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ABSTRACT
Software systems of today are frequently composed from
prefabricated, heterogeneous components that provide
complex functionality and engage in complex interactions.
Existing research on component-based development has
mostly focused on component structure, interfaces, and
functionality. Recently, software architecture has emerged as
an area that also places significant importance on component
interactions, embodied in the notion of software connectors.
However, the current level of understanding and support for
connectors has been insufficient. This has resulted in their
inconsistent treatment and a notable lack of understanding of
what the fundamental building blocks of software interaction
are and how they can be composed into more complex
interactions. This paper attempts to address this problem. It
presents a comprehensive classification framework and
taxonomy of software connectors. The taxonomy is obtained
through an extensive analysis of existing component
interactions. The taxonomy is used both to understand
existing software connectors and to suggest new,
unprecedented connectors. We demonstrate the use of the
taxonomy on the architecture of a large, existing system.
Keywords
software architecture, software connector, classification,
taxonomy

1 INTRODUCTION
A number of techniques have recently emerged to address the
problem of consistently engineering large, complex software
systems. The three most widely embraced efforts have been
component-based software development standards (e.g.,
[38]), middleware (or software interoperability) platforms
(e.g., [25,34]), and software architecture [28,37]. They
present complementary, often overlapping approaches,
centered around composing software systems from coarse-
grained components. 
Although components have been the predominant focus of
researchers and practitioners, they address only one aspect of
large-scale development. Another important aspect,
particularly magnified by the emergence of the Internet and
the growing need for distribution, is interaction among
components. Component interaction is embodied in the
notion of software connectors. Connectors manifest

themselves in a software system as shared variable accesses,
table entries, buffers, instructions to a linker, procedure calls,
networking protocols, pipes, SQL links between a database
and an application, and so forth [37]. In large, and especially
distributed systems, connectors become key determinants of
system properties, such as performance, resource utilization,
global rates of flow, scalability, reliability, security,
evolvability, and so forth.
Despite this critical role of connectors and recurring calls for
their explicit treatment [1,8,35,36], the large-scale-
development efforts discussed above have failed to
adequately address and exploit them. The primary concern of
component-based approaches is functionality. Component
interactions play a secondary role: the interaction details are
entirely hidden inside individual components. Middleware
approaches primarily focus on the infrastructure necessary to
enable components to interact. A middleware package
provides a predefined set of software interaction capabilities
that is not created to be easily extended. Also, both
component-based and middleware technologies assume a
homogeneous environment in which all components adhere
to certain design, implementation, packaging, and runtime
constraints, further aiding their prescribed types of
interaction.
Software architecture-based approaches have come furthest
in their treatment of connectors. They typically separate
computation (components) from interaction (connectors) in a
system. In principle, architectures do not assume component
homogeneity, nor do they constrain the allowed connectors
and connector implementation mechanisms. Several existing
architecture-based technologies have provided support for
modeling or implementing certain classes of connectors
[1,36,39]. 
Despite this, the current level of understanding and support
for connectors in architectures is insufficient. With some
exceptions [1,27,35], the architecture community has thus far
maintained a studied silence on the exact nature of
connectors. This has resulted in their inconsistent treatment
and sometimes contradictory assumptions. For example,
connectors are often considered to be explicit at the level of
architecture, but intangible in a system’s implementation.
This belief has at least partly contributed to the existing lack
of understanding of the relationship between high-level and
implementation-level connectors [16,35]. Connectors are
also sometimes deliberately modeled as components (e.g.,
the notion of a “connection component” in Rapide [19]),
further obscuring their distinct nature. Those architectural
approaches that have explicitly addressed connectors have
either provided mechanisms for modeling arbitrarily complex
connectors or implementing a small set of simple ones, but
never both [8].
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None of these approaches furthers our understanding of what
the fundamental building blocks of software interaction are
and how they can be composed into more complex
interactions. Such level of understanding is necessary in
order to fully meet the challenge posed to software
architecture researchers of giving connectors “a first-class
status” [20,35]. This paper takes a step in that direction. The
paper presents an extensive study and classification of
interaction mechanisms employed in software systems. The
classification supports deeper understanding of existing
connectors and their relationships. It also provides the
information needed to design new, more powerful connectors
by combining existing mechanisms. The ultimate goal of this
work is to produce a comprehensive taxonomy of software
connectors; the classification presented in this paper forms
the foundation for this endeavor.
The main contributions of this paper are the identification of
three atomic elements of software interaction—ducts, data
transfer, and control transfer—and a classification framework
to study the nature and role of software interactions. All
software connectors comprise one or more ducts, interaction
channels with no associated behavior; furthermore, all
connectors, regardless of their complexity, provide
mechanisms for transferring data and/or control along a duct.
The classification identifies four major categories of
connectors, based on the services they provide to interacting
components: communication, coordination, conversion, and
facilitation. We also identify the major connector types:
procedure call, data access, linkage, stream, event, arbitrator,
adaptor, and distributor. The connector categories and types
have been identified from an extensive study of software
interaction mechanisms proposed in computer systems
research and employed across research and commercial
software systems. Each connector type supports one or more
interaction services. We enumerate dimensions of variation
within each type, and possible values for each dimension. We
use an extended example to illustrate how the resulting
classification framework can be used to better understand an
existing system. In the course of doing so, we highlight some
interesting relationships among connector types.
The remainder of the paper is organized as follows. To
motivate the classification framework, Section 2 presents a
brief example of decomposing two different, high-level
connectors into overlapping sets of lower-level interaction
primitives. Section 3 discusses the work of other researchers
on understanding and classifying connectors. Section 4
presents the classification framework, while Section 5 shows
a more extensive example of identifying the different types of
connectors in an existing, large system. The paper concludes
with a discussion of lessons learned and a brief overview of
future work.

