
Microcomponent-Based Component Controllers: A Foundation for
Component Aspects ∗

Vladimir Mencl1
1Charles University

Faculty of Mathematics and Physics
Department of Software Engineering

Prague, Czech Republic
{mencl,bures}@nenya.ms.mff.cuni.cz

http://nenya.ms.mff.cuni.cz/

Tomas Bures1,2
2Academy of Sciences of the Czech Republic

Institute of Computer Science
Prague, Czech Republic

bures@cs.cas.cz
http://www.cs.cas.cz/

Abstract

In most component models, a software component
consists of a functional part and a controller part. The
controller part may be extensible; however, existing
component models provide no means to capture the
structure of the controller part, and therefore neither
to specify the controller part extensions.

In this paper, we introduce a minimalist component
model to capture the structure of the controller part,
coining the term microcomponent for the controller
part elements. We further introduce the concept of a
component aspect as a consistent set of controller part
extensions. Within this framework, it is possible to
seamlessly integrate controller part extensions, apply-
ing them to the components selected in the application’s
launch configuration. We have evaluated these concepts
in a prototype implementation.

Keywords: component controllers, component models

1. Introduction & Motivations

1.1. Background

Component models [2, 5, 18, 8, 10, 15] have been in
the research focus for a number of years; a part of the
general consensus is that components communicate via
a set of server and client interfaces (also called provided
and required); many of the component models are hi-
erarchical, permitting a component to be composed of
subcomponents. A component typically consists of a

∗This work was partially supported by the Czech Academy of Sci-
ences project 1ET400300504, by the Grant Agency of the Czech Re-
public project 102/03/0672, and in terms of application by France
Telecom under the external research contract number 46127110. We
also owe a thank to Francois Horn for his valuable initial comments.

functional part and a controller part – e.g., in the Frac-
tal component model [2, 3] and in SOFA [15]. Func-
tional part is also called business part, e.g., in EJB [18].
The controller part (also controller for short) may take
the form of a fixed set of API functions specific to the
concrete component model.

We focus on Fractal since it features explicit con-
trol interfaces, navigable via introspection in the same
fashion as functional interfaces. The control interfaces
expose the control features of the controller part of a
component, allowing for easily extending the compo-
nent model with new features. In the same vein, these
extensions may introduce additional control interfaces
to access the new control features.

1.2. Motivations

The possible component model extensions may
range from a simple controller providing only a collec-
tion of getter/setter methods (e.g., to store the specifica-
tion of the component behavior) through controller part
elements interacting with other controller elements, to
complex collections of interacting objects, intercepting
calls on possibly both functional and control interfaces
of the component. In specific cases, the extension func-
tionality may have a complex structure which would be
the best captured in a standalone control component.
For example, interceptors monitoring behavior on the
functional interfaces might interact with a central log-
ging control component.

While the Fractal component model permits the con-
troller part to be extended, it provides no means to spec-
ify such extensions. From our experience with devel-
oping controller extensions, we have identified the fol-
lowing properties of the extension mechanism as im-
portant: (1) support to easily combine different con-

http://nenya.ms.mff.cuni.cz/
http://www.cs.cas.cz/

troller extensions, (2) means to select individual com-
ponent instances to which the extensions will be ap-
plied, (3) encapsulation of complex control functional-
ity in standalone control components, specified in sepa-
rate ADL descriptions; even such extensions should not
affect the functional part of the application’s architec-
ture, nonetheless, (4) the extension mechanism should
also capture the ties (bindings) between the controller
part extensions and the control components.

At the abstract level of the Fractal component model,
there are no means to capture the structure of the control
part. Consequently, there is no unified and transparent
way to specify controller part extensions. While this
may be addressed by a Fractal implementation, none of
them (in particular, Julia [13], AOKell [17], and SOFA
[15]) does so in a satisfactory way.

Julia [13], the reference implementation of the Frac-
tal component model, features a mechanism for speci-
fying the contents of the controller part. However, this
mechanism uses a notation which is hard to manage,
and does not provide important aspects of the controller
part structure, omitting the dependencies of the individ-
ual controller objects. Some of their requirements are
specified in plain English in the documentation gener-
ated from the source code; some are not documented at
all. Consequently, it is not possible to verify the consis-
tency of a particular controller specification.

In addition, the Julia approach is heavily based on
mixins, leading to several disadvantages: (i) extensions
to existing controllers have to be developed as mixins,
and consequently, (ii) extension developer must learn to
implement mixins, (iii) the extensions are hard to de-
bug (a merged generated class is executed instead of its
constituent mixin classes), and (iv) it is hard to com-
bine controller extensions, due to the notation used to
specify the controller part contents.

