An Overview of Aspectualized Component Models

Hakim Hannousse

<ロト <部ト < Eト < Eト - E

900

Outline

- Aspectualized Component Models
 - FuseJ Component Model [2 Papers]
 - CaeserJ [2 Paper]

FuseJ Component Model : Concepts & Features

- Aspects are ordinary Components
- FuseJ introduces the concept of Service specification
 - provided services
 - expected services
- Gates are used to access to component services : Incoming gates, Outgoing gates, ordinary gates
- The interaction between gates is made using connectors : regular and aspect-oriented interactions

FuseJ Component Model : Language - Gates (1)

```
1
   interface BookingService for BookingServiceComponent {
2
3
     gate BookHotel {
       binds:
4
5
         Float bookHotel(String hotelname);
6
       exposes:
7
         String inputHotelName = hotelname;
8
         Float outputPrice = returnvalue;
9
     }
10
11
     outputgate ChargeForHotel {
12
       binds:
13
         void fireChargeRequest(ChargeEvent event);
14
       exposes:
15
         ChargeEvent chargeEvent = event;
     7
16
17
18 }
```

CaesarJ Component Model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FuseJ Component Model : Language - Gates (2)

```
1
   interface PaymentService for PaymentServiceComponent {
2
3
     gate ChargeAmount {
4
       binds:
5
         void chargeAmount(String ccnumber, Float amount);
6
       exposes:
7
         String inputCCNumber = ccnumber;
8
         Float inputAmount = amount;
9
     }
10
11
     gate ReserveAmount {
12
       binds:
13
         void reserveAmount(String ccnumber, Float amount);
14
       exposes:
15
         String inputCCNumber = ccnumber:
         Float inputAmount = amount;
16
     }
17
18
19
     outputgate BillingActions {
20
       binds:
21
         void *Amount(String ccnumber, Float amount);
22
       exposes:
23
         String inputCCNumber = ccnumber;
24
         Float inputAmount = amount;
25
     }
26
27 }
```

FuseJ Component Model : Language - Gates (3)

```
interface DiscountService for DiscountServiceComponent {
1
2
3
     inputgate Discount {
4
       binds:
5
         Float getDiscountPrice(Float price, Float percent);
6
       exposes:
7
         Float inputPrice = price;
9
         Float discountPercentage = percent;
10
         Float outputPrice = returnvalue;
11
     }
12
13 }
```

FuseJ Component Model : Language - Regular Interaction Connectors

```
connector BookingPayment {
1
2
3
     execute:
4
       PaymentService.ChargeAmount;
5
     for:
6
       BookingService.ChargeForHotel;
7
     where:
8
       PaymentService.ChargeAmount.inputCCNumber =
9
         BookingService.ChargeForHotel.chargeEvent.visaNumber;
10
       PaymentService.ChargeAmount.inputAmount =
11
         BookingService.ChargeForHotel.chargeEvent.amount;
12
13 }
```

FuseJ Component Model : Language - Aspect-Oriented Interaction Connectors

```
connector BookingDiscount {
1
2
3
     execute:
4
       DiscountService.Discount;
5
     around:
6
       BookingService.BookHotel;
7
     where:
8
       DiscountService.Discount.inputPrice =
9
         BookingService.BookHotel.outputPrice;
10
       DiscountService.Discount.discountPercentage = 15;
11
     when:
12
       DateService.ChristmasHolidayDate.outputValue;
13
14 }
```

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

FuseJ Component Model : Implementation Model

FuseJ introduces two implementation mechanisms :

- Gate Interface Preprocessor : Translate each gate to a Java 1.5 annotations and bind these annotations to the corresponding components at compile time
- Execution Environment : Generates for each component a container based on the Java annotations and generate a JavaBean for each connector, which is the responsible to manage the interaction between the involved gates.

