuseJ introduces two implementation mechanisms :

- ¹ Gate Interface Preprocessor : Translate each gate to a Java 1.5 annotations and bind these annotations to the corresponding components at compile time
- ² Execution Environment : Generates for each component a container based on the Java annotations and generate a JavaBean for each connector, which is the responsible to manage the interaction between the involved gates.

FuseJ Component Model : Evaluation

- **Comprehensibility : Aspects and Components are both from the** same dimension
- ² Evolvability: Connectors can be attached and detached at run-tim, aspects and components can be evolved independently.
- **3** Semantic interaction: No semantic interaction between components are supported by FuseJ
- **4** Predictability

CaesarJ Component Model: Features

- ¹ Supports a large-sclae units of modularity by introducing the concept of a class family
- ² Supports virtual classes
- **3** introduces Family polymorphism
- ⁴ Provides a hierarchical composition mechanism : Mixin Composition
- ⁵ Supports abstract classes and collaboration interfaces
- ⁶ Supports binding (i.e. Wraper) : A class family which implements a facet by adapting external classes
- ⁷ Aspects are components inheriting their pointcuts and advices from its component binding.
- ⁸ Aspects can be statically or dynamically deployed, it can be also Remotely deployed using Caesar RMI API extension to Java

(ロ) (@) (경) (경) (경) 경 (9) (0)

CaesarJ Component Model: Syntax

CaesarJ Component Model: Definitions

Metavariable static paths $p ::= \overline{C}$ **Class table** $CT(p) = CT2(p, \overline{CL}_{root})$ $CL_i = class C extends \overline{C} \{ ... \}$
 $CT2 (C, \overline{CL}) = CL_i$ CL_i = class C extends $\overline{C} \{ K \overline{CL}'; ... \}$
 $CT2 (C.p, \overline{CL}) = CT(p, \overline{CL}')$

All members

 M embers(nil_p) = nil_{Tf}, nil_{Tv}

$$
\mathcal{M} \textit{c}(\overline{p}) = \overline{T} \, \overline{f}, \overline{T}' \, \overline{v}
$$
\n
$$
\mathcal{CT}(p) = \text{class } C \text{ extends } \overline{C} \, \{ \, K \, \overline{C} \, \{ ; \, \overline{T}'' \, \overline{f}'; \overline{T}''' \, \overline{v}' \} \}
$$
\n
$$
\mathcal{M} \textit{embers}(p \, \overline{p}) = \overline{T}'' \, \overline{f}' \, \overline{T} \, \overline{f}, \overline{T}''' \, \overline{v}' \, \overline{T}' \, \overline{v}
$$

Constructor

$$
\underbrace{CT(p) = \text{class C extends C} \{ K \overline{CL}; \overline{T}'' \overline{f}; \overline{T}''' \overline{v'} \}}_{\text{Constr}(p) = K}
$$

CaesarJ Component Model: Semantics (1)

Objects and the Heap:

Evaluation rules:

 \sim : e \times Heap \times Address \rightarrow Value \cup {TypeErr, NullErr} \times Heap

$$
\begin{array}{llll}\text{null, H, } & \text{null, H} & (\text{R1}) & \frac{\mathcal{N} \text{d} \mathcal{R} (H, \epsilon, \text{path}) = \text{val}}{\text{path, H, } \epsilon \sim \text{val, H}} & (\text{R3}) \\ & & \text{e, H, } \epsilon \sim \text{val, H'} & & \text{path, H, } \epsilon \sim \text{val, H} \\ & & & \text{e', H', } \epsilon \sim \text{val', H''} & & \text{path, H, } \epsilon \sim \text{u', H} \\ & & & \text{e', e', H, } \epsilon \sim \text{val', H''} & & \text{R2}) & & \text{path, V, H, } \epsilon \sim \text{val, H} \end{array} \quad \begin{array}{ll} \text{(R3)} \\ \text{(R4)} \end{array}
$$

path, H,
$$
\iota \leadsto \iota', H
$$
 e, H, $\iota \leadsto \nu$ al, H'
\n
$$
\frac{H'(\iota')(v) \neq \bot \qquad H'' = H'[\iota' \mapsto H'(\iota')[v \mapsto \nu a]]}{path.v = e, H, \iota \leadsto \nu aI, H''}
$$
\n(R5)

Enclosing object:

 $\mathcal{E}nci(\llbracket t \rrbracket = \llbracket ... \rrbracket) = i$

Evaluation functions:

 $Walk(H, \iota, \text{this}) = \iota$ $Walk(H, \iota, \text{spine.out}) = \mathcal{E}ncl(H(\iota'))$ if $Walk(H, \iota, \text{spine}) = \iota' \neq \iota_{\text{max}}$ $Walk(H, \iota, path.f) = val$ if $H(Walk(H, \iota, path))(f) = val$ $Walk(H, \iota, path.f) = NullErr$ if $Walk(H, \iota, path) = null$ $Walk(H, \iota, \text{path.f}) = \text{TypeErr}$ if $H(Walk(H, \iota, \text{path}))(f) = \bot$ $Walk(H, \iota, \text{spine.out}) = \text{TypeErr}$ if $Walk(H, \iota, \text{spine}) = \iota_{\text{root}}$