2 MOTIVATING EXAMPLE
Different views of a software connector are useful for
different tasks. In order to model a system and communicate
its properties, a high-level view is suitable. For example, an
architect may make the following concise, but meaningful
statement about the configuration shown in Figure 1a:
“Components A and B communicate via a Unix pipe.” That
statement may be accompanied by a formal specification of
the pipe’s overall behavior (e.g., [1,31]). However, such a

high-level description does not help one understand all the
properties of the pipe, how it can be adapted, or under what
conditions it can be replaced with another type of connector.
A more detailed, lower-level view is needed to accommodate
that.
In particular, the pipe in Figure 1a allows interaction via
unformatted streams of data. It is a simple connector: it
consists of a single duct and facilitates only unidirectional
data transfer. Thus, the cardinality of the pipe is a single
sender and a single receiver. The pipe allows components A
and B to exhibit very low coupling: the components do not
possess any knowledge about one another. For example, A’s
task is only to successfully hand off its data to the pipe; the
actual recipient (if any) is unimportant to A. In turn, the pipe
in Figure 1a does not buffer the data. It attempts to deliver the
data at most once; if the recipient is unable to receive the data
for some reason, the data will be lost. 
Let us now assume that we need to alter the manner in which
A and B interact, such that B can also send information (e.g.,
acknowledgement of data receipt) back to A. Furthermore,
we wish to ensure the delivery of data: if the recipient is not
available, the pipe retries to send until the data is successfully
transferred. Both these modifications can be potentially
accommodated by pipes. The first would require introducing
another pipe from B to A, and the second, data buffering in a
pipe. Addition of any other components into the system
would require further addition and/or replacement of pipes
(possibly requiring substantial system down-time). Pipes
can, therefore, accommodate these new requirements, even
though constantly adding and replacing them may not be the
most effective solution.
If, however, we want to change the nature of data from an
unformatted stream to discrete, typed packets that can be
processed more efficiently by the interacting components,
pipes will not suffice. It is in such a case that a taxonomy of
software connectors, such as the one we propose, can help in
determining a suitable alternative. For example, the
taxonomy may suggest that all of the above requirements can
be satisfied by an event bus. Although clearly different types
of connectors, pipes and event buses exhibit a number of
similar properties (e.g., loose component coupling,
asynchronous communication, possible data buffering). At
the same time, event buses are better suited to support system
adaptation: a bus is capable of establishing ducts between
interacting components “on the fly;” its cardinality is a single
event sender (similarly to the pipe), but multiple observers.
Thus, in principle, event buses allow components to be added
or removed, and to subscribe to receive certain events, at any
time during a system’s execution [7,30]. Figure 1b depicts
using an event bus to accommodate the above changes.

A B A B

C

(a) (b)

Figure 1. (a) A Unix pipe supports unidirectional component
communication. (b) An event bus supports bidirectional
communication and addition/removal of components.

pipe event bus
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3 OVERVIEW OF RELATED WORK
Software connectors have been suggested as first-class
elements of software architectures [35]. Various architecture
description languages (ADLs) provide formalisms for
modeling connectors and their characteristics. Furthermore,
middleware technologies provide infrastructure that
implements a set of standardized connectors. Previous
research has studied the influence of connectors (in the
context of middleware) on software architectures and
architectural styles [12]. Finally, the area of distributed
systems has produced new forms of connectors to support
sophisticated component interactions. These four areas form
the underpinnings of our work and are further discussed
below.