FuseJ Component Model : Evaluation

- Comprehensibility : Aspects and Components are both from the same dimension
- Evolvability: Connectors can be attached and detached at run-tim, aspects and components can be evolved independently.
- Semantic interaction: No semantic interaction between components are supported by FuseJ
- Predictability

CaesarJ Component Model: Features

- Supports a large-sclae units of modularity by introducing the concept of a class family
- Supports virtual classes
- introduces Family polymorphism
- Provides a hierarchical composition mechanism : Mixin Composition
- Supports abstract classes and collaboration interfaces
- Supports binding (i.e. Wraper) : A class family which implements a facet by adapting external classes
- Aspects are components inheriting their pointcuts and advices from its component binding.
- Aspects can be statically or dynamically deployed, it can be also Remotely deployed using Caesar RMI API extension to Java

CaesarJ Component Model: Syntax

Gramma	r of vc			
CL	::=	class C extends $\overline{C} \{ K \overline{CL}; \overline{T} \overline{f}; \overline{T} \overline{\nabla} \}$		
K	::=	$T C(\overline{T} \overline{f}) \{ e; \}$		
Т	::=	path.C		
path	::=	spine.f		
spine	::=	this.out		
е	::=	null e;e path path.v		
		path.v=e new path.C(ē)		
Identifier	S			
class na	mes	C		
field na	field names f			
variable	e names	V		
members		$m = f \cup v$		
(C, f, and v are pairwise disjoint)				

CaesarJ Component Model: Definitions

Metavariable	90—10
	static paths $p ::= \overline{C}$
Class table	
	$CT(p) = CT2(p, \overline{CL}_{root})$
	$CL_i = \mathbf{class} \ C \ \mathbf{extends} \ \overline{C} \ \{ \ \dots \ \}$
	$CT2(C, \overline{CL}) = CL_i$
CI	$L_i = $ class C extends $\overline{C} \{ K \overline{CL}'; \}$
	$CT2(C.p,\overline{CL}) = CT(p,\overline{CL}')$

All members

 $Members(nil_p) = nil_{Tf}, nil_{Tv}$

$$\begin{array}{c} \mathcal{M}embers(\overline{p}) = \overline{T} \ \overline{f}, \overline{T}' \ \overline{\nabla} \\ \underline{CT(p) = class} \ C \ extends \ \overline{C} \ \overline{\xi} \ K \ \overline{CL}; \ \overline{T}'' \ \overline{f}'; \overline{T}''' \ \overline{\nabla}' \\ \mathcal{M}embers(p \ \overline{p}) = \overline{T}'' \ \overline{f}' \ \overline{T} \ \overline{f}, \overline{T}''' \ \overline{\nabla}' \ \overline{T}' \end{array}$$

Constructor

$$\frac{CT(p) = \text{class } C \text{ extends } \overline{C} \{ \text{ K } \overline{CL}; \overline{T}'' \overline{f}'; \overline{T}''' \overline{\nabla}' \}}{Constr(p) = K}$$

CaesarJ Component Model: Semantics (1)

Objects and the Heap:

Address = natural numbers	L
Object = { $\llbracket \iota \parallel C \parallel \overline{f} : \overline{val} \nabla : \overline{val}' \rrbracket$ }	E 1
Heap = Address Diject	н
Value = Address \cup {null}	val

Evaluation rules:

 \sim : e × Heap × Address → Value \cup {TypeErr, NullErr} × Heap

$$\begin{array}{ll} \textbf{null}, \textbf{H}, \iota \sim \textbf{null}, \textbf{H} & (\textbf{R}1) \\ & e, \textbf{H}, \iota \sim \textbf{val}, \textbf{H}' \\ e', \textbf{H}', \iota \sim \textbf{val}, \textbf{H}' \\ e; e', \textbf{H}, \iota \sim \textbf{val}', \textbf{H}'' \\ e; e', \textbf{H}, \iota \sim \textbf{val}', \textbf{H}'' \end{array} (R2) \\ \begin{array}{l} \frac{\partial a lk(\textbf{H}, \iota, path) = \textbf{val}}{path, \textbf{H}, \iota \sim \textbf{val}, \textbf{H}} & (\textbf{R}3) \\ & path, \textbf{H}, \iota \sim \textbf{val}, \textbf{H}' \\ & \frac{h(\iota')(v) = \textbf{val}}{path, \textbf{H}, \iota \sim \textbf{val}, \textbf{H}} & (\textbf{R}4) \end{array}$$