AOKell [17], another implementation of Fractal, em-
ploys AspectJ [9] to weave the component content to-
gether with its controller; this mechanism may also be
used to extend the controller with extensions developed
as AspectJ aspects. However, this approach permits to
select components to be extended only by component
type and not by a particular instance, and does not ad-
dress the other issues we have identified, such as the
need for control components. The SOFA component
model [15], also an implementation of Fractal, does not
provide means to extend the component controller, and
neither features a mechanism to capture the controller
part structure.

1.3. Goals & Structure of the Paper

The goals of this paper are twofold: first, to intro-
duce a component-based model for explicitly capturing
the structure of the component controller part, and af-
terwards, based on this model, to introduce an aspect-
based model for specifying controller part extensions;
the extension model we present is designed to fulfill the
properties (1-4) described in the previous section.

We describe results achieved in the Asbaco project
(Aspect-Based Controllers). The microcomponent
model and the extension mechanism we have developed
within this project are applicable to the Fractal compo-
nent model in general, not specific to a particular im-
plementation, and are possibly applicable also to other
component models.

The paper is structured as follows: in Sect. 2, we
introduce the Asbaco microcomponent model for cap-
turing the internal structure of the component controller
part. Next, in Sect. 3, we introduce an aspect-based
model for specifying controller extensions. We evalu-
ate our results and discuss a case study in Sect. 4. The
Sections 5 and 6 compare our approach to related work,
and draw a conclusion.

2. Asbaco Microcomponent Model

In the Asbaco project, we use the component concept
to capture the structure of the component controller; for
this task, we employ a minimalist component model.
We coin the term microcomponent to refer to a compo-
nent forming a part of the component controller; we re-
serve the term component to refer to the host component
(or another component in the host component model).

In this section, we introduce the key features of the
microcomponent model. We postpone introducing the
XML-based microcomponent architecture description
language until Sect. 3, focused on specifying consistent
controller extensions. Within this section, we use a dia-
grammatic notation to describe controller part configu-
rations (figures 1 and 3 described later in this section).

The microcomponent model is flat; a microcom-
ponent may not contain other microcomponents. To
avoid undesired recursion in the component model def-
inition, microcomponents do not have a controller part,
and control interfaces of a microcomponent are imple-
mented by its content part. As the microcomponent
model is a minimalist component model, there are only
few interfaces to be implemented; the only control fea-
tures to be implemented by a microcomponent are the
interfaces required for establishing bindings. In partic-
ular, a microcomponent does not provide interfaces for
introspection (e.g., interface Component in Fractal).

Figure 1. Fragment of microcomponent-based
controller part.

2.1. Basic Microcomponent Features

In this section, we introduce the basic features of
the microcomponent model; we illustrate them on the
fragment of a sample controller part shown in Fig. 1.
Each microcomponent has a set of client and server in-
terfaces. A server interface represents the services of-
fered by the microcomponent. A client interface must
be bound either to a server interface of another micro-
component, or to an external control interface of the
host component (may be either client or server). A
server control interface of the host component may del-
egate to a microcomponent, while a client control inter-
face should delegate to a functional interface of a stan-
dalone control component (control components will be
described in Sect. 2.3). To capture the common pat-
tern of a delegation chain, a microcomponent may des-
ignate one server and one client interface as delegate
interfaces.

Figure 1 illustrates most of the concepts on a hypo-
thetical controller extension monitoring the activity on
the lifecycle-controller external control in-
terface via a standalone control component Logger.
The lifecycle-controller interface is dele-
gated to the LCNotifier microcomponent featur-
ing a server delegate, a client delegate, and a regu-
lar client interface. LCNotifier further delegates
the incoming calls to the original lifecycle implemen-
tation, microcomponent LCImpl. The client interface
of LCNotifier is bound to the only server inter-
face of the standalone microcomponent callLogger.

The callLogger microcomponent features also two
client interfaces. The first one is bound to the
server control interface name-controller. While
the effect is similar to establishing a binding di-
rectly to the microcomponent NCImpl implement-
ing this control interface, binding to a control in-
terface of the host component assures that the bind-
ing will be always established to the very start of
the delegation chain, even when a new microcompo-
nent is inserted there. The second client interface of
callLogger is bound to the external client control
interface logger-controller, which is bound to
the standalone control component logger.

