An Overview of CoCoME

Hakim Hannousse

ECOLE DES MINES DE NANTES

DEPARTMENT OF COMPUTER SCIENCE

CoCoME Project Presentation

CoCoME: Common Component Modeling Example

@ Context = Trading System

@ Supports functional aspects : Manage sales, order products, ..
etc.

@ Supports non function aspects : Manage Express Checkout,
Synchronization, RealTime Constraints ... etc.

e Extra-functional properties based on statistics for typical German
super-markets

CoCoME Project Presentation

CoCoME: A Single Cash Desk

Cash Desk
Cash Box
'- Printer
Card Reader \

7

1

Bar Code

Scanner

Light Display

Bank

CoCoME Project Presentation

CoCoME: A single Store

Store

Cash Desk Line

Cash Desk

Cash Desk

Cash Desk

Cash Desk

dig

Store Server

Store Client

-
- ‘l!

CoCoME Project Presentation

CoCoME: An Entreprise

Enterprise
Enterprise
Server
Enterprise Client
- I

oME Project Presentation

CoCoME: Provided Use Cases

Bank

Customer

Cashier

StoreManager

<<system>> ‘

inter

CardReader ‘ CashBox

BarCodeScanner

LightDisplay

UC 1:ProcessSale

ManageExpressCheckout

Condition:

{50% of all saies during the last 60 minutes meet th
requirements of an express checkout
- up to 8 products per sale
- customer pays cash}
extension point:

h

UC 4. RecelveOrderedProducts

uc 3:0rderProducts

UC 5:ShowStockReports

UC 6:ShowDeliveryReports

uc 8: ProductExchange

StockManager

EnterpriseManager

CoCoME Project Presentation

CoCoME: Component Modularization - TradingSystem

«component» El
TradingSystem

1 «component» E

:Inventory

1 1
CashDeskConnectorlf \%5/ (R SaleRegisteredEvent
1 1

Bank
1 «component» EI

)
Banklf DLEF} :CashDeskLine

OME Project Presentation

CoCoME: Component Modularization - Inventory

ComplexOrderEntryTO

«components E
ComplexOrderTO
OrderEntryTO TradingSystem::Inventory
OrderTO
ProductTO
ProductWithStockltemTO
ProductWithSupplierAnd StockltemTO * «components E
ProductWithSupplierTO ¥y
SaleTO eul
StockltemTO \\\ 1 1 StoreTO
StoreWithEnterpriseTO — N /J\ Reportinglf EnterpriseTO
= Storelf _———+—1 RepotTO

Supplea CashDesk \\9 1 %77 e i

CashDesk 1 Connectorlf

Connectorif (_}—] r «component» s:l

SaleRegistered }*)* Application
Event g
Event 1 1 1

StoreQuerylf
TradingEnterpris!

ProductSupplier

N
EnterpriseQueryl’ O Persistencel Q O
1

|
— I I

«component» E:l
ek OrderEntry
‘Data ProductOrder
K Stockitem
Store
/(? \DBC Product
1
1 «component» g

:Database

CoCoME Project Presentation

CoCoME: Component Modularization - CashDeskLine

pe——)

TradingSystem: CashDeskLine

ccomponerts o

CashDesk

T ccomporens]| [T ccomperans @] [T scomponents G| [T ccomponerts g T componerts §]

|1 «components 3]|

1 ccomponents] |

SR o “components o)
Evpios
I pres—)
csshiDeskChanmet EventChannel
\ ’ s

1 scompanents)

‘extCommChannal-EventChannel

1 cosmpanents &

Coordinator

Events for finished
sales are sent through
this interface to the Inventory.

Cannectorif

CoCoME Project Presentation

CoCoME: Component Modularization - Deployment System

storsciant

<<RMI>>

storsserver

<oomponents
“Tragings yatems Invantory::

Enterprisaciant

ecompenents a
Tragingsystam:inventory: GUL-Raporting

<<amP>

Enfarprise Server

acompenents q
Tragings yatom: Inventory:; Appliosiion.:Reporting

Tradingsystem:mvantory-Data

components
Tragingsystem:znvantory. Data

<eiDBCas 1 ‘

ponents

“Traingsystsm::cashDaskLIne: Cooroinotor

‘ p— a ‘

woamgonents

xtcommenannal
TradingSystem::CashDeskLine - EventBus - Eventchannel

camponents a1
“Tradings yetem: mvantory:Dotapase

T
<<RMD>
1 <<RS232>>
CasnDeskre: H H cwnanssgar
coomponent

‘aanDaskChanne
TragIngSyatem:C SSNCHSKLING: EverkEUS: Evenichanng!