$$\begin{array}{l} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{path}, \displaystyle H_{i} \leftarrow s', \displaystyle H \quad e, \displaystyle H_{i} \leftarrow sval, \displaystyle H' \\ \displaystyle \displaystyle H'(s')(v) \neq \bot \quad H'' = \displaystyle H'[s' \mapsto H'(s')[v \mapsto val]] \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{path}, \displaystyle u \in e, \displaystyle H_{i} \leftarrow val, \displaystyle H'' \\ \\ \displaystyle \displaystyle \begin{array}{l} \displaystyle \operatorname{path}, \displaystyle H_{i} \leftarrow v', \displaystyle H = \displaystyle H_{1} \\ \displaystyle e_{i}, \displaystyle H_{i}, \displaystyle s \sim v', \displaystyle H \quad H = \displaystyle H_{1} \\ \displaystyle \begin{array}{l} \displaystyle e_{i}, \displaystyle H_{i}, \displaystyle s \sim v', \displaystyle H \quad H = \displaystyle H_{1} \\ \\ \displaystyle \begin{array}{l} \displaystyle e_{i}, \displaystyle H_{i}, \displaystyle \sigma \sim val, \displaystyle H'' \\ \displaystyle \end{array} \\ \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) = \mathsf{T} \left(\begin{array}{l} \displaystyle \operatorname{T} \left(s \right) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \\ \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) = \mathsf{T} \left(\begin{array}{l} \displaystyle \operatorname{T} \left(s \right) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) = \mathsf{T} \left(\begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array}$$
 \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \right) \\ \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \end{array} \right) \\ \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \bigg) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \bigg) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \bigg) \\ \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \bigg) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \end{array} \bigg) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \\ \displaystyle \end{array} \right) \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \\ \displaystyle \end{array} \bigg) \\ \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \\ \displaystyle \end{array} \right) \\ \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \\ \displaystyle \end{array} \right) \\ \\ \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \end{array} \right) \\ \\ \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \right) \\ \\ \\ \displaystyle \begin{array} \\ \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \\ \displaystyle \end{array} \right) \\ \\ \\ \displaystyle \begin{array} \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Member}(s) \\ \displaystyle \\ \\ \displaystyle \end{array} \right) \\ \\ \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \right) \\ \\ \displaystyle \begin{array} \\ \displaystyle \operatorname{Member}(s) \\ \\ \\ \displaystyle \end{array} \right) \\ \\ \\ \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \right) \\ \\ \\ \\ \displaystyle \end{array} \right) \\ \\ \\ \\ \\ \\ \ \ \\ \\ \\ \\ \\ \\ \\ \\

Enclosing object:

 $\mathcal{E}ncl(\mathbb{I} \ \iota \parallel _ \parallel ... \mathbb{I}) = \iota$

Evaluation functions:

$$\begin{split} & \operatorname{Val}(H, \iota, \operatorname{this}) = \iota \\ & \operatorname{Val}(H, \iota, \operatorname{this}) = \iota \\ & \operatorname{Val}(H, \iota, \operatorname{spine} \operatorname{out}) = \mathcal{Encl}(H(\iota')) \quad \text{if } \operatorname{Val}(H, \iota, \operatorname{spine}) = \iota' \neq \iota_{\operatorname{out}} \\ & \operatorname{Val}(H, \iota, \operatorname{path}, f) = \operatorname{Val}(H, \iota, \operatorname{path}))(f) = \operatorname{Val}(H, \iota, \operatorname{path}) = \operatorname{Ull}(H, \iota, \operatorname{path}, f) = \operatorname{Ull}(H, \iota, f) =$$