Connector Modeling
Programming languages typically describe interactions
among modules at the level of procedure call and shared data
access. Special purpose ADLs have been devised to provide
support for modeling more sophisticated and powerful
connectors. ADLs represent the services exported by
connectors, mechanisms used to implement them, interaction
protocols, and constraints on connector usage and evolution
[20]. They do so by adopting textual or graphical modeling
constructs [9,36]. Most ADLs lend themselves well to
formally representing well-understood connectors. Their
suitability for designing novel connectors remains
unexplored.
A number of other approaches have shed light on software
interaction modeling. Perry has provided a high-level
classification of the roles software connectors play in an
architecture [27]. Kazman et al. have suggested external
canonical features for describing architectural elements,
including connectors [17]. Hirsch et al. have suggested a
high-level tabular classification of connectors which
identifies a potentially large set of primitives [16]. Their
“periodic table” is based on a top-down decomposition of
existing connector mechanisms and explains some well
understood component interactions. These approaches tend
to provide a high-level understanding of connector
characteristics, but do not fully account for the orthogonality
of their properties. Other earlier attempts have modeled
connectors at the level of module interdependencies [11,29].
As we will discuss further in Section 5, basing
representations of system interactions on module
interdependencies alone tends to hamper system
understanding. Overall, the current literature lacks an
understanding of how various connector characteristics are
related and does not provide sufficient guidance to architects
for choosing interaction mechanisms.

Middleware
As already discussed, simple connectors such as memory
access and procedure call are supported by programming
languages; some languages also provide native thread
management. More sophisticated connectors are now being
discussed and their support is being studied through
frameworks and higher-level programming languages. Such
connectors include pipes, remote procedure calls (RPC),
schedulers [9,36], adaptors [40], packagers [10], active
interfaces [15], fault tolerant arbiters [6], events [7,33], and
real time filters [32]. The need for supporting complex

components and their interactions forces one to think about
the possible variations of connectors and the way in which
sophisticated connectors are composed.
Operating systems and off-the-shelf (OTS) middleware
platforms provide abstractions and mechanisms for
supporting complex component interactions. Various
research and industrial middleware platforms have emerged
(e.g., JEDI [7], CORBA [25], COM [34], Enterprise Java
Beans [38]). Each focuses on a particular form of component
interaction, such as RPC, event registration, and distributed
transactions. Ultimately, each middleware technology
supports only a small set of interaction primitives that may
not be universally applicable [8].

Architectural Styles
Since connectors have a high potential for cross-application
and cross-domain reuse, several architectural styles based on
connectors have been identified [37]. An architectural style
defines a set of rules that describe or constrain the structure
of architectures and the way in which their components
interact. The styles motivated by software connectors include
pipe and filter [37], real-time data feeds [32], event-driven
architecture [7], message-based style [39] and dataflow style
[37]. Each style allows considerable flexibility in the choice
of implementation of its connectors, which requires
identification of the possible parameters of variation. 

Distributed Systems
Distributed systems have demanding dependability
constraints such as performance, safety, security, and
scalability, and require that the systems be able to adapt to
changing environments [33]. Distribution also entails issues
such as concurrency control, transactions, and reliability of
component interactions. Distributed systems research
provides the theoretical constructs for dealing with such
issues [5]. Our work has tried to leverage the results of
research in distributed systems to identify connectors that
facilitate the desired extra-functional properties, such as
those discussed above. In the process, we hope to enrich the
body of dependability constructs and mechanisms available
to the researchers and developers of distributed systems.

4 THE CLASSIFICATION FRAMEWORK
Software components perform computations and store the
information relevant to an application domain; software
connectors, on the other hand, perform the transfer of control
and data among components. Connectors can also provide
services, such as persistence, invocation, messaging, and
transactions, that are largely independent of the interacting
components’ functionality. Capturing these facilities as
connectors helps simplify an architecture and keep the
architectural focus on domain-specific information. Treating
these services as connectors rather than components can also
help their reuse across domains. 
Most component-based software development approaches
assume that interactions among components consist entirely
of procedure calls and shared data accesses. On the other
hand, middleware-based approaches assume that all
component interactions take place via message passing and
RPC. Both approaches thus embrace a rather narrow view of
connectors that is unlikely to be successfully applicable
across all development situations. 
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This problem is further exacerbated by the increased
emphasis on development using large, OTS components
originating from multiple sources. As components become
more complex and heterogeneous, the interactions among
them become more critical determinants of system
properties. Experience has shown that integrating
components with mismatched assumptions about their
environment is a difficult problem [14]. It is, then, the task of
connectors to mitigate such mismatches. It is in the context
of these issues that we study the nature and role of software
connectors. 
Our connector classification framework is based on the
following definition of connectors [37]:

Connectors mediate interactions among components;
that is, they establish the rules that govern
component interaction and specify any auxiliary
mechanisms required.