Technically, each microcomponent interface must
specify its name, type (signature) and role (client,
server, delegateclient, or delegate-
server). As the delegate interfaces are bound
implicitly, they are not required to specify a name.

2.2. Intercepting Functional Interfaces

We now demonstrate how the microcomponent
model supports intercepting calls on interfaces of the
host component. Intercepting a control interface is
rather straightforward: an intercepting microcomponent
can be created specifically for the type of the intercepted
interface and inserted into the delegation chain. How-
ever, a more complex solution is required in the case
of functional interfaces, where the interface type is not
known at the time the microcomponent is developed.

To support interception on functional interfaces, the
microcomponent model also introduces dynamic micro-
components, generated for each concrete interface type
intercepted. Such microcomponents may feature dy-
namic delegate interfaces: a dynamic delegate interface
does not specify its type, instead, the type of the inter-
face is derived from the setting the microcomponent is
being instantiated in.

Such interception microcomponents have to be gen-
erated for each type of functional interface encountered.
A possible approach would be to manually develop an
interceptor generator for each new controller extension.
To ease the development of controller extensions, the
Asbaco framework introduces a predefined generic in-
terception interface (shown in Fig. 2 as a Java interface)
and a generator constructing the interception micro-
components. These generic microcomponents can be
inserted into the delegation chain of the concrete func-
tional interface and interact with the extension-specific
microcomponents via the predefined generic interface;
the extension developer has only to provide the interface
type independent microcomponents.

public interface InterceptorNotify {
Object preInvoke(String interfaceTypeName,

String interfaceName, String methodName,
String methodSignature, Object parameters []);

void postInvoke (String interfaceTypeName,
String interfaceName, String methodName,
String methodSignature, Object parameters [],
Object context , Object retval , Exception exception);

}

Figure 2. Predefined interception interface.

Figure 3. Fragment of controller part intercept-
ing a functional interface.

Figure 3 demonstrates this mechanism on a hypo-
thetical extension logging requests via a log4j logger.
The extension is applied on the rh external interface of
type RequestHandler. The notifyForwarder
microcomponent is generated by the Asbaco frame-
work. Besides the delegate-server and delegate-client
interfaces, the microcomponent has a notify inter-
face of the predefined type InterceptorNotify
(fig. 2). The microcomponent callLogger is the
only component to be created by the extension de-
veloper; the sole task of this microcomponent is
to gather information about the intercepted calls via
the notify interface and emit log messages on the
loggerFactory interface.

Note that this simple interception mechanism only
provides notifications about the call being performed,
and does not permit to alter the call. There are a num-
ber of features which might be possibly supported by
the interception mechanism, e.g., the extension-specific
microcomponent might be permitted to alter the param-
eters or to possibly block the call. This area is sub-
ject of further research in the Asbaco project. The bot-
tom line is that while the Asbaco framework provides
a predefined interface and a microcomponent generator
to handle the most common situation, the microcompo-

nent model permits to employ custom generators con-
structing interception microcomponents tailored to the
particular needs.

2.3. Control Components and Client Control
Interfaces

The functionality of a controller extension may in-
clude a part that has itself complex structure which
would be the best captured in a software component.
Such a part may also serve as a “backend” for the con-
troller extensions, and it may be desirable that it exists
in only one singleton instance. Therefore, we introduce
the concept of a control component. A control compo-
nent is specified in the same way as the top-level com-
ponent of an application (i.e., using the architecture de-
scription language). As the need to instantiate the con-
trol component comes from the controller extension and
not the application, a control component is not instan-
tiated inside the application top-level component, but
forms a separate orthogonal hierarchy.

The controller extension specifies the control com-
ponents to be instantiated for this extension (by refer-
ring to ADL specifications of these components). The
controller extension also specifies the bindings to be es-
tablished between functional interfaces of the control
component and control interfaces of the component to
which the extension is applied. As control components
may have client and server functional interfaces, we in-
troduce client control interfaces to permit binding to a
functional server interface of a control component. A
client control interface is a connection point for micro-
components to access the functionality offered by the
control component. The binding of the client control
interface to the control component is established at the
time the controller part is created; a client control in-
terface may be accessed by all microcomponents in the
controller part. Please note that client control interface
is an extension with respect to the current Fractal spec-
ification [3].