Error handling:

path, H, ι → null , H	(To 1)	
$\label{eq:path.v} \begin{array}{c} \text{path.v}, \text{H}, \iota \rightsquigarrow \text{NullErr}, \text{H} \\ \text{path.v} = \text{e}, \text{H}, \iota \rightsquigarrow \text{NullErr}, \text{H} \\ \text{new path.C}(\overline{\mathfrak{e}}), \text{H}, \iota \rightsquigarrow \text{NullErr}, \text{H} \\ \end{array}$	(ERI)	
$\begin{array}{l} \text{path}, H, \iota \rightsquigarrow \iota', H & H(\iota')(v) = \bot \\ \\ \text{path}, v, H, \iota \rightsquigarrow TypeErr, H \\ \\ \text{path}, v = e, H, \iota \rightsquigarrow TypeErr, H \end{array}$	(ER2)	
$\begin{array}{l} \text{path}, \text{H}, \iota \rightsquigarrow \iota', \text{H}\\ \mathcal{A} ssemble(\mathcal{M} ix(\text{H}, \iota'), \text{C}) = \bot\\ \hline \textbf{new} \text{ path}. \text{C}(\overline{e}), \text{H}, \iota \rightsquigarrow \text{TypeErr}, \text{H} \end{array}$	(ER3)	
path, H, $\iota \rightsquigarrow \iota'$, H Assemble($Mix(H, \iota'), C) = \overline{p}$ $Members(\overline{p}) = \overline{Tf}, \overline{e} \neq \overline{f} $ new path, $C(\overline{e}), H, \iota \rightsquigarrow TypeErr, H$	(ER4)	

Mixin Computation:

 $\begin{array}{l} \mathcal{M}ix(H, \iota_{vost}) = [nil_{c}] \\ \mathcal{M}ix(H, \iota) = \mathcal{A}ssemble(\mathcal{M}ix(H, \iota'), C) \\ \text{ where } H(\iota) = \mathbf{I} \ \iota' \parallel C \parallel ... \mathbf{I} \end{array}$

 $Assemble(\overline{p}, C) = Linearize[Expand(\overline{p}, p) | p \leftarrow Defs(\overline{p}, C)]$

 $\begin{array}{l} \mathcal{D}efs(\overline{p}, \mathbb{C}) = check[\, p.\mathbb{C} \mid p \leftarrow \overline{p}, CT(p,\mathbb{C}) \neq \bot \,] \\ \text{where } check(\overline{p}) = \left\{ \begin{array}{l} \bot \quad |\overline{p}| = 0 \\ \overline{p} \quad otherwise \end{array} \right. \end{array}$

 $\mathcal{Expand}(\overline{p}, p) = \mathcal{Linearize}([\mathcal{Assemble}(\overline{p}, C) | C \leftarrow \overline{C}]p)$ where $CT(p) = class C' extends \overline{C} \{ ... \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CaesarJ Component Model: Semantics (2)