The underlying, elementary building blocks of every
connector are the primitives for changing the processor
program counter (control transfer) and performing memory
access (data transfer). These primitives give enough
conceptual power to build sophisticated and complex
connectors. In addition to these primitives, every connector
maintains one or more ducts, which are used to link the
interacting components and support the flow of data and
control between them. A duct is necessary for realizing a
connector, but by itself, it does not provide any additional
interaction services. Very simple connectors, such as module
linkage, provide their service simply by forming ducts
between components. Other connectors augment ducts with
some combination of data and control flow to provide richer
interaction services. Connectors can also have an internal
architecture that includes computation and information
storage. For example, a load balancing connector would
execute an algorithm for switching incoming traffic among a
set of components based on the knowledge about the current
and past load state of components. 
Simple connectors are typically implemented in
programming languages. On the other hand, composite
connectors are achieved through composition of several
connectors (and possibly components), and are usually
provided as libraries and frameworks. Simple connectors
only provide one type of interaction services, whereas
composite connectors may combine many kinds of
interactions. Complex connectors can help us in overcoming
the limitations of modern programming languages and in
realizing the potential of programming-in-the-large [11].
However, when creating such connectors, it is important to
have a conceptual framework of reasoning about their
underlying, low-level interaction mechanisms. The
taxonomy presented in this paper realizes this conceptual
framework, provides a mechanism for identifying design
choices and detecting architectural mismatches, and can
serve as a tool for architectural composition. 
The overall structure of our proposed connector classification
framework is depicted in Figure 2: each connector is
identified by its primary service category and further refined
based on the choices made to realize these services. The
characteristics most commonly observed among connectors
are positioned towards the top of the framework, whereas the
variations are located in the lower layers. The framework
comprises service categories, connector types, dimensions,

sub-dimensions, and values for the dimensions. A service
category represents the broad interaction role the connector
fulfills. Connector types discriminate among connectors
based on the way in which the interaction services are
realized. The architecturally relevant details of each
connector type are captured through dimensions, and,
possibly, further sub-dimensions. Finally, the lowest layer in
the framework is formed by the set of values a dimension (or
sub-dimension) can take. Note that our classification does
not result in a strict hierarchy, but rather in a directed acyclic
graph (DAG). Connector species are created by choosing the
appropriate dimensions and values for those dimensions
from (possibly several) connector types. It is possible, in
principle, to combine dimensions in an arbitrary fashion,
although we expect that some combinations would be
infeasible.
The remainder of this section describes in more detail the
classification framework and a comprehensive taxonomy that
can be used as the foundation for classifying software
connectors. Figure 3 shows the taxonomy and is used as the
basis of discussion. The interaction services are shown on the
extreme left, the species on the extreme right, and connector
types, dimensions, sub-dimensions, and values in between.
Occasionally, species are highlighted against a single
relevant dimension for illustration, although they would also
have values for other dimensions.

Service Categories
The topmost layer in our classification framework is the
service category, which specifies the interaction services a
connector provides. We identify the following four categories
of interaction services as a refinement of the connector roles
proposed by Perry [27]. The categories fully describe the
range of possible component interactions:

Communication. Communication connectors support
transmission of data among components. Data transfer
services are a primary building block of component

Category
1

Category
2

Category
3

Category
4

Type
1

Type
2

Type
3

Type
8...

Dimension
1

Dimension
2

Dimension
3

Dimension
m...

Species
A

Species
B

Species
Z...

Value 3

Value 1

Value 4

Value 2

Value 5

Subdimension
1

Subdimension
2

Figure 2. Structure of the connector classification framework.
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Service Type Dimension Subdimension Value Species

Procedure call

Data Access

Linkage

Stream

Arbitrator

Distributor

Parameters

Entry point

Invocation

Synchronicity

Cardinality

Accessibility

Data transfer

Semantics

Invocation record

Reference
Value
Name
Default values
Keyword parameters
Inline parameters

Return values
Push from L to R
Push from R to L
Hash table

Multiple
Single

Coroutines
Subroutines

Method call
Macro call
Inline
System call
Exceptions
Callbacks
Delegation

Explicit

Implicit

Asynchronous
Synchronous

Fan out
Fan in

Private
Protected
Public

Implicit
Explicit
Variable
Procedure
Function
Constant
Type

Unit

Syntactic

Semantic

Reference

Granularity

Cardinality

Binding

Defines
Uses
Provides
Requires

Compile-time
Run-time

Thread specific
Process specific
Global
Accessor
Mutator
Register
Cache
DMA
Heap
Stack