2.4. Concrete Model: Mapping Asbaco Micro-
components to Java

We introduce a concrete mapping of the microcom-
ponent model to the Java programming language; this
mapping is also used in our prototype implementa-
tion. This mapping defines the concrete interfaces
to be implemented by a microcomponent. The in-
terfaces, inspired by Fractal BindingController,
are ClientBindings and DelegateBindings
(fig. 4). Due to the specific nature of the delegate
interfaces, we have introduced separate interfaces for

public interface ClientBindings {
public void bindMc(String itf , Object o);
public void unbindMc(String itfName);

}
public interface DelegateBindings {

public void bindMcDelegate(Object ref);
public void unbindMcDelegate();

}
public interface Configurable {

public void configureMc(Map parameters);
}

Figure 4. Microcomponent control interfaces.

regular bindings and for delegate bindings. One par-
ticular issue to resolve was the signature of these
interfaces. We have considered reusing the Frac-
tal BindingController interface, however, this
would clash with the actual interfaces of a microcom-
ponent situated in the delegation chain of the host com-
ponent’s binding controller. To avoid this clash, we
have decided to use a different signature. In addition to
the binding interfaces, the Configurable interface
is used to provide configuration parameters to a micro-
component (in the form of a Java Hashtable).

A microcomponent is implemented by a single Java
class. For simplicity, reference to an instance of the
class serves also as reference to all provided interfaces
of the microcomponent. A microcomponent is specified
by the list of its interfaces and either the name of the
implementing class, or, in the case of a dynamic micro-
component, the name of a microcomponent generator.

3. Extending Controllers via Aspects

Based on Asbaco microcomponent model presented
in the previous section, we now introduce the concept
of a component aspect. Following the general idea of
aspect-oriented programming [9], a component aspect
defines a consistent set of controller part extensions.
The extensions introduced by a component aspect may
include control components to be instantiated at the
global scope, control interfaces (client and server) to
extend the affected components, and microcomponents
to be instantiated in their controller part.

3.1. Defining an Aspect

In the Asbaco framework, an aspect is specified in an
XML language developed as an extension of the Fractal
ADL language [11]. We demonstrate this language in
Fig. 5 on the definition of the aspect logging, which

enforces logging of all calls on functional interfaces via
an external control component. This extension has al-
ready been used to illustrate the microcomponent model
in Sect. 2; Fig. 3 shows the configuration of microcom-
ponents for the case of a single interface.

An aspect definition starts with defining frame add-
ons and microcomponent types. A frame add-on
is a collection of control interfaces to be introduced
into a component: the frame add-on logger-itfs
consists of only a single client control interface
logger-controller. A microcomponent defini-
tion defines a microcomponent type in terms of its inter-
faces and content. The microcomponent callLogger
features a client and a server interface; its content
is specified by the name of the implementing class.
The dynamic microcomponent notifyForwarder
features, besides the notify client interface, also
a dynamic delegate-server and a delegate-client inter-
face. The content of a dynamic microcomponent is
specified by referring to a microcomponent generator,
InterceptorNotifyGenerator in this case.

An aspect also specifies control components to be
instantiated when the aspect is loaded by referring to
their ADL definitions. In our example, the logger
component is instantiated based on its definition in the
file logger-adl.fractal.

The core of an aspect is the specification of how ac-
tually should components be extended; such specifica-
tions are enclosed in component and interface selectors.
A component selector selects components by their type:
either composite, primitive, or any.

The extensions to be applied to the selected com-
ponent may include introducing new control interfaces
(by referring to a frame add-on definition), microcom-
ponents to be instantiated, bindings to be established
either among microcomponents or between a control
interface and a control component. In our exam-
ple, all components (type=any) are extended with
the logger-controller interface defined in the
logger-itfs frame add-on. This interface is bound
to the logFactory interface of the logger control
component.

An interface selector selects one or more external in-
terfaces (i.e., interfaces of the host component) based on
their name and type (either functional, control,
or any). The specified extensions are applied to each of
the interfaces selected; the extensions may include mi-
crocomponent instantiation and establishing bindings.
A microcomponent specified in an interface selector is
instantiated separately for each such interface. Within
the context of an interface selector, a microcomponent
may be inserted into the external interface’s delegation
chain. This insertion is controlled via the flow at-

tribute of the instantiation instruction. Passthrough flow
inserts the microcomponent to the head of an existing
delegation chain of the external interface, by rebinding
the external interface to the delegate-server interface of
the new microcomponent, and binds its delegate-client
interface to the original head of the delegate chain. End-
point flow establishes a new delegate chain, by bind-
ing the external interface to the delegate-server interface
of the microcomponent. Standalone flow assumes all
bindings will be established explicitly, and is the only
flow permitted outside the context of an interface se-
lector (for microcomponents instantiated directly in a
component selector).