Typing domain	15:				Prop
u ::= (p)	.Γ c		this out f		
s ::= (p)	.f.C (2 ::=	$\overline{q} \mid \overline{q}.C$		
t ::= u	s				
Expression Typ	ping:				
$\mathcal{M}(t) \neq \bot$	(71)	$\mathcal{W}(($	p, path) = u	(T3)	
p⊢null:t	(11)	Р	⊢path:u	(13)	
p⊢e:t		Win D	⊢ path : u		
p⊢e':t p⊢e:e':t	7 (T2)	p (0, 2)	- path.v : s	(T4)	
n ⊢ path	VIS D	He:t	C(t) <: 5		
<u>r - r</u>	p⊢ path	v = e :	t	(T5)	
p⊢ path	$: u p' \in J$	M(u.C)	p⊢च:ī		
Constr(p	$') = T_0 C($	T f)	T = t		
$s_i = \begin{cases} W(u, t) \\ W(u, t) \end{cases}$	his.Q) if	i = this	s.out.Q		
for i = 0	(IIIS.Q) II	i = tins	$\mathbf{u}_j, \mathbf{Q} \land \mathbf{u}_j = \mathbf{u}_j$		
101 1 = 0 C	(t _i) <: s _i f	or $i = 1$			
	p⊢ new pa	th.C(ē)	S0	- (T6)	
Conversion to	class types:				
C ::	$t \to s$				
$\mathcal{C}((\mathbf{p},\mathbf{C})) =$	(p).C	177	611		
$\mathcal{C}(\mathbf{u},\mathbf{f}) = \mathcal{C}(\mathbf{s}) =$	s s	izype(u,	(1))		
Mixins:					
M =	$t \rightarrow \overline{p}$				
$\mathcal{M}(\langle \rangle) =$	[nilc]	1141	0		
M(u,C) = M(u)	Assemble	(M(u),	0		Sub
Fuelosing obie	st trne:				
E ::t →	- U				
$\mathcal{E}(u, C) = u$					
$\mathcal{E}(\mathbf{u}) = \mathcal{E}(\mathcal{C})$	(u))				
Static lookup:	00000000		_		
W	:: u × (path ∪ 1	$() \rightarrow t$		Deci
W(u, this)	= U	u estere	1		Dec
W(u, spine.or	$ut) = \mathcal{E}(\mathcal{W})$	u, spine	Se Saint ONIA		De
W(u, path.f)	$= \mathcal{W}(\mathbf{u}, \mathbf{u})$	path) C	if Exists (W(0, p	ath) ()	Exi

gram Typing: $\mathcal{W}(\langle p \rangle, T) \neq \bot$ $\mathcal{M}(\langle p \rangle, \mathbb{C}) \neq \bot$ (WF2) (WF1) p ⊢ T OK p ⊢ C OK $C = C' \Rightarrow T = T', Tf = T'f'$ (WF3) T C(T f) {e; } overrides T' C' (T' f') {e'; } OK $K = T C(\overline{T}''\overline{f}) \{e;\}$ $\mathcal{M}(\langle p \rangle, C) = \overline{p}$ $\begin{array}{c} \mathcal{M}\textit{embers}(\overline{p}) = T^*\overline{f}, -\\ p \vdash \overline{C} \text{ OK } p.C \vdash \overline{T} \text{ OK } p.C \vdash T \text{ OK }$ $K' = Constr(p_{*}) \Rightarrow K$ overrides K' OK (WF4) p ⊢ class C extends C { K CE; T f; T'7} OK There is a strict partial order □f on field names such that $\forall p, f. spine.\overline{f}.C f \in Members(p) \Rightarrow \forall i. f_i \subseteq_f f$

There is a strict partial order
$$\Box_c$$
 on class names such that
 $\forall p. CT(p) = \text{class } C \text{ extends } \overline{C} \{...\} \Rightarrow \forall i. C_s \Box_c C$
(WF5)
 CT is acyclic

$$\begin{array}{l} \forall p, p', C: T(p, Q) \neq \bot \Rightarrow \\ p', C \in T(p, Q) \neq J, C(p, Q) \neq J \Rightarrow \\ p'', C \in \mathcal{M}([p, Q) \cap \mathcal{M}([p', Q) \cap$$

Subtyping:

$$s <: s$$
 (S-Refl.) $\frac{s <: s' <: s''}{s <: s''}$ (S-Trans)

$$\frac{\mathcal{M}(u) = \overline{p} \quad CT(p_j.C) = \text{class } C \text{ extends }C'...}{u.C <: u.C'} \quad (S-DECL)$$

Declared type of member:

DclType(t, m) = T where $T m \in Members(M(t))$ $\mathcal{E}xists(t, m) = (DclType(t, m) \neq \bot)$ $\mathcal{E}xists(u, C) = (M(u, C) \neq \bot)$

< □ ト < □ ト < 三 ト < 三 ト = 三 のへ⊙

CaesarJ Component Model: Semantics (3)

Well-formedness:

$\frac{H(\iota)(m) = \mathbf{null}}{\iota.m:T \ OK \ in \ H}$	(WF-NULL)
$\begin{array}{l} H(\iota)(m) = \iota'\\ \mathcal{W}alk(H, \iota', \mathbf{out}) = \mathcal{W}alk(H, \iota, path) p.C \in \end{array}$	$\mathcal{M}ix(H,\iota')$
ι.m : path.C OK in H	(WF-MEM)
$\frac{T \ m \in \mathcal{M}\!\textit{embers}(\mathcal{M}\!\mathit{ix}(H, \iota)) \Rightarrow \iota.m:T \ OP}{\iota \ OK \ in \ H}$	(WF-OBJ)
$\frac{H(\iota_{rest}) = \mathbb{I} \perp \parallel C_{rest} \parallel \mathbb{I}}{\iota_{rost} \text{ OK in H}}$	(WF-Root)
$\frac{\forall \iota. \ \iota \ OK \ in \ H}{H \ OK}$	(WF-HEAP)
Agreement: H, ℓ0 ⊢ null ⊳ val s	(A-Null)
$H, \iota_0 \vdash \iota_{\mathrm{root}} \triangleright \langle \rangle$	(A-Root)
$\frac{j = \mathcal{D}epth(H, \iota_0) - p }{\mathcal{W}alk(H, \iota_0, this.out^j, \tilde{f}) = \iota - H, \iota_0 \vdash \iota \triangleright \mathcal{C}(f)}{H, \iota_0 \vdash \iota \triangleright \langle p \rangle, \tilde{f}}$	$(\underline{p}, \overline{f})$ (A-Otype)
$\mathbf{p}' \in \mathcal{M}$ ir(\mathbf{H}_{i}) $\mathbf{H}_{i} \in \mathcal{S}$ rd(\mathbf{H}_{i})) $\succ \mathcal{S}$	u.C)

$$Depth(\mathsf{H},\iota) = \begin{cases} 0, & \text{if } \iota = \iota_{\text{root}} \\ 1 + Depth(\mathsf{H}, \mathcal{E}ncl(\mathsf{H}(\iota))) \end{cases}$$

CaesarJ Component Model: Semantics (4)

THEOREM 1 (Preservation).

$$\begin{bmatrix} CT \text{ OK} \\ H \text{ OK} \\ p \vdash e: t \\ H, \iota \vdash \iota \triangleright \langle p \rangle \\ e, H, \iota \rightsquigarrow r, H' \end{bmatrix} \Rightarrow \begin{bmatrix} H' \text{ OK} \\ H', \iota \vdash \iota \triangleright \langle p \rangle \\ r = \text{val } \land H', \iota \vdash \text{val} \triangleright t \\ \lor \\ r = \text{NullErr} \end{bmatrix}$$

DEFINITION 1 (Finite Evaluation). Define an evaluation relation \rightsquigarrow_k as a copy of the rules for \rightsquigarrow . Replace each occurrence of \rightsquigarrow in a premise by \rightsquigarrow_{k-1} . Replace \rightsquigarrow in the conclusion of each rule and axiom with \rightsquigarrow_k . Note that the copied axioms are defined for all k. Add the following axiom:

e, H,
$$\iota \rightsquigarrow_0$$
 KillErr, H (KILL)

LEMMA 1 (Coverage). For all natural numbers n and e, H, ι , there exists r, H' such that

$$e, H, \iota \rightsquigarrow_n r, H'$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − � Q Q Q