File I/O
Repository access

Dynamic data exchange
Database Access

Transient

Persistent

Accessibility
Private
Protected
Public

Lifecycle Initialization
Termination

Windows registry access
CORBA repository access

Cardinality Defines
Uses

Availability

Access

Locality

Constructor
Destructor

Delivery

Bounds Bounded
Unbounded

Buffering Buffered
Unbuffered

Throughput Atomic units
Higher-order units

State Stateless
Stateful

Identity Named
Unnamed

Locality Local
Remote

Synchronicity
Synchronous
Asynchronous
Time out synchronous

Format Raw
Structured

Cardinality Binary
N-ary

bps
HTTP op/s

Multi sender
Multi receiver
Multi sender/receiver

Scheduling

Naming

Delivery

Time
Weight

Semantics

Mechanism

Structure based
Attribute based

NFS

X-400

Event

Cardinality

Delivery

Synchronicity

Notification

Causality

Mode

Producers
Observers
Event patterns

Best effort
Exactly once
At most once
At least once

Synchronous
Asynchronous
Time out synchronous

Polled
Publish/subscribe
Central update
Queued dispatch
Absolute
Relative
Page faults
Interrupts
Traps

Signals
GUI input/output
Triggers

Hardware

Software

Rapide posets

Authoritative
Voting

None
Supported
Required
New

Capabilities
Access control lists
Encryption
Information padding

Single session
Multi session

Semaphore
Rendezvous
Monitor
Lock

Fault

Concurrency

Transactions

Security

handling

Nesting

Awareness

Single
Multiple

Authentication
Authorization

Privacy

Integrity

Durability

TP monitors

4

Best effort
Exactly once
At most once
At least once

Service Type Dimension Subdimension Value Species

Communication
Coordination

Communication
Coordination

Communication
Conversion

Facilitation

Communication

Coordination
Facilitation

Facilitation

Priority Outgoing
Incoming

SQL

Isolation
Read
Write
Read/Write

Mechanism

Weight
Light
Heavy

Inter-thread
Inter-process

Digital signatures

Hierarchical
Flat

FCFS

Best effort
Exactly once
At most once
At least once
Unicast
Multicast
Broadcast

Routing
Membership

Path
Static
Cached
Dynamic

Bounded
Ad-hoc

XMI, DDX

Pre-compile-time

Screening Firewall

LRU

Adaptor

Invocation

Packaging

Protocol

Presentation Internationalization
Clipboard access

V tablesAddress mapping
Marshalling
Translation

Wrappers
Packagers

Yellin&Strom adaptors
C2 domain translators

DeLine packaging

conversion

conversion

conversion

conversion

Conversion

LRPC

Forks and Exec

Interpreters

Redundancy check
Certificates

Figure 3. Connector Taxonom
y. A

 sm
all num

ber of connector species is included for illustration purposes.
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interaction. Components routinely pass messages, exchange
data to be processed, and communicate results of
computations.

Coordination. Coordination connectors support transfer of
control among components.1 Components interact by
passing the thread of execution to each other. Function calls
and method invocations are examples of coordination
connectors.2 Higher-level connectors, such as signals and
load balancing connectors, provide richer, more complex
interactions built around coordination services.

Conversion. These connectors convert the interaction
required by one component to that provided by another.
Enabling heterogeneous components to interact with each
other is a non-trivial task. Interaction mismatches are a major
hindrance in composing large systems [14]. The mismatches
are caused by incompatible assumptions made by
components about the type, number, frequency, and order of
interactions in which they are to engage with other
components. Conversion services allow components that
have not been specifically tailored for each other to establish
and conduct interactions. Conversion of data formats and
wrappers for legacy components are examples of connectors
providing this interaction service.

Facilitation. Facilitation connectors mediate and streamline
component interaction. Even when heterogeneous
components have been designed to interoperate with each
other, there is a need to provide mechanisms for facilitating
and optimizing their interactions. Mechanisms like load
balancing, scheduling services, and concurrency control are
required to meet certain extra-functional system
requirements and to reduce coupling between components. 
Every connector provides services that belong to at least one
of these categories.  It is also possible to have multi-category
connectors to satisfy the need for a richer set of interaction
services. For example, it is possible to have a connector that
provides both communication and coordination services. 

Connector Types, Dimensions, and Values
Interaction services can be used to perform a broad
categorization of connectors, but this leaves a lot of details
unexplained. This level of abstraction cannot help us build
new connectors, nor can it be used to model and analyze
them (e.g., in an architecture). Hence, we further classify
connectors into different types based on the way in which
they realize interaction services: procedure call, event, data
access, linkage, stream, arbitrator, adaptor, and distributor.
Connector types are the level at which architects typically
consider interactions when modeling systems.
Simple connectors can be modeled at the level of connector
types; their details can often be left to design and
implementation. On the other hand, more complex
connectors often require that many of their details be decided
at the architectural level so that the impact of these decisions
can be studied early and on a system-wide scale. Those
details represent variations in connector instances and are

treated as connector dimensions in our taxonomy. In turn,
each dimension has a set of possible values. The selection of
a single value from each dimension results in a concrete
connector species. Instantiating dimensions of a single
connector type forms simple connectors; on the other hand,
using dimensions from different connector types leads to a
composite (“higher-order”) connector species. 
Each connector type is described in more detail below. Note
that our taxonomy does not define rules for composing
connectors. Instead, it provides a basis for the exploration of
new connector species.