In our example, the dynamic microcomponent
logfwd is instantiated for each external func-
tional interface and inserted into its delegation chain
(passthrough flow). For each such interface, also an
instance of the callLogger microcomponent is cre-
ated, and a binding is established between these com-
ponents.

An aspect may specify microcomponent bindings
(among two microcomponents or between a micro-
component and a control interface, <binding>
element) and component bindings (between
a control interface and a control component,
<component-binding>). Both of them spec-
ify client and server side of the binding, each consisting
of instance name and interface name. Instance name
is either name of a control component, name of a
microcomponent, or keyword this (when referring
to a control interface of the host component). Instance
name must be visible within the scope of the binding
instruction. A microcomponent name is visible inside
the selector directly enclosing its instance definition
and in its nested selectors. The name of a control
component is visible throughout its defining aspect.

Special rules apply to bindings to control interfaces
(this keyword). Control interfaces are the only point
of interaction among aspects: an aspect may not explic-
itly bind microcomponents to microcomponents instan-
tiated by other aspects, but may only access control in-
terfaces they declare — either to bind a microcompo-
nent to the control interface, or to insert a microcompo-
nent into the delegation chain associated with the con-
trol interface. Hence, a binding may via the this key-
word reference a control interface not defined within the
scope of the aspect.

3.2. Launch Configurations

After defining a collection of aspects, the remaining
step is to select the aspects to be loaded and applied to
the components forming an application (as well as to

<aspect-definition name="logging" >
<frame-addon-definition name="logger-itfs" >
<interface signature="LoggerFactory"

role="client" name="logger-controller"/>
</frame-addon-definition>
<component name="logger"

definition="logger-adl" />

<microcomponent-definition
name="callLogger" >

<interface signature="InterceptorNotify"
role="server" name="notify" />

<interface signature="LoggerFactory"
role="client" name="loggerFactory" />

<interface signature="NameController"
role="client" name="name" />

<content class="LoggerInterceptor" />
</microcomponent-definition>

<microcomponent-definition
name="notifyForwarder" >

<interface signature="InterceptorNotify"
role="client" name="notify" />

<dynamic-interface role="delegateserver" />
<dynamic-interface role="delegateclient" />
<content

generator="InterceptorNotifyGenerator"/>
</microcomponent-definition>

<select-component type="any" >

<frame-addon definition="logger-itfs" />
<component-binding client="this.logger-controller"

server="logger.logFactory" />

<select-interface name="*" type="functional">

<microcomponent name="logFwd"
definition="notifyForwarder"
flow="passthrough" />

<microcomponent name="logCalls"
definition="callLogger" flow="standalone"/>

<binding client="logCalls.loggerFactory"
server="this.logger-controller" />

<binding client="logCalls.name"
server="this.name-controller" />

<binding client="logFwd.notify"
server="logCalls.notify" />

</select-interface>
</select-component>

</aspect-definition>

Figure 5. Logging aspect ADL specification.

<configuration>
<aspect name="protocols" definition="...protocols"/>
<aspect name="logging" definition="...logging"/>
<apply-aspect name="protocols"/>

</aspect>
<application definition="examples.hello.Hello">
<apply-aspect name="protocols"/>
<apply-aspect name="logging">
<param name="logger-key" value="auditlog"/>
<target path="./server"/>

</apply-aspect>
</application>

</configuration>

Figure 6. Sample launch configuration.

control components instantiated by aspects). Such a se-
lection is captured in a launch configuration. Figure 6
shows a sample launch configuration. The configura-
tion loads two aspects, protocols and logging.
The aspect protocols permits to associate a com-
ponent with a behavior specification (a behavior pro-
tocol [16]). The logging aspect (shown in detail in
Fig. 5) logs all calls on functional interfaces of the af-
fected component. An aspect may be applied to another
aspect, affecting the control components instantiated by
the target aspect. In our example, the protocols as-
pect is applied to the logging aspect; consequently,
the logger control component will feature a controller
to associate it with a behavior specification. Note that
the relation formed by applying an aspect to another as-
pect must be acyclic, in order to avoid the possibility of
infinite recursion.

