
Components, ADL & AOP: Towards a common approach

Nicolas Pessemier(1), Lionel Seinturier(1,2)

Laurence Duchien(1)

(1) INRIA Futurs, USTL-LIFL, Team GOAL/Jacquard, Villeneuve d’Ascq, France
(2) Univ. Paris 6, Lab. LIP6, Team SRC, Paris, France

first.last@lifl.fr

Abstract

Keywords: separation of concerns, ADL, component, AOP, Fractal

1 Introduction

Ever since the beginning of computer science, programming language designers have tried to find
more and more abstract software artifacts. The goal is to provide programmers with powerful and
safe structures to implement their solutions. Approaches such as architecture description languages
(ADL) [1], component-based programming (CBP) [2, 3] and aspect-oriented programming (AOP)
[4] all go towards that direction. By reifying software assemblies, ADLs provide a clear view of the
”software map” of the application. CBP promotes modularity and composability by encapsulating
units of code into a capsule that can be deployed, configured, and used through some clearly
identified interfaces. Finally AOP provides a clear way for modularizing crosscutting concerns,
i.e. functionalities that, with object-oriented programming (OOP) or CBP can not be cleanly
localized in a single unit of code and crosscut several objects or components.

In this paper, we argue that each of the three approaches ADL, CBP and AOP, address
the issue of software evolution. ADL clarifies the way software entities interact. CBP packages
software entities in modules that can be more easily reused than objects. AOP removes from
objects functionalities that are out of the scope of their primary concern. Our point of view is
that ADL, CBP and AOP, extend object-oriented programming in different ways. Far from being
conflicting, these ways are complementary. In this paper, we present our first experiment towards
a framework that integrates concepts taken from these three domains. Basically, this framework
is based on a component model and provides an ADL to describe software architectures with
crosscutting concerns.

The paper is organized as follows. Section 2 reviews the existing project, Fractal, on which we
based our approach. Sections 3 and 4 present the extensions we introduce in Fractal to obtain a
framework that supports the concepts of ADL, CBP and AOP. Section 5 presents some related
works. Section 6 concludes this paper and provides our directions for future works.

2 Background

Building a framework that merges the concepts of ADL, CBP and AOP, is a challenge where
many choices are to be made. We can design and implement a whole framework from scratch, or
we can rely on some existing works. Section 5 reviews some of them. In order to obtain a first
working prototype, we decided to start from the Fractal framework [5] and to extend it. Fractal
is in our opinion, the project that is closest to the requirements stated in the previous section.

1

The remaining of this section presents Fractal, and the next two sections introduce the way we
extended it to support crosscutting concerns.

2.1 The Fractal Component Model & ADL

Many component models such as EJB, .Net or CCM exist and receive much interest from both
the academia and the industry. These models are however mainly dedicated to coarse grained
components for information system-like applications. Classes implementing these components
must enforce programming rules, they must be bundled with XML descriptors, and they need to
be executed by application servers. They can not thus be handled as easily as objects are handled
by virtual machines. Thus, despite of their wide adoption by the community, there is a need for
a lighter component model, closer to programming language concepts and that do not require the
extra-machinery of the above-mentioned models. The Fractal component model [5] meets these
needs. Further, it comes with an XML based ADL.

The Fractal component model [5] allows the definition, configuration, dynamic reconfiguration
and clear separation of functional and non functional concerns. Built as a high level model, it
put the stress on modularity and extensibility. The Fractal component model is recursive in the
sense that a component may be primitive, or composite. In the latter case, this is an assembly
that content other primitive or composite components. Components may also be shared between
different composites.

Interfaces play a central role with Fractal. There are two categories of interfaces: business
and control. Business interfaces are external access points to components. Fractal provides client
and server interfaces; a server interface receive operation invocations and a client interface emits
operation invocations. Thus, a Fractal binding represents a connection between two components
(primitive binding) or more (composite binding). The Fractal model is a strongly typed model.
As a consequence, the type of a server interface must be a sub type of the type of a client interface.
As their name suggests it, control interfaces provide a level of control on the component they are
attached to. These interfaces are in charge of some non-functional properties of the component,
for instance its life cycle management, or the management of its bindings with other components.