Procedure Call
Procedure call connectors model the flow of control among
components through various invocation techniques
(coordination). They also perform transfer of data among the
interacting components through the use of parameters
(communication). These connectors are among the best
understood connectors and have been likened to the assembly
language of software interconnection [35]. Examples of
procedure call connectors include object-oriented methods,
fork and exec in Unix-like environments, callback invocation
in event-based systems, and operating system calls.
Procedure calls are used as the basis for composite
connectors, such as RPC [3].3 

Event
An event can be defined as “the instantaneous effect of the
(normal or abnormal) termination of the invocation of an
operation on an object, and it occurs at that object's location”
[33]. Event connectors are similar to procedure call
connectors in that they model the flow of control among
components (coordination). In this case, the flow is
precipitated with an event. Once the event connector learns
about the occurrence of an event, it generates messages for all
interested parties and yields control to the components for
processing these messages. Messages can be generated upon
the occurrence of a single event or a specific pattern of
events. The contents of an event can be structured to contain
more information about the event, such as the time and place
of occurrence, and other application-specific information
(communication). Virtual connectors are formed between
components interested in the same event topics. Event-based
distributed systems rely on the notion of time and ordering of
actions [18,19]. Therefore, dimensions such as causality,
atomicity, and synchronicity play a critical role in event
connector mechanisms. Event connectors are found in
distributed applications that require asynchronous
communication. An example is a windowing application,
where GUI inputs serve as the events that activate the system.
Finally, some events, such as interrupts, page faults, and
traps, are triggered by hardware and then processed by
software. These events may affect global system properties,
making it important to capture them in software architectures.

Data Access
Data access connectors allow components to access data
maintained by a data store component [28] (communication).
Data access often requires preparation of the data store
before and clean-up after access has been completed. In case

1. In a concurrent setting, transfer of control from component A to 
component B does not necessitate the loss of control by A.

2. Note that function calls and method invocations provide commu-
nication services in addition to coordination services. 3.  RPC also performs facilitation services.
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there is a difference in the format of the required data and the
format in which data is stored and provided, data access
connectors may perform translation of the information being
accessed (conversion). The data can be stored either
persistently or temporarily, in which case the data access
mechanisms will vary. Examples of persistent data access
include query mechanisms, such as SQL for database access,
and accessing information in repositories, such as the
CORBA interface repository. Examples of transient data
access includes heap and stack memory access, and
information caching. 

Linkage
Linkage connectors are used to tie the system components
together and hold them in such a state during their operation.
Linkage connectors enable the establishment of ducts, the
channels for communication and coordination, which are
then used by higher-order connectors to enforce interaction
semantics (facilitation).
Once ducts are established, a linkage connector may
disappear from the system or remain in place to assist in the
system’s evolution. Examples of linkage connectors are the
links between components and buses in a C2 style
architecture [39] and dependency relationships among
software modules described by module interconnection
languages (MIL) [29].
Note that linkage connectors do not enhance the functionality
of a system, but they are required to grow, monitor, and repair
existing systems. Architectural description that shows
interactions based on linkage connectors alone can obfuscate
system understanding. An example of such an architecture is
the Linux architecture as described in [4] and discussed in
Section 5 below.

Stream
Streams are used to perform transfers of large amounts of
data between autonomous processes (communication).
Streams are also used in client-server systems with data
transfer protocols to deliver results of computation. Streams
have been employed in formal architectural models to
represent connectors with fairly complex protocols of usage
[1,31]. Various dimensions, as shown in Figure 3, allow
specifying the design choices for realizing a stream
connector species. Streams can be combined with other
connector types, such as data access connectors, to provide
composite connectors for performing database and file
storage access, and event connectors, to multiplex the
delivery of a large number of events. Examples of stream
connectors are UNIX pipes, TCP/UDP communication
sockets, and proprietary client-server protocols. 

Arbitrator
When components are aware of the presence of other
components but cannot make assumptions about their needs
and state, arbitrators streamline system operation and resolve
any conflicts (facilitation), and redirect the flow of control
(coordination). For example, multi-threaded systems that
require shared memory access use synchronization and
concurrency control to guarantee consistency and atomicity
of operations. Arbitrators can provide facilities to negotiate
service levels and mediate interactions requiring guarantees
for isolation levels, reliability, and atomicity. They also

provide scheduling and load balancing services. Arbitrators
can ensure system trustworthiness by providing crucial
support for dependability in the form of reliability, safety,
and security. 