wonp
cling8ystern: CashDaskLIne:-CashO:

€]

1 <eRs2I>
- Lignt

o |
——

=1
R caanox

CoCoME in Fractal

CoCoME in Fractal : Structural View

CoCoME in Fractal

CoCoME in Fractal : Behavioral View

@ A frame protocol is associated to each component

© Frame protocol language used by FractalBPC :

P

M1
M|
M|
2IM7
?1.M{P}
\1.M{P}
P+

Px

Py|P;
Py; Py

CoCoME in Fractal

CoCoME in Fractal : Behavioral View

INITIALISED
(

?CashDesklApplicationHandler.onSaleStarted
i

SALE_STARTED
(

?CashDesklApplicationHandl er.onProductBarcodeScannead{
!CashDesgkConnector. getProductWithStockItem;
!CashDesklipplicationDispatcher.sendProductBarcodeNotValid+
!CaghDesklipplicationDigpatcher.gsendRunningTotalChanged

}

)*; # <-—- LOOP
?CashDesklpplicationHandler.onSaleFinished;
SALE_FINISHED

(

?CashDeskApplicationHandler. onPaymentMode
)i

PAYING_BY_CASH
(
(

(
?CashDesklApplicationHandler.onCashAmountEntered

Y

CoCoME in Fractal

CoCoME in Fractal : Behavioral View

On Enter
?CashDeskApplicationHandler . onCashAmountCompleted{

ICashDeskApplicationDigpatcher.sendChangeAmountCalculated
3y

?CashDeskApplicationHandler.onCashBoxClosed({
ICashDeskApplicationDispatcher.sendSaleSuccess;
!CDLEventDispatcher. sendAccountSale;
!CDLEventDispatcher.sendSaleRegistered

Enable Express Mode
?CDLEventHandler . onExpressModeEnabled{
!CashDeskApplicationDispatcher.sendExpressModeEnabled
}
Ea
Disable Express Mode

?CashDeskApplicationHandler.onExpressModeDisabled
) *

CoCoME in Fractal

CoCoME in Fractal : Deployment View

@ FractalRMI are used rather than Sun RMI

© JMS are not used for implementing buses, they are replaced by
components routing messages

© Deployment is described using FractalADL and implemented
using FractalRMI

CoCoME in Fractal

CoCoME in Fractal : Implementation View

@ The architecture is modeled using FractalGUI

© The resulting model is extended by hand to integrate behavior
protocols

© A tool is used to get the skeleton of the appliaction

© The code of the CoCoME implementation is adapted and insered
to the corresponding components

CoCoME in Fractal

CoCoME in Fractal : Testing process

@ FracalBPC is used to check components communicates
behaviors

@ The GUI components are not considered for testing

© Extra-functional proprieties are independently tested from the
functionality testing

© The trading system is automatically lunched.

CoCoME in Fractal

CoCoME in Fractal : Testing Results

8 -
@
o
=
8

H

o

°

=

= £

£

]

3

! o

8 g

©

&

»

2

28

® -

8

e

H

£

S g

= O -

E

]

z
o
3
<

T T T T T T
] 200 400 600 800 1000 1200 1400

Simulation time [seconds]

CoCoME in SOFA
0000000000000 00

SOFA is a Hierarchical Component Model

e Each Component is defined by:

e Frame : provided and required interfaces
e Architecture : subcomponents and their interconnections

@ A Component has two parts :
e Control part
e Content part

@ Components are bound using connectors

CoCoME in SOFA
0®0000000000000

SOFA is defined by means of a Meta-Model

CoCoME in SOFA
00e000000000000

SOFA is ADL-Based design

<frame name="TradingSystemFrame">
<requires name="BankIf" itf-type="BankIf"/>
</frame>

<architecture name="TradingSystemArch" frame="TradingSystemFrame">
<sub-comp name="CashDesklLine" frame="CashDeskLineFrame"
arch="CashDeskLineArch"/>
<sub-comp name="Inventory" frame="InventoryFrame" arch="InventoryArch"