After declaring all the aspects to be loaded, the
launch configuration eventually specifies the applica-
tion to be started by referring to its ADL specifica-
tion, and also specifies the aspects to be applied. When
an aspect is applied either to the application or to an-
other aspect (its control components), the aspect may
either affect the whole component hierarchy, or tar-
get only a fraction of the component tree (to select
the target components, we employ a notation based
on the Ant FileSet syntax [1]). In our example, the
protocols aspect is applied to all components, while
the logging aspect is applied solely to the server sub-
component. The launch configuration may also pro-
vide parameters to be passed as key-value pairs to the
configureMc method of each microcomponent of
the aspect; the parameters are specified either system-
wide, specific for each explicit application of the aspect
(apply-aspect instruction), or possibly specific for
each target. In Fig. 6, the parameter logger-key is
provided for the aspect logging.

4. Evaluation

Evaluation. To evaluate the microcomponent model
and the component-aspect framework proposed in this
paper, we have reimplemented several existing con-
troller objects as component aspects and tested the
framework on existing Fractal applications. The con-
figuration framework allows us to easily impose con-
trol features on selected components without altering
the application architecture. This permits to postpone
decisions on application configuration and management
until deployment time, with very little overhead to carry
out these decisions.

The key contribution of the Asbaco project com-
pared to the solutions previously available is the seam-
less integration of controller extensions achieved via se-
lective application of component aspects to the compo-
nent hierarchy of an application. The other part of the
contribution is the microcomponent model, which per-
mits to capture the structure of the controller part of a
component; this framework permits to verify the consis-
tency of the controller configuration prior to launching
the application. Neither of these was possible with the
alternative approaches available for Julia [13], the refer-
ence implementation of the Fractal component model.

Considering the broad spectrum of Fractal imple-
mentations (see Sect. 5), the microcomponent model
may not be suitable for all of them. As a microcom-
ponent is in a simplified view an object with several
services provided and required, the microcomponent
model is applicable to Fractal implementations where
the controller part consists of “small object-like ele-
ments”; there, Asbaco provides a way to capture struc-
ture of the controller part. Even for Fractal implemen-
tations where this assumption does not hold, the model
provides a way to specify controller part extensions.

From the point of view of aspect oriented program-
ming, the join-points in our project are method execu-
tions, pointcuts may select component instances and in-
terfaces, and advices are reflected by microcomponents,
control interfaces, and control components. An interest-
ing feature of our model is, that while the general part of
the point-cut selection is specified in the aspect, the part
specific to the application hierarchy is specified sepa-
rately in the launch configuration.

Implementation. In the Asbaco project, we have de-
veloped a prototype implementation of the microcom-
ponent model and the component framework based on
Julia. The key part of our implementation is the com-
ponent factory, responsible for constructing a compo-
nent — including the controller part. The factory has
been integrated into Fractal by replacing the original
implementation of the GenericFactory interface in

the bootstrap component. This permits to apply aspects
also to components created directly via Fractal API calls
on the bootstrap components, besides the preferred ap-
proach to create components using the Fractal ADL
framework based on their ADL description. As our fo-
cus was on developing the microcomponent model and
the aspect framework, we have refrained from reim-
plementing the existing Julia controllers; instead, we
wrapped them as microcomponents.

Case study. To test the framework, we have con-
structed several aspects, arising from actual needs in
our Fractal-related projects we have developed for our
industrial partners. The aspects utilize all the features
presented in Sections 2 and 3, including control compo-
nents, client control interface, and interception on func-
tional interfaces. We have developed the logging as-
pect already used as the illustrative example in Sect. 3.
Among those aspects not presented in the previous sec-
tions, we have also experimented with the protocols as-
pect, which allows us to associate a component with
a behavior specification (behavior protocol [16]) via a
simple controller, and with the runtime checking aspect,
which allows us to monitor the behavior of a compo-
nent at runtime and to check whether it obeys its proto-
col. The runtime checking aspect instantiates a checker
backend control component, and intercepts operation
calls on functional interfaces to deliver event notifica-
tions to the checker backend component. To monitor
the component’s lifecycle (to check whether the com-
ponent’s protocol permits to stop at a particular point in
its execution), the aspect also inserts a microcomponent
into the delegation chain of the lifecycle controller. The
aspects can be also weaved together (e.g., the logging
aspect may be applied to the checker backend control
component to monitor its behavior). We also aim to
develop an aspect implementing the Java Management
Extensions (JMX) [19] monitoring features developed
in the Fractal JMX project [12]; here, the agent compo-
nent is also a candidate for a control component.

5. Related Work

The approaches related to our work can be basically
divided in two major groups — modeling component
controllers and using aspects to address crosscutting
concerns in components.