Adaptor
Adaptor connectors provide facilities to support interaction
between components that have not been designed to
interoperate. Adaptors involve matching communication
policies and interaction protocols among components
(conversion). These connectors are necessary for
interoperation of components in heterogeneous
environments, such as different programming languages or
computing platforms. Conversion can also be performed to
optimize component interactions for a given execution
environment (e.g., LRPC [2]). Adaptors may employ
transformations (e.g., table look-ups) to match required
services to the available facilities. 
Examples of adaptors include virtual memory translation;
Yellin and Strom's adaptors [40], which match incompatible
interaction protocols; virtual function tables used for
dynamic dispatch of polymorphic method calls [13]; and
DeLine's packagers [10]. XML metadata interchange (XMI)
is a recent approach that supports interchange of models
between applications and performs data presentation
conversion [23].

Distributor
Distributor connectors perform the identification of
interaction paths and subsequent routing of communication
and coordination information among components along these
paths (facilitation). They never exist by themselves, but
provide assistance to other connectors, such as streams or
procedure calls. Distributed systems exchange information
using distributor connectors to direct the data flow.
Distributed systems require identification of component
locations and paths to them based on symbolic names.
Domain Name Service (DNS) [21], routing, switching, and
many other network services belong to this connector type.
Distributors have an important effect on system scalability
and survivability.

5 TAXONOMY IN ACTION
The objective of our taxonomy of connectors is to provide
enough information about connectors to enable their
treatment as first-class elements of an architecture. This
would, in turn, lead to better designs of complex systems.
One of the risks with representing a complex system is that
its architecture may become an almost fully connected graph
of components (e.g., [4]). We believe this problem is
typically a consequence of the use of primitive connectors—
linkages. In order to test the utility of our taxonomy and the
rich connectors it allows, we chose to study a complex
system and assess the benefits of using more sophisticated
connectors. We selected Linux as a representative example,
partly because its architecture has been recently studied [4].
Bowman et al. identify interactions among Linux
components at the level of module dependencies, which are
equivalent to the ducts in our framework. Ducts are not rich
constructs and do not meaningfully describe component
interactions. We believe that the Linux architecture can be
rendered more meaningful by explicating higher-order
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connectors. We identified several such connectors in the
Linux architecture, three of which we discuss in this paper:
the file facade, IPC via shared memory access, and the
process scheduler. Each example is further discussed below. 

The Linux File Facade
The file facade is a commonly used abstraction to access
devices and file systems in Linux. It dispatches incoming
system calls for file operations; the actual behavior of this
connector depends on the calling process and the requested
resource. The facade can be used to access a variety of file
systems and devices, such as an ext2 file-system, a 32-bit
DOS partition, or a serial device. Consider the complexity of
interactions among the calling process and the requested file
resource in the case where a “file open” call is made by a
process on an exported NFS volume. The file may be local or
remote, and may be a link to yet another file. Further, the file
may be in contention, requiring the connector to arbitrate the
access. The calling process would also need to have rights to
access this file, which would require performing
authorization. The facade also modifies the system’s state
from user-mode to kernel-mode and vice-versa upon the
return of the call. The facade is composed of the system call
interface, the virtual file system, the ext2 file system and the
interface itself, as illustrated in Figure 4. Thus, in addition to
coordination, the facade performs arbitration of interaction
between the application process and physical file system and
adaptation by dispatching calls to various file systems and
device drivers.
An excerpt of the application of our taxonomy to this
connector is shown in Table 1. Note that the facade allows
simultaneous access to both readers and writers. Therefore,
components making use of this connector will have to either
use a mechanism to detect writers and lock the accessed
resource or extend the connector to include such a
mechanism.

Shared Memory Access
The second connector we consider is shared memory access,
a commonly used IPC mechanism on Unix-like systems. As
shown in Figure 5, the shared memory access connector is
structurally composed of a supporting library of system calls
that allow the creation, manipulation, and release of shared
memory.
Applying the taxonomy to shared memory access results in
Table 2. The table indicates that, as a connector, shared
memory access does not facilitate arbitration of data access
among multiple readers and writers. Therefore, additional
mechanisms would be required to isolate the interactions of
different components.

Process Scheduler
The process scheduler is responsible for switching system
resources between multiple user-level processes while
ensuring that undesirable system states, such as deadlocks
and resource starvation, do not compromise the integrity of
the system. Additionally, the scheduler must also try to
optimize the utilization of system resources. We propose that
the scheduler is a connector, as depicted in Figure 6. It links
the operating system to the application processes,
coordinates the processes’ access to system resources, and
abstracts the resources in a manner that allows their easy
access, independently of other processes. Such an interaction
is appropriately modeled as an arbitrator. Table 3 lists the
relevant process scheduler dimensions and values.
By treating it explicitly as a connector, we allow the Linux
process scheduler to be realized as an extensible entity that
may be used to configure a system’s characteristics. For
example we may redesign its scheduling property with a
prioritized queue or a cooperative multitasking algorithm that
will change the system’s performance accordingly.