<connection>
<endpoint itf="AccountSaleEventHandlerIf" sub-comp="CashDeskLine"/>
<endpoint itf="AccountSaleEventHandlerIf" sub-comp="Inventory"/>
</connection>
<connection>
<endpoint itf="CashDeskConnectorIf" sub-comp="CashDeskLine"/>
<endpoint itf="CashDeskConnectorIf" sub-comp="Inventory"/>
</connection>
<connection>
<endpoint itf="BankIf" sub-comp="CashDeskLine"/>
<endpoint itf="BankIf"/>
</connection>
</architecture>

CoCoME in SOFA
0008000000000 00

SOFA 2.0 is A Microcomponent-Based Component Controller Model (1)

lifecycle-controller name-controller logger-controller

e

—

€T 1T

LCNotifier

NCImpl

callLogger

Content

= 0T

control interface |

functional interface
Logger

microcomponent delegate Component

interface (server/client)
microcomponent interface
(server/client)

CoCoME in SOFA
[e]e]e]e] Telelelelelelelo]e]e}

SOFA 2.0 is A Microcomponent-Based Component Controller Model (2)

name-controller logger-controller
:NameController :LoggerFactory

:NameController

:RequestHandler

rh :RequestHandler

notifyForwarder |] name

]}\lamcController

RequestHandler
callLogger

notify
‘InterceptorNotify

loggerFactory
:LoggerFactory

Content

CoCoME in SOFA
0000000000000 00

SOFA 2.0 Supports Controllers Extensions Using Aspects

<aspect-definition name="1logging" >
<frame-addon-definition name="logger-itfs" >
<interface signature="LoggerFactory"
role="client" name="logger—-controller"/>
rame-addon-definition>
<component name="1logger"
definition="logger-adl" />

<microcomponent-definition
name="callLogger" >
<interface signature="InterceptorNotify"
role="server" name="notify" />
<interface signature="LoggerFactory"
role="client" name="loggerFactory" />
<interface signature="NameController"
role="client" name="name" />
<content class="LoggerInterceptor" />
</microcomponent-definition>

<microcomponent-definition
name="notifyForwarder" >
<interface signature="InterceptorNotify"
role="client" name="notify" />
<dynamic-interface role=
<dynamic-interface role=
<content

delegateserver" />
delegateclient" />

generator="InterceptorNotifyGenerator" />
</microcomponent-definition>

CoCoME in SOFA
000000e00000000

SOFA 2.0 Supports Controllers Extensions Using Aspects

<select-component type="any" >

<frame-addon definition="logger-itfs" />
<component-binding client="this.logger-controller"
server="logger.logFactory" />

<select-interface name="+" type="functional">

<microcomponent name="1logFwd"
definition="notifyForwarder"
flow="passthrough" />

<microcomponent name="logCalls"
definition="callLogger" flow="standalone" />

<binding client="logCalls.loggerFactory"
server="this.logger-controller" />

<binding client="logCalls.name"
server="this.name-controller" />

<binding client="logFwd.notify"
server="logCalls.notify" />

</select-interface>
</select-component>
</aspect-definition>

CoCoME in SOFA
0000000800000 00

SOFA 2.0 Supports Controllers Extensions Using Aspects

<configuration>
spect name="protocols" definition="...protocols" />

<aspect name="logging" definition="...logging" />

<apply-aspect name="protocols" />
</aspect>
<application definition="examples.hello.Hello" >
<apply-aspect name="protocols" />
<apply-aspect name="logging" >
<param name="logger-key" value="auditlog" />
<target path="./server" />
</apply-aspect>
< /application>
</configuration>

CoCoME in SOFA
0000000080000 00

SOFA 2.0 - Microcomponent Meta-Model

CoCoME in SOFA
000000000 e00000

SOFA 2.0 Supports Heterogeneous Deployment via First-Entity Class
Connectors (1)

Provided interface

Server Required interface
component

‘ Component binding

Distribution boundary

CoCoME in SOFA
000000000 0e0000

SOFA 2.0 Supports Heterogeneous Deployment via First-Entity Class
Connectors (2)

Provided interface

Server
component

Client A Required interface

Component binding

Distribution boundary

Server connector unit

Client B

g : [01

Client connector unit

Client C

CoCoME in SOFA
00000000000 e000

SOFA 2.0 - Connector Architecture

Provided interface

client unit

Required interface

server unit
Sub-element

Element binding
Local element port (directed)
Remote element port (undirected)

ov [O01

a) connector architecture

)
4
5
5 s j=2]
s £ g
g o S =)
o 2 = g
«Q [w -2
b) client unit element c) server unit element d) skeleton collection

architecture architecture element architecture

CoCoME in SOFA
000000000000 e00

SOFA 2.0 - Formal Signature of ports on an element

RMI Skeleton

Port signatures

line
call

call: Itf
line: rmi_server(rmi_iface(ltf))