Modeling of component controllers is present in Ju-
lia [13] and AOKell [17] implementations of the Fractal
specification [3]. Julia uses mixins to dynamically cre-
ate the controller part of a component. The combination
of mixins yielding different controller configurations is
described in a special file loaded during Julia start-up.
Compared to our approach, extending a controller in Ju-

lia is difficult, quite error-prone, and requires a deep in-
sight into Julia internals. Moreover, it is not possible to
create new controller configurations at runtime.

AOKell on the other hand uses AspectJ [9] to weave
the controller part with the content. Each application
in AOKell comes with an AspectJ aspect which assigns
a controller configuration to every component. Thanks
to the use of aspects, extending a controller in AOKell
is easier than in Julia. However, new controller con-
figurations still cannot be created at runtime. More-
over, in AOKell, a controller definition is associated
with a component type (as opposed to a component in-
stance); thus, it is not possible to assign different con-
troller configurations to different instances of the same
component (which disallows us for example to log the
activity only of one particular component instance). An
interesting fact about AOKell is that the implementa-
tion of the three standard controller configurations (flat,
primitive, and composite) is created using a dedicated
Fractal-based component model; however, this compo-
nent model is used only as a tool for generating the con-
troller part implementation and has not been explicitly
documented as a component model for capturing the
controller part structure. The models for the three con-
troller configurations are hardwired in the implementa-
tion giving no possibility to be easily modified or reused
by an extension developer.

Important features of our work (not present in ei-
ther of these approaches) are the concepts of client con-
trol interfaces and control components. Control compo-
nents allow us to introduce new container-wide logic;
client control interfaces provide us with a systematic
solution to express that a controller requires a certain
control component.

Regarding the use of aspects to address crosscutting
concerns in components, there are a few approaches
aiming at this task. JAsCo [20] uses special weaving
connectors to associate component gates with aspect
beans (which contain the advice and part of the point-
cut specification). JAsCo has been implemented for
JavaBeans and .NET. FAC [14] augments every com-
ponent with an aspect controller to which advices are
registered. The aspect controller intercepts the com-
ponent’s client and server interfaces and calls advices
for which a pointcut matches. The framework puts fo-
cus on interception of functional interfaces and does not
provide means to introduce new control interfaces or to
alter the controller’s behavior. The aspect components
in this approach are compatible with AOP Alliance API,
which is an open source initiative to define a common
API for AOP frameworks. FractalAOP [6] is similar
to FAC, however, the weaving logic is separated to a
special weaving component which intercepts calls on

the original component via a special Execution Con-
troller. Advices are represented using Advice Compo-
nents. Please note that Execution Controller is a client
control interface, however, [6] does not elaborate it as a
generic concept.

As the aspect weaving was not the primary goal of
our work, these approaches are more mature providing
a richer selection of pointcuts compared to our work.
On the other hand, they rely on modifying an applica-
tion architecture by introducing the advice components.
In our work we do not require this (the logic is hidden in
the controller part of a component), which in our opin-
ion yields a more systematic solution.

6. Conclusion & Future Work

In this paper, we have presented a microcomponent
model to capture the structure of the controller part of
a software component. Based on the microcomponent
model, we have presented a framework for extending
the controller part via component aspects. With the
framework, different controller extensions can be seam-
lessly integrated by applying a selection of aspects to
the application component hierarchy. While the re-
sults have been demonstrated on the Fractal compo-
nent model, they are applicable also to other component
models featuring explicit controller part and control in-
terfaces. In the Asbaco project, we have developed a
prototype implementation of both the microcomponent
model and the component aspect framework; the imple-
mentation is based on Julia [13], the reference imple-
mentation of the Fractal component model [2].

Future work. One of the key goals in our future work
is to investigate further needs in interception on func-
tional interfaces, and to possibly introduce additional
predefined interfaces. To extend the flexibility in in-
terception, we consider introducing parameterized mi-
crocomponent templates to model interface type adap-
tations [7].

We plan to extend our prototype implementation
also to other implementations of the Fractal component
model; we would also like to explore the options to cre-
ate a universal implementation independent of the par-
ticular Fractal implementation used. Further, we aim to
extend the flexibility in selecting the target components
in applying an aspect; for this, we consider employing
the FPath language [4].

References

[1] Apache Software Foundation: Apache Ant User Man-
ual, version 1.6.5, http://ant.apache.org/
manual/, Jul 2005.