2.2 Programming with Fractal

This section illustrates with an example the concepts of the Fractal component model. The
example in figure 1 modelizes a gas station. Each rectangle is a component. Clients use a gun
to fill their tank, and pay at a cash register that is connected to a bank. Each of these elements
is a primitive Fractal component. There are two composite components: one for the station
and one for the whole system. Composite components are assemblies of primitive and/or (other)
composite components. The T-s attached to components are Fractal interfaces1. Arrows are
bindings between components: they go from a client interface to a server interface.

Gun Pump

CashRegister Bank Client
main

Station System

Figure 1: A gas station with Fractal components.
1Only business interfaces are specified in the example. Fractal provides the concept of control interfaces that

provide a level of control on the component there are attached to.

2

Fractal provides a Java API to create, introspect and manage the components, their interfaces
and their bindings. For instance, components can be started and stopped, and bindings can be
created and removed dynamically. The structural definition of components is provided with an
XML ADL. Figure 2 provides a piece of the architecture definition for the gas station.

<!-- A composite component definition -->
<component name="station">

<!-- The Station component provides (server role) or
requires (client role) interfaces -->

<interface name="gunProvideGas" role="server" signature="station.GunProvideGas"/>
<interface name="bankAuth" role="client" signature="station.BankAuth"/>
<!-- other interfaces -->

<!-- The station component contains the pump, gun & cashRegister components -->
<component name="pump">

<!-- ... -->
</component>

<!-- The Station component interfaces are bound to other interfaces
<binding client="this.cashRegisterUserInterface"

server="cashRegister.cashRegisterUserInterface" />
<binding client="this.gunProvideGas" server="gun.gunProvideGas" />
<!-- other bindings -->

</component>
<!-- -->

Figure 2: The software architecture of the gas station with the Fractal ADL.

3 Rationale for our Project

The software architecture presented in the previous section reifies business dependencies between
components. The bindings that have been identified come from the analysis of the business logic
of the application. Based on this logic, some crosscutting domains may arise when the application
evolves, either because some new unforeseen requirements emerge, or because all the concerns could
not have been addressed at a first stage. For instance, a security domain may be needed between
the CashRegister and the Bank components. This domain crosscuts the functional domains that
have been identified by the business analysis (figure 3 illustrates this).

Gun Pump

CashRegister Bank Client
main

Station System

Figure 3: Crosscutting security concern in the gas station example.

3

Whereas business assemblies and domains are clearly reified in the architecture description
of the Fractal ADL, this is not the case with the crosscutting domains: no artifact exists in the
Fractal model and ADL to express them. This is true for Fractal, but this is also true as far as
we know, for any other ADL or component model.

Hence, the purpose of our project is to extend the existing Fractal model and ADL to take
into account crosscutting domains.

4 Extending Fractal to support crosscutting concerns

The extension that we have implemented let us superimpose on an initial business assembly, a
level of assembly that corresponds to a crosscutting domain. Hence some new bindings need to
be set up. For instance, we want to redirect all outgoing calls from the CashRegister component
to perform some encryption functions, and we want to redirect all incoming calls to the Bank
component to perform a symmetric decryption function (figure 4 illustrates this).

CashRegister Bank

Crypt
AC

Decrypt
AC

interception
controller

interception
controller

EncrDecrComp
SecurityAC

Figure 4: Aspect component for the security concern.

At this point, we need two elements to implement our extension: we need the notion of a
component that localizes the definition of the crosscutting concern, and we need a mechanism
that weaves the crosscutting concern on a software architecture. Both elements are described
below.

4.1 Aspect Components

An Aspect Components (AC)2 localizes the definition of a crosscutting concern. This is the case
of SecurityAC in figure 4. This AC is composed of 3 sub-components: 2 of them, CryptAC and
DecryptAC, implement the interception logic associated with the security concern, and the 3rd
one, EncrDecrComp, provides the mathematical functions that are required to crypt and decrypt
messages. In AspectJ terms, we could say that CryptAC and DecryptAC implement pointcut
descriptors, whereas EncrDecrComp implements two pieces of advice.