Q

CoCoME in SOFA
0000000000000 e0

SOFA 2.0 - Interface adaptation and propagation through a connector

client unit E server unit
c E [
3 S.2 [o
s 20 B £
g 3 22 g 2
@ @ » 8 @ k=l

fava_iface('Service_v1') T java_iface('Service_v2')

java_iface('Service_v2')

rmi_server(rmi_iface(java_iface('Service_v2')))

CoCoME in SOFA
0000000000000 0e

SOFA 2.0 - Supports Dynamic Reconfiguration Only w.r.t Configuration

Patterns
@ Nested Factory Pattern

' DAccess I

FactoryManager

LFactory

FactoryManager
DAccess D
o

)

© Removing Component Pattern

© Utility Interface Pattern
[workera ? WorkerB | PService
/ I :‘ |

I I ‘ DAccess @/ DAccess & | _‘)

| | =

Logger

| Logger J ‘
|
|

CoCoME in SOFA

SOFA 2.0 - Structural View

3

GG — £

CoCoME in SOFA

SOFA 2.0 - Behavioral View

SOFA 2.0 uses EBP to describe component’s behaviar :
e Example :
(?i.open; (Ti.read+"i.write)x; Ti.close)|?ctrl.statusx
@ EBP supports types and local variable declarations
e EBP supports switch and while statements

component LightDisplay {

types {
states = {LIGHT_ENABLED, LIGHT_DISABLED}

vars {
states state = LIGHT_ENABLED

behavior {
?LDispCtrlEventHandlerIf.onEvent (EVENT ExpModeEnabledEvent) {
state <- LIGHT_ENABLED
}*

?LDispCtrlEventHandlerIf.cnEvent (EVENT ExpModeDisableEvent) {
state <- LIGHT_DISABLED
3+

CoCoME in SOFA

SOFA 2.0 - Deployment View

@ SOFAnode distributed runtime environment is used for the
deployment issue.

@ SOFAnode = Repository + deployment docks

@ Connectors encapsulate middleware and support different
communication style.
@ SOFA Application lifecycle:

@ Defining primitive components or frame components by the
developer

© Uploads them in the repository

© Assembly process to construct component architectures

@ A deployer assigns components to docks, sets components
properties values and the control aspects to be applied in the
applications in the deplyment plan

© Connectors are generated automatically

© Launch the appliaction

CoCoME in SOFA

SOFA 2.0 - Verification and Analysis

@ Compliance both vertical and Horizontal via Promela. (EBP2PR)

Table 1. The result of vertical compliance verification of the CashDesk component

of states ‘ EBP2PR [s] Verification [s] ‘ Total time [s]
3335950 | 415 46.1 | 95,6

@ Verification of Code against Frame Protocols via JPF tool.
@ Runtime Checking against Code
@ Performance Analysis

Fig. 4. Calculated a) throughput and b) average service time of Use Case 1

CoCoME in rCOS
9000000000000

rCOS : Refinement Calculus for Object oriented Systems

@ rCOS originally is designed to support only object oriented
systems

@ rCOS syntax is similar to that of Java
@ rCOS Semantics is based on Hoare’s theory

@ rCOS main feature is the object-oriented refinement

CoCoME in rCOS
0000000000000

rCOS Syntax

class
attributes

methods

invariant

C [extends D] {
Tx=d,..., T.z=d
m(7T in; V return) {

pre: cV... Ve
post: AN (Ry...;R)V ...
AN
AN (Ry...;R)V
Inv

.....

.....

CoCoME in rCOS
00@0000000000

rCOS Semantics

command: ¢ design: [c] description
does not change anything, but termi-
skip {} : true & true = ? =
nates . , ,
. anything, including non-termination,
chaos {} : false & true
can happen
side-effect free assignment; updates x
Ti= ¢ {z} : true b 2’ = val(e) = P

with the value of e

. m(in; out) is the signature with input
ﬂvar III.UllIJ]I . =

. parameters in and output parameters
mie;v m:=ej; [?(ﬁ(]\' m)|; |v:=out|: I . -
(esv) 1 L1 ',(i] out; body(m) is the body command of
[[end i, ()11/]] :
the procedure/method

CoCoME in rCOS
0008000000000

rCOS Refinement

Refinement of Designs. The refinement relation between designs is then defined to
be logical implication. A design D> = (o, P2) is a refinement of design D, = (o, P1),
denoted by Dy C D», if P> entails P,

Va, ', ..., " (Py = Py)

where z,2’, ..., z, 2" are variables contained in o. We write D, = D if they refine each

other.