[2] Bruneton, E., Coupaye, T., Leclerc, M., Quema, V., Ste-
fani, J-B.: An Open Component Model and Its Support
in Java, Proceedings of CBSE 2004, May 24-25, 2004,
Edinburgh, UK, LNCS 3054, Springer, 2004

[3] Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal
Component Model, Draft 2.0-3, Feb. 5, 2004, http://
fractal.objectweb.org/specification/

[4] David, P.-C., Développement de composants Fractal
adaptatifs: un langage dédié à l’aspect d’adaptation,
PhD Thesis, École des Mines de Nantes and Université
de Nantes, Jul 2005

[5] Ecma International: Common Language Infrastructure
(CLI), 2nd edition, Dec 2002

[6] Fakih, H., Bouraqadi, N., Duchien, L.: Aspects and Soft-
ware Components: a case study of the Fractal Compo-
nent Model, WAOSD 2004, Beijing, China, Sep. 2004

[7] Galik, O., Bures, T.,: Generating Connectors for Het-
erogeneous Deployment, accepted for publication in
proceedings of SEM 2005, Lisbon, Portugal, Sep 2005

[8] Jacob, J.: The OMEGA Component Model, Electr. Notes
Theor. Comput. Sci. 101: 25-49, Nov. 2004

[9] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., Griswold, W.G.: An Overview of AspectJ, In
Proceedings of ECOOP 2001, June 18-22, 2001, Bu-
dapest, Hungary, LNCS 2072, Springer, 2001

[10] Object Management Group (OMG): CORBA Compo-
nent Model, v3.0, formal/02-06-65, http://www.
omg.org/

[11] ObjectWeb: Fractal ADL Documentation,
http://fractal.objectweb.org/current/
doc/javadoc/fractal-adl/

[12] ObjectWeb: FractalJMX Documentation, http:
//fractal.objectweb.org/current/doc/
javadoc/fractal-jmx/

[13] ObjectWeb: Julia Documentation, http:
//fractal.objectweb.org/current/doc/
javadoc/julia/

[14] Pessemier, N., Seinturier, L., Duchien, L.: Components,
ADL and AOP: Towards a Common Approach, In Work-
shop ECOOP Reflection, AOP and Meta-Data for Soft-
ware Evolution (RAM-SE04), Jun 2004

[15] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP Architec-
ture for Component Trading and Dynamic Updating, In
Proceedings of ICCDS ’98, Annapolis, IEEE CS, 1998

[16] Plasil, F., Visnovsky, S.: Behavior Protocols forSoftware
Components, IEEE Trans. Software Eng. 28(11), 2002

[17] Seinturier, L., Pessemier, N., Coupaye, T.: AOKell: an
Aspect-Oriented Implementation of the Fractal Spec-
ifications, http://www.lifl.fr/∼seinturi/
aokell/javadoc/overview.html, Apr 2005

[18] Sun Microsystems, Inc.: Enterprise JavaBeans Specifi-
cation, Version 2.1, Nov 2003.

[19] Sun Microsystems, Inc.: Java Management Extensions
Instrumentation and Agent Specification, v1.2, Oct 2002

[20] Suvée, D., Vanderperren, W.: JAsCo: an Aspect-
Oriented approach tailored for Component Based Soft-
ware Development, In Proceedings of AOSD 2003,
March 17-21, 2003, Boston, MA, USA, ACM, 2003

http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html
http://ant.apache.org/manual/
http://ant.apache.org/manual/
http://fractal.objectweb.org/specification/
http://fractal.objectweb.org/specification/
http://www.omg.org/
http://www.omg.org/
http://fractal.objectweb.org/current/doc/javadoc/fractal-adl/
http://fractal.objectweb.org/current/doc/javadoc/fractal-adl/
http://fractal.objectweb.org/current/doc/javadoc/fractal-jmx/
http://fractal.objectweb.org/current/doc/javadoc/fractal-jmx/
http://fractal.objectweb.org/current/doc/javadoc/fractal-jmx/
http://fractal.objectweb.org/current/doc/javadoc/julia/
http://fractal.objectweb.org/current/doc/javadoc/julia/
http://fractal.objectweb.org/current/doc/javadoc/julia/
http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html

	1 Introduction & Motivations
	1.1 Background
	1.2 Motivations
	1.3 Goals & Structure of the Paper

	2 Asbaco Microcomponent Model
	2.1 Basic Microcomponent Features
	2.2 Intercepting Functional Interfaces
	2.3 Control Components and Client Control Interfaces
	2.4 Concrete Model: Mapping Asbaco Microcomponents to Java

	3 Extending Controllers via Aspects
	3.1 Defining an Aspect
	3.2 Launch Configurations

	4 Evaluation
	5 Related Work
	6 Conclusion & Future Work