The CryptAC and DecryptAC components are method interceptors. CryptAC intercepts
method calls and DecryptAC intercepts method executions. Their server interface conforms to the
AOP Alliance API3. They implement the MethodInterceptor interface that defines the following
method.

2The term Aspect Component comes from our previous project, JAC [6], which is a framework for dynamic
aspect-oriented programming in Java.

3AOP Alliance <http://sourceforge.net/projects/aopalliance> is an open-source initiative to define a com-
mon API for AOP framework. The API is implemented by Spring and JAC, and soon by DynAOP.

4

public Object invoke(MethodInvocation mi) throws Throwable;

The invoke method provides the code that must be run before and after the joinpoint. Method-
Invocation provides a proceed method to execute the joinpoint. To perform the interception,
both CryptAC and DecryptAC rely on an interception controller provided by the CashRegister
and Bank components. This controller ensures that the outgoing and incoming calls can be reified.

To sum up our approach, a crosscutting concern is implemented with a Fractal component
(composite like in our example, or simply primitive) called an aspect component (AC), that pro-
vides at least one MethodInterceptor interface. No other requirement is needed. The remainder
of this section focuses on the way ACs can be woven on top of a software architecture.

4.2 Crosscut bindings

In our approach, weaving an AC is very similar to binding two components together (except that
one of them is an AC, and that the other must provide an interceptor controller). There are two
ways to establish such a binding, that we call a crosscut binding: either directly, or declaratively
with a pointcut expression.

Direct crosscut binding. Starting from the references of the component to be aspectized and
of the AC, a crosscut binding is directly created between the two. All methods of the component
will then be intercepted by the AC. This binding is similar to establishing a meta-link relation
between a base component and a meta-component.

Crosscut binding with a pointcut expression. In this case, a pointcut expression is required.
It is composed of three regular expressions that operate on component names, interface names,
and method names. All methods that match the three expressions are aspectized by the AC. This
weaving is performed by calling a weaveAC method on a root business component. This method
recursively traverses the hierarchy of sub-components of this root component, and finds all the
methods that match the pointcut expression. The technique is similar to the weaving performed
by aspect compilers and frameworks.

Note that in both cases, bindings established either directly or with a pointcut expression, can
later on be manipulated dynamically: they can be unbound or rebound to modify the crosscut
policy of the AC. Hence, they are quite similar to bindings between business components.

5 Related Works

Some recent approaches tried to combine CBP and AOP. This section provides a quick review of
some of them.

A first approach that combines CBP and AOP is JAsCo [7] that extends the Java bean model
by introducing the notions of aspect beans and connectors. The Aspect bean describes what and
where (the notions of advice and pointcut in AOP) to apply a context independant behavior, using
a kind of inner class called the hook. The connectors are in charge of deploying hooks in a specific
context of application. A great contribution of JAsCo is provided by its connector language that
allows to define a more fine-grained control than AspectJ, on the order the aspects are executed.
Finally, we can notice that the management of hooks and connectors is completely centralized and
handled by a connector registry that have been recently enhanced through HotSwap and Jutta [8]
in order to reduce the cost that every dynamic AOP approaches suffers from.

DAOP [9] is a dynamic distributed platform where aspects and components are first-order
entities that are composed at runtime by a middleware layer. As JAsCo approach, the aspect
and component management is centralized and all the information about the architecture and its
entities is stored in the middleware layer. In a first phase, aspects and components are described
with a specific aspect-component language that allows interfaces, roles and binding definitions.
Then, at runtime components and aspects are concretely bound following the middleware layer

5

specifications. The original contribution of the DAOP approach is to give a unique role name to
every component and aspect. By this way, communications are done by giving these role names
and not by object references.