CoCoME in rCOS
[e]e]e]e] Telelelelele]ele}

rCOS Component Model : Interface & interface inheritance

A primitive interface is a collection of features where a feature can be either a field
or a method. We thus define a primitive interface as a pair of feature declaration sections:
! FDec, MDec)

where FDec is a set of field declarations, denoted by L.FDec, and MDec a set of method
declarations, denoted by LMDec, respectively.

Definition 1. (Interface inheritance) Let I, (i = 1, 2) be interfaces. I, and I are com-
posable if no field of 1; is redefined in I; for i # j. When they are composable, notation
I & 1, represents an interface with the following field and method sectors

FDec “ FDec: U FDecs
MDec "= MDec> U {op(in : U, out : V)|op € MDec: A op & MDec»}

CoCoME in rCOS
0O0000e0000000

rCOS Component Model : Method Hiding

Definition 2. (Hiding) Let I be an interface and S a set of method names. The notation
I\S denotes the interface 1 after removal of methods of S from its method declaration
sector.

FDec “ 1FDec, MDec ™ 1MDec\ S

CoCoME in rCOS
000000@000000

rCOS Component Model : Contract Definition

Definition 1. (Contract) A contract is a pair Ctr = (I, MSpec), where

1. Iis an interface,
2. MSpec maps each method op(in: U,out : V) of I to a specification
design with the alphabet

ina & {in} U LFDec, outoe. = {ou'} U LFDec'

CoCoME in rCOS
0000000 e00000

rCOS Component Model : Composable Contracts

Definition 2. (Composable contracts) Contracts Ctr; = (I;, MSpec;), i =1, 2, are
composable if

1. I, and I, are composable, and
2. for any method op occurring in both I, and I,

Mpecy (op(z: U, y : V)) =
MSpecy(op(u: Uyv: V))[z, 2, y, ¥'/u, v/, v, ']

In this case their composition Ctry||Ctr is defined by

1% I, ® I, MSpec def MSpec, ©MSpec.,

where MSpec, ®MSpec., denotes the overriding MSpec, (op) with MSpec, (op) if op occurs
in both I, and I>.

CoCoME in rCOS
000000000000

rCOS Component Model : Reactive Contracts

Definition 3. (Reactive Contract) A reactive contract is tuple Cor=(1, Init. MSpec, Prot),
where

- 1is an interface
— Init is a design that initialises the state and is of the form

true b= Init(v') A —wait’, where Init is a predicate

— MSPec assigns each operation to a guarded design (o. g, D).
— Prot, called the protocol, is a set of sequences of call events. Each is of the form

lopi(xy)...., Tope(xk)

where Top(x,) is a (receipt of) call to operation op, in IMDec with an input value x..

CoCoME in rCOS
0000000008000

rCOS Component Model : Contract Definition

Definition 4. (Semantics of Contracts) The dynamic behavior of Cir is described by
the triple (Prot, F(Ctr), D(Ctr)), where

— the set D(Ctr) consists of the sequences of interactions between Ctr and its envi-
ronment which lead the contract to a divergent state

T?(rrs'f { op‘z \op\r/)

' wait e (Ini

9k A“D.»:J‘ ng., outy.))[true/ok][false/ok']}

where op;(y;)! represents the return event generated at the end of execution of op;
with the output value y:, ini and out; are the input and output parameters of op:,
and g:&D; is the guarded design of method op:.

— F(Ctr) is the set of pairs (s, X) where s is a sequence of interactions between C
and its environment, and X denotes a set of methods which the contract may refuse
to respond to after it has engaged all events in s

rej Z (true, false, true, false ok, wait, ok', wait')

rej, = (true, false, true, true
F(cr) =

wait, ok’, wait')

X) | 3" o Init[rej] AV 'op S .\ . —gumd o})l [v

?0ps(xx), opi (y

op1 \r,J.(m,;y.f
® (Init; g:& D[z,

& Dz fing]rej)]

CoCoME in rCOS
0000000000800

rCOS Component Model : Contract Refinement

We define the traces of a contract as those traces in the failure set

T(Cr) < {s|3X o (5. X) € F(Cir)}

Definition 6. (Contract Refinement) Contract Ctr, is refined by contract Ctra, denotec
by Ctr1 C Ctrz, if

1. Ctry provides no less services than Cir,:Ctr, MDec C Ctry . MDec
2. Ctry is not more likely to diverge than Ctr.: D(Ctr,) 2 D(Ctr,)|Ctr, . MDec, and
3. Ctrz is not more likely to deadlock than Ctri: T(Ctr:) 2 T(Ctr2)|Ctr1.MDec.