Error handling:

Mixin Computation

 $Mix(H, \iota_{\text{max}}) = [nil_{c}]$ $Mix(H, \iota) = Assemble(\mathcal{M}ix(H, \iota'), C)$ where $H(\iota) = \llbracket \iota' \rrbracket \subset \llbracket \ldots \rrbracket$

 \mathcal{A} ssemble(\bar{p} , C) = *Linearize*[*Expand*(\bar{p} , p) | $p \leftarrow$ *Defs*(\bar{p} , C)]

 $\begin{array}{l} \mathcal{D} e f \mathfrak{s}(\overline{p},C) = \mathit{check}[\,p.C \mid p \leftarrow \overline{p},\mathit{CT}(p.C) \neq \bot\,] \\ \text{where } \mathit{check}(\overline{p}) = \left\{ \begin{array}{cl} \bot & |\overline{p}| = 0 \\ \overline{p} & \mathit{otherwise} \end{array} \right. \end{array}$

 $Expand(\overline{p}, p) = Linearize(\lbrace Asemble(\overline{p}, C) | C \leftarrow \overline{C} \rbrace p)$ where $CT(p)$ = class C' extends $\overline{C} \ \{\dots\}$

 $Cinearize(nih_B) = nil_D$ $Cinearize(\overline{p}\overline{p}) = Can2(Cinearize(\overline{p}), \overline{p})$ $\mathcal{L}in2(nil_{p},nil_{p})$ $=$ nil_{p} $Cin2(\overline{p} p, \overline{p}' p)$ $= \text{Cin2}(\overline{p}, \overline{p}') p$ $=$ $\text{Lin2}(\overline{p}, \overline{p}') p'$, if $p' \notin \overline{p}$ $Cin2(\overline{p}, \overline{p}', p')$ $Cin2(\overline{p}, \overline{p}^{\prime})$ $=$ $Cin2(\overline{p}, \overline{p}') p$, if $p \notin \overline{p}'$ \angle in2(pp'p'p, p'p') = \angle in2(pp''p, p') p'

HERRICH STRAIN STRAIN

CaesarJ Component Model: Semantics (2)

$$
\frac{V_P \cup E\{p\} = \text{class of } \{1, \ldots p \} \text{ where } V_P \text{ is } \text{cusp} \text{ is } \text{
$$

$$
\forall p \neq p': \in \mathcal{F}(N) \cup \mathcal{N}(N) \cup
$$

$$
s <: s \qquad \text{(S-REFL)} \qquad \qquad \frac{s <: s' \quad s' <: s''}{s <: s''} \qquad \text{(S-Trans)}
$$

$$
\mathcal{M}(u) = \overline{p} \qquad CT(p_j.C) = \text{class } C \text{ extends } ...C'...
$$

u.C < u.C'

K ロ > K 個 > K 星 > K 星 > 三星 → の Q Q <

e of member:

 $\begin{array}{lll} \mathsf{m})&=&\mathsf{T}&\text{where $\mathsf{T}\;\mathsf{m}\in\mathcal{M}\text{embers}(\mathcal{M}(\mathsf{t}))$}\\ &=&\mathcal{(DerType(\mathsf{t},\mathsf{m})\neq\bot)}\\ &=&(\mathcal{M}(\mathsf{u}.\mathsf{C})\neq\bot) \end{array}$

(ロ) (@) (경) (경) (경) 경 (9) (0)

CaesarJ Component Model: Semantics (3)

Well-formedness:

$$
\mathcal{D}epth(\mathsf{H},\iota) = \left\{ \begin{array}{l} 0, & \text{if } \iota = \iota_{\text{root}} \\ 1 + \mathcal{D}epth(\mathsf{H}, \mathcal{E}ncl(\mathsf{H}(\iota))) \end{array} \right.
$$

CaesarJ Component Model: Semantics (4)

THEOREM 1 (Preservation).

CT OK	
HOK	$p \vdash e : t$
$H, \iota \vdash \iota \triangleright \langle p \rangle$	
$\vdash, \iota \vdash \iota \triangleright \langle p \rangle$	
$\vdash, \iota \vdash \iota \triangleright \langle p \rangle$	
$\vdash, \iota \vdash \iota \triangleright \langle p \rangle$	

\n \downarrow \vdash \vdash

DEFINITION 1 (Finite Evaluation). Define an evaluation relation \rightsquigarrow_k as a copy of the rules for \rightsquigarrow . Replace each occurrence of \rightsquigarrow in a premise by \rightsquigarrow_{k-1} . Replace \rightsquigarrow in the conclusion of each rule and axiom with \rightsquigarrow_k . Note that the copied axioms are defined for all k. Add the following axiom:

$$
e, H, \iota \leadsto_0 KillErr, H \tag{KILL}
$$

LEMMA 1 (Coverage). For all natural numbers n and e , H , ι , there exists r, H' such that

e, H, $\iota \rightsquigarrow_n$ r, H'

KOD KAD KED KED E VAN