Jiazzy [10] is an enhancement of the Java language for large scale binary components that are
separately compiled and externally linked (units). Units are kind of pre-compiled Java classes
container that are of two different types: atoms (construct from Java classes) or compounds
(construct from other atoms or compounds). New behaviors can be added to methods or fields
without editing the source code, thanks to a mechanism of open classes and open signature that
are based on mixins. To sum up, Jiazzy separate concerns at the granularity of classes and offers
some behavior enhancement with a mechanism of mixins that is less powerful than the AspectJ
approach.

JBoss AOP [11] is a project that provides AOP capabilities to EJB applications. JBoss AOP
allows to modify an application with aspects, to introduce new features in an application with
a mixin mechanism, and to manage some metadata. Advices are programmed as Java classes
implementing an interception API. Pointcuts are defined in XML and associate interceptors with
the application. The weaving is dynamic with JBoss AOP.

6 Conclusion

ADL, component models and AOP are all concerned about software evolution. Their goal is to
empower developers to give them the possibility to build complex systems. Our position in this
paper is that the three approaches are complementary. However, as far as we know, they have
never been put together into one unified framework. This paper proposes a first step into that
direction. We have extended an existing component model and ADL, Fractal (see section 2) with
some AOP support for crosscutting concerns. We are then able to describe complex component-
based software architecture with aspects.

Aspects in our proposal are components called aspect components (AC), that implement a
special meta-interface. Weaving an aspect is then a matter of establishing bindings between
business components and ACs. There are two ways for establishing such a binding: either directly
between a business component and an AC, or by recursively traversing a hierarchy of composite
components and finding components that match a given pointcut expression. These two ways
unify

This study served as a proof of concept that merging concepts from ADL, CBP and AOP
can lead to a working prototype. However, many features remain to be implemented to obtain
a more complete development environment: the pointcut definition language must be enhanced,
some API must be defined to support crosscut introspection and some GUI tools are needed
to assist developers in specifying their crosscutting assemblies. The integration between ADL,
CBP and AOP has been conducted by mapping the concepts of AOP onto the ones of ADL
and CBP. It remains to be seen whether the reverse is also true. Finally, as with other aspect
languages or frameworks, the weaving of an aspect onto a business application is based on the
pointcut expressions. The information contained in these expressions is rather light, and in all
cases only concerns the structure on the underlying application. Behavioral pointcut expressions
could certainly lead to a more powerful aspect programming environment.

References

[1] N. Medvidovic and R. Taylor. A classification and comparison framework for software archi-
tecture description languages. IEEE Transactions on Software Engineering, 26, May 2000.

[2] C. Szyperski and C. Pfister. Why objects are not enough. In Proceedings of the International
Component Users Conference, 1996.

6

[3] C. Szyperski. Component Software - Beyond Object-Oriented Programming. Addison-Wesley,
2nd edition, 2002.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP’97), volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer, June 1997.

[5] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and dynamic software composition
with sharing. In Workshop on Component-Oriented Programming (WCOP) at ECOOP’02,
June 2002. http://fractal.objectweb.org/current/fractalWCOP02.pdf.

[6] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible solution for aspect-
oriented programming in java. In Proceedings of Reflection’01, volume 2192 of Lecture Notes
in Computer Science, pages 1–24. Springer, September 2001.

[7] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented approach tailored for
component based software development. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD’03), pages 21–29. ACM Press, 2003.

[8] D. Suvée and W. Vanderperren. Optimizing JAsCo dynamic AOP through HotSwap and
Jutta. In Proceedings of the Dynamic Aspects Workshop (DAW) at AOSD’04, March 2004.

[9] M. Pinto, L. Fuentes, M.E. Fayad, and J.M. Troya. Separation of Coordination in a Dynamic
Aspect Oriented Framework. April 2002.

[10] S. McDirmid and W. Hsieh. Aspect-oriented programming with jiazzi. In Proceedings of the
2nd international conference on Aspect-oriented software development, pages 70–79. ACM
Press, 2003.

[11] B. Burke and al. JBoss-AOP. http://www.jboss.org/developers/projects/jboss/aop.

7