CoCoME in rCOS
0000000000080

rCOS Component Model : Removing Services

Definition 7. (Removing Services) Let Ctr = (1, Init, MSPec) be a contract and S a sub-

set of the operations MDec, then contract Crit\S "= (I\S, Init, MSPec| (MDec — S)), where
we use “—" for set difference.

CoCoME in rCOS
00000000000 0e

rCOS Component Model : Component Definition

Definition 11. (Component) A component C is a tuple
(1, MCode, PriMDec, PriMCode, InMDec)
where

1. Iis an interface.

2. PriMDec is a set of method declarations which are private to the component.

3. The tuple (I, MCode, PriMDec, PriMCode) has the same structure as a general con-
tract, except that the functions MCode and PriMCode map each method op in the
sets I.MDec and PriMDec respectively to a guarded command of the form g — c,
where g is called the guard, denoted as guard(op) and ¢ is a command, denoted as
body(op).

4. InMDec denotes the set of input methods which are called by public or internal
methods, but not defined in MDec J PriMDec.

CoCoME in rCOS
0000000000000

rCOS Component Model : Example

@ A Component is defined by its interface and its contract :

e Interface : I =< FDecl, MDecl >
e Contract : Ctr =< I, Init, MSpec, Prot >

e Example : Buffer Component
Ipurer =< buff : seq(Int), {put(in x : int), get(outy : int)} >
Ctrgufter =< Iputer, Initgygrer, MSpecpyger, Protgygrer >
Initgyger = |buff| = 0,
MSpecpyge,(put(in x : int)) = (- buff’ =< x > ebuff),
MSpecpypper(get(out y : int)) = (F buff’ = tail(buff) A y' = head(buff)),

Protguger = (put, get) * +(put; (get; put)*)

CoCoME in rCOS
0000000000000

rCOS Component Model : Component Composition Operators

@ Chaining operator :

Definition 2. Let C\ and C> be components such that Cy.I.F DecnNCy.I.FDec =
0, C1.I.MDecn Co.I.MDec = () and Ci1.PriMDecn Co.PriMDec = (). Then the
chaining C1 to Ca, denoted by Ch))Cs, is the component with

(C 5).FDec o Cy.FDec U Cy.FDec,
().InMDec = (Ca.InMDec U Cy.InMDec) — (Ca.MDec U C1.MDec),
(C1)) Cy). wrm I ¢1.MDec U Cy.MDec,
— (('1‘> (o})[/H! (Init A Cy. Init,
(Ch)) Co). Code ° (1 Code U C.Code, and
(Ch)) Ca).

PriCode (.PriCode U C.PriCode.

1) Ca
(W(

CoCoME in rCOS
0000000000000

rCOS Component Model : Component Composition Operators

@ Disjoint Composition :

Definition 15. (Disjoint Composition) Let C, and Cz be components such that they
do not share fields, public operations. Then Cy @ C is defined to be the composite
component which has the provided operations of Cy and C> as its provided operations,
and the required operations of Cy and C» as its required operations:

(C1 @ Co)(InCtr)) C1(InCtr| €y .InMDec) | C (InCir| Ca.InMDec)

CoCoME in rCOS
0000000000000

rCOS Component Model : Component Composition Operators

@ Feedback :

Definition 16. (Feedback) Let C be a component and m € C.MDec and n € C.InMDec.
Clm < n] is the component such that for any InCrt

C[m < n](InCtr) aef C(InCtr.MSPec @ {n + (g&[c]})\{m}

C.MCode(m) = g — c. Notice here the design [c] is the weakest fixed point of a recur-
sive equation if it calls other methods [15].

	CoCoME Project Presentation
	CoCoME in Fractal
	CoCoME in SOFA
	Introduction to SOFA
	CoCoME in SOFA 2.0

	CoCoME in rCOS
	rCOS Component Model