Table 1: The file facade connector
Connector Type Dimension Value

Arbitrator Authorization Access Control Lists
Arbitrator Isolation Read/Write
Adaptor Invocation conversion Translation

system 
call interface

Virtual File
System

 ext2 (primary 
 file system)

facade 
interface table

Device
Drivers

Other file
systems

Duct

Legend:

Procedure call

Adaptor

The facade connector

Application
Process

Figure 4. The Linux file facade connector.

Table 2: Shared memory access connector
Connector Type Dimension Value

Data access Locality Global
Data access Access Accessor and Mutator
Data access Transient availability Heap
Data access Accessibility Protected
Data access Cardinality N defines; N uses

Table 3: The scheduler as a connector
Connector Type Dimension Value

Arbitrator Fault handling Authoritative
Arbitrator Concurrency weight Heavy
Arbitrator Authorization Access control lists
Arbitrator Scheduling Time

Physical 

Application
Process

Procedure call

Legend:

Data Access

Application
Process

shared memory
system calls

memory

The shared memory
access connector

Figure 5. The shared memory access connector.
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The examples discussed in this section show the power of
applying our taxonomy to a “real world” example. We
believe that our representation of connectors better describes
the component interaction semantics than Bowman et al.’s
[4]. In turn, this has the potential to support richer analysis
and easier understanding. Finally, the taxonomy will allow
designers to select from a range of connectors in a manner
that would be best suited for their system's desired extra-
functional properties such as performance, extensibility, and
security.

6 DISCUSSION AND CONCLUSIONS
Creating a taxonomy presents a tremendous intellectual
challenge. It requires classifying the work done by hundreds
of researchers over several decades into a compact
framework. The main contribution of this paper is the
underpinning of such a framework for charting the space of
software connectors. The framework is intended to serve as a
rallying point for software engineering, and particularly
software architecture researchers in realizing their shared
vision of giving connectors equal status to that of
components. We believe that the identification of primitive
building blocks of software interaction and the
comprehensive taxonomy provided in this paper form the
necessary foundation for determining the characteristics of
any connector.
We do not expect that our framework is complete in its
current form. Instead, it is intended to enable better and more
complete understanding of software connectors and to evolve
as that understanding improves. At the same time, we feel
that our recognition that every connector comprises a set of
ducts and engages in transfers of data and/or control will
remain valid. We also believe the four connector services and
eight types to be fairly stable. During the process of creating
the taxonomy and evaluating it on numerous examples over
the past year, we have found that all encountered connectors
could be classified as providing one or more of the services
and belonging to one (in the case of simple connectors) or
more (in the case of higher-order connectors) of the types.
On the other hand, the dimensions, sub-dimensions, and
values are likely to evolve as our understanding of connectors
evolves. 
The scope of the taxonomy is one aspect of our work that
distinguishes it from other studies of connectors (e.g.,
[16,27,35]). Another unique aspect is that we do not use the

taxonomy only to understand and analyze existing
connectors, but also to synthesize new connector species.
This was demonstrated in the context of the Linux example
in Section 5. If properly coupled with use contracts that
specify the constraints under which a connector can be used,
the taxonomy is likely to become a useful aid to software
architects in defining their own connectors. Note that
creating unprecedented connectors is not a trivial task. Just as
component integration has presented tremendous challenges
to software engineers, so too will the integration of
heterogeneous connectors. At the least, it will require better
understanding of the connectors’ complementary,
orthogonal, and incompatible characteristics. A taxonomy
such as the one we propose is a necessary precursor to
identifying such relationships among the connector types,
their dimensions, and values.
Many issues remain venues of future work. We intend to
further study connector properties, relationships, and
tradeoffs in order to devise novel connectors to help
automate programming tasks that currently require manual,
but recurring solutions. For example, we intend to investigate
the possibility of constructing a parallel execution connector
that would allow developers to eliminate application-specific
constructs for parallel execution from components. We will
also study the possibility of automatically adding distribution
support (via a distributor connector) to connectors that only
support local interactions.
We will investigate these and similar problems in the context
of a toolset that will allow experimentation with and
evaluation of connectors. An initial prototype of the toolset,
built in Java, is already operational. Thus far, in addition to
the simple connector types provided by Java (procedure calls
and data access), we have begun exploring event connectors.
This work is an extension of our previous work with
message-based connectors, adaptors, and wrappers used in
the context of the C2 architectural style [39]. A planned,
future extension of the toolset will allow us to measure and
monitor execution characteristics of connectors to enable
their runtime augmentation (e.g., to support better load
balancing) and replacement. Finally, we intend to use this
work as a platform for studying the trade-off between
connector efficiency and adaptability, identified as the key
factor in effectively supporting architecture-based runtime
software evolution [29].